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Recap
§ Rational Agents 
§ Problem state spaces and search 

problems 
§ Uninformed search algorithms 

§ DFS 
§ BFS 
§ Iterative Deepening 
§ UCS
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Recap

§ Heuristics 

§ Greedy Solutions 
§ Best First 

§ Can we do better? 
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Uniform Cost Issues 

!  Remember: explores 
increasing cost contours 

!  The good: UCS is 
complete and optimal! 

!  The bad: 
!  Explores options in every 
“direction” 

!  No information about goal 
location Start Goal 

…

c ≤ 3 

c ≤  2 

c ≤ 1 

Start Goal



Example: Pancake Problem

Cost: Number of pancakes flipped

Action: Flip over the 
top n pancakes



Example: Pancake Problem



Example: Pancake Problem
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General Tree Search

Action: flip top 
two  

Cost: 2

Action: flip all four 
Cost: 4

Path to reach goal: 
Flip four, flip three 

Total cost: 7



Uniform Cost Search

§ Strategy: expand lowest 
path cost 

§ The good: UCS is 
complete and optimal! 

§ The bad: 
§ Explores options in every 

“direction” 
§ No information about goal 

location Start Goal

…

c ≤ 3

c ≤ 2

c ≤ 1



Uniform Cost

9

Uniform Cost: Pac-Man 

!  Cost of 1 for each action 
!  Explores all of the states, but one 



Search Heuristics
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Search Heuristics 

!  Any estimate of how close a state is to a goal 
!  Designed for a particular search problem 
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!  Examples: Manhattan distance, Euclidean distance 



Example: Heuristic Function

h(x): assigns a 
value to a state



Example: Heuristic Function
Heuristic: the largest pancake that is still out of place
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Best First Search (Greedy)

13

Best First / Greedy Search 

!  Expand the node that seems closest… 

!  What can go wrong? 



Best First (Greedy)

§ Strategy: expand a node 
that you think is closest 
to a goal state 
§ Heuristic: estimate of 

distance to nearest goal 
for each state 

§ A common case: 
§ Best-first takes you 

straight to the (wrong) goal 

§ Worst-case: like a 
wrongly-guided DFS

…
b

…
b



Greedy Solution

15



Combining UCS and Greedy

§ A* Search orders by the sum: f(n) = g(n) + h(n)
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Example: Teg Grenager

§ Uniform-cost orders by path cost, or backward cost  f(n)=g(n)
§ Best-first orders by goal proximity, or forward cost  f(n)=h(n)
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Combining#UCS#and#Greedy#

!  UniformKcost#orders#by#path#cost,#or#backward-cost--g(n)#
!  Greedy#orders#by#goal#proximity,#or#forward-cost--h(n)-

!  A*#Search#orders#by#the#sum:#f(n)#=#g(n)#+#h(n)-
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§ Should we stop when we enqueue a goal?

When should A* terminate?
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§ No: only stop when we dequeue a goal



Is A* Optimal?
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GS

1
3

h = 6

h = 0
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h = 7

§ What went wrong? 
§ Actual bad goal cost < estimated good goal cost 
§ We need estimates to be less than actual costs!



Admissible Heuristics

§ A heuristic h is admissible (optimistic) if: 

 where             is the true cost to a nearest goal
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§ Examples: 

§ Coming up with admissible heuristics is most 
of what’s involved in using A* in practice.



Optimality of A*

…Assume: 
§ G* is an optimal goal 

§ G is a sub-optimal goal 

§ h is admissible

Claim: 
§ G* will exit fringe before G



Optimality of A*: Blocking

…Notation: 
§ g(n) = cost to node n 

§ h(n) = estimated cost from n 

to the nearest goal (heuristic) 

§ f(n) = g(n) + h(n) = 
estimated total cost via n 

§ G*: a lowest cost goal node 

§ G: another goal node



Optimality of A*: Blocking

Proof: 
§ What could go wrong? 
§ We’d have to have to pop a 

suboptimal goal G off the 
fringe before G*

…

§ This can’t happen: 
§ For all nodes n on the 

best path to G*  
§ f(n) < f(G) 

§ So, G* will be popped 
before G



Properties of A*

…
b

…
b

Uniform-Cost A*



UCS vs A* Contours

§ Uniform-cost 
expanded in all 
directions 

§ A* expands mainly 
toward the goal, but 
does hedge its bets to 
ensure optimality

Start Goal

Start Goal



Astar
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UCS
§ 9000 States
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Astar
§ 180 States
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Creating Admissible Heuristics
§ Most of the work in solving hard search problems 

optimally is in coming up with admissible heuristics 

§ Often, admissible heuristics are solutions to relaxed 
problems, where new actions are available

15
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§ Inadmissible heuristics are often useful too (why?)



Creating Heuristics

§ What are the states? 
§ How many states? 
§ What are the actions? 
§ What states can I reach from the start state? 
§ What should the costs be?

8-puzzle:



8 Puzzle I

§ Heuristic: Number of 
tiles misplaced 

§ h(start) = 8

Average nodes expanded when 
optimal path has length…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

§ Is it admissible? 



8 Puzzle II

§ What if we had an easier 
8-puzzle where any tile 
could slide any direction 
at any time, ignoring 
other tiles? 

§ Total Manhattan distance 
§ h(start) =

3 + 1 + 2 + … 

          = 18

Average nodes expanded when 
optimal path has length…

…4 steps …8 steps …12 steps

TILES 13 39 227
MANHATTAN 12 25 73§ Admissible? 



8 Puzzle III

§ How about using the actual cost as a 
heuristic? 
§ Would it be admissible? 
§ Would we save on nodes expanded? 
§ What’s wrong with it? 

§ With A*: a trade-off between quality of 
estimate and work per node!



Trivial Heuristics, Dominance

§ Dominance: ha ≥ hc if 

§ Heuristics form a semi-lattice: 
§ Max of admissible heuristics is admissible 

§ Trivial heuristics 
§ Bottom of lattice is the zero heuristic (what 

does this give us?) 
§ Top of lattice is the exact heuristic



Which Search Strategy?

34



Which Search Strategy?
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Which Search Strategy?
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Which Search Strategy?
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Which Search Strategy?
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Tree Search: Extra Work!

§ Failure to detect repeated states can cause 
exponentially more work.  Why?



Graph Search

§ In BFS, for example, we shouldn’t bother 
expanding some nodes (which, and why?)
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Graph Search
§ Idea: never expand a state twice 

§ How to implement:  

§ Tree search + list of expanded states (closed list) 
§ Expand the search tree node-by-node, but… 
§ Before expanding a node, check to make sure its state is new

§ Python trick: store the closed list as a set, not a list 

§ Can graph search wreck completeness?  Why/why not? 

§ How about optimality?



A* Graph Search Gone Wrong
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Optimality of A* Graph Search
Proof: 
§ Main idea: Show nodes are popped 

with non-decreasing f-scores 
§ for n’ popped after n :  

§ f(n’) ≥ f(n) 
§ is this enough for optimality?

§ Sketch:  
§ assume: f(n’) ≥ f(n), for all edges (n,a,n’) and all actions a 

§ is this true? 
§ proof:  A* never expands nodes with the cost f(n)>C*  
§ proof by induction(1) always pop the lowest f-score from the 

fringe, (2) all new nodes have larger (or equal) scores, (3) add 
them to the fringe, (4) repeat!



Consistency
§ Wait, how do we know parents have better f-values than 

their successors?

A

B

G

3
h = 0

h = 10

g = 10

§ Consistency for all edges (A,a,B): 
§ h(A) ≤ c(A,a,B) + h(B)

§ Proof that f(B) ≥ f(A),    
§ f(B) 

h = 8

 = f(A) ≥ g(A) + h(A) = g(A) + c(A,a,B) + h(B)= g(B) + h(B)



Optimality

§ Tree search: 
§ A* optimal if heuristic is admissible (and non-

negative) 
§ UCS is a special case (h = 0) 

§ Graph search: 
§ A* optimal if heuristic is consistent 
§ UCS optimal (h = 0 is consistent) 

§ Consistency implies admissibility 

§ In general, natural admissible heuristics tend to 
be consistent



Summary: A*

§ A* uses both backward costs and 
(estimates of) forward costs 

§ A* is optimal with admissible (and/or 
consistent) heuristics 

§ Heuristic design is key: often use relaxed 
problems



A* Applications

§ Pathing / routing problems 
§ Resource planning problems 
§ Robot motion planning 
§ Language analysis 
§ Machine translation 
§ Speech recognition 
§ …



Which Algorithm?



Which Algorithm?



Which Algorithm?



Which Algorithm?

§ Uniform cost search (UCS):



Which Algorithm?

§ A*, Manhattan Heuristic:



Which Algorithm?

§ Best First / Greedy, Manhattan Heuristic:


