CSEP 573: Artificial Intelligence

Bayesian Networks

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Outline

- Probabilistic models (and inference)
 - Bayesian Networks (BNs)
 - Independence in BNs

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

 $P(X|a_1\ldots a_n)$

CPT: conditional probability table

A Bayes net = Topology (graph) + Local Conditional Probabilities

Example Bayes' Net: Car

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain *independence* assumptions
 - Compare to the exact decomposition according to the chain rule!

Example Bayes' Net: Insurance

Example: Independence

• N fair, independent coin flips:

Example: Coin Flips

N independent coin flips

 No interactions between variables: absolute independence

Independence

• Two variables are *independent* if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution *factors* into a product two simpler distributions
- Another form:

 $\forall x, y : P(x|y) = P(x)$

- We write: $X \coprod Y$
- Independence is a simplifying modeling assumption
 - *Empirical* joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, ¬cavity) = P(+catch | ¬cavity)
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$\begin{aligned} \forall x, y, z : P(x, y|z) &= P(x|z)P(y|z) \\ \forall x, y, z : P(x|z, y) &= P(x|z) \end{aligned} \qquad \qquad X \perp \!\!\!\perp Y | Z \end{aligned}$$

- What about this domain:
 - Traffic
 - Umbrella
 - Raining
- What about fire, smoke, alarm?

Ghostbusters Chain Rule

- 2-position maze, each sensor indicates ghost location
- T: Top square is red B: Bottom square is red G: Ghost is in the top
- That means, the two sensors are conditionally independent, given the ghost position
- Can assume: P(+g) = 0.5 P(+t | +g) = 0.8 P(+t | ¬g) = 0.4 P(+b | +g) = 0.4 P(+b | ¬g) = 0.8

 $\mathsf{P}(\mathsf{T},\mathsf{B},\mathsf{G})=\mathsf{P}(\mathsf{G})\;\mathsf{P}(\mathsf{T}|\mathsf{G})\;\mathsf{P}(\mathsf{B}|\mathsf{G})$

Т	B	G	P(T,B,G)
+t	+b	+g	0.16
+t	+b	¬g	0.16
+t	−b	+g	0.24
+t	−b	¬g	0.04
−t	+b	+g	0.04
−t	+b	¬g	0.24
¬t	¬b	+g	0.06
¬t	−b	¬g	0.06

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence
- Model 2: rain is conditioned on traffic
 - Why is an agent using model 2 better?
- Model 3: traffic is conditioned on rain
 - Is this better than model 2?

Example: Alarm Network

Variables

- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Example: Alarm Network

Example: Traffic II

Let's build a graphical model

Variables

- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Changing Bayes' Net Structure

- The same joint distribution can be encoded in many different Bayes' nets
- Analysis question: given some edges, what other edges do you need to add?
 - One answer: fully connect the graph
 - Better answer: don't make any false conditional independence assumptions

Example: Independence

For this graph, you can fiddle with θ (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!

All distributions

Example: Coins

 Extra arcs don't prevent representing independence, just allow non-independence

 $P(X_2|X_1)$

h h	0.5
t h	0.5
h t	0.5

 Adding unneeded arcs isn't wrong, it's just inefficient

Topology Limits Distributions

- Given some graph topology
 G, only certain joint
 distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Independence in a BN

Important question about a BN:

- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

Causal Chains

This configuration is a "causal chain"

$$(X \rightarrow Y \rightarrow Z)$$

X: Low pressure Y: Rain Z: Traffic

P(x, y, z) = P(x)P(y|x)P(z|y)

Is X independent of Z given Y?

Evidence along the chain "blocks" the influence

Common Parent

- Another basic configuration: two effects of the same parent
 - Are X and Z independent?
 - Are X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Y: Project due
X: Newsgroup
busy
Z: Lab full

Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
 - Are X and Z independent given Y?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation?
 - This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

- X: Raining Z: Ballgame
- Y: Traffic

The General Case

- Any complex example can be analyzed using these three canonical cases
- General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

Reachability

- Recipe: shade evidence nodes
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars {Z}?
 - Yes, if X and Y "separated" by Z
 - Look for active paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain A → B → C where B is unobserved (either direction)
 - Common cause A ← B → C where B is unobserved
 - Common effect (aka v-structure)
 A → B ← C where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Example: Independent?

 $\begin{array}{ll} R \bot B & \text{Yes} \\ R \bot B | T \\ R \bot B | T' \end{array}$

Example: Independent?

Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:
 - $\begin{array}{ll} T \bot \!\!\!\bot D \\ T \bot \!\!\!\bot D | R & \mbox{Yes} \\ T \bot \!\!\!\bot D | R, S \end{array}$

Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution