CSEP 573: Artificial Intelligence

Bayesian Networks

Luke Zettlemoyer

Many slides over the course adapted from either Dan Klein, Stuart Russell or Andrew Moore

Outline

- Probabilistic models (and inference)
- Bayesian Networks (BNs)
- Independence in BNs

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly called graphical models
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions

Bayes' Net Semantics

- Let's formalize the semantics of a Bayes' net
- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- CPT: conditional probability table

A Bayes net = Topology (graph) + Local Conditional Probabilities

Example Bayes' Net: Car

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)
$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
- The topology enforces certain independence assumptions
- Compare to the exact decomposition according to the chain rule!

Example Bayes' Net: Insurance

Example: Independence

- N fair, independent coin flips:

$P\left(X_{1}\right)$		$P\left(X_{2}\right)$		$P\left(X_{n}\right)$	
h	0.5	h	0.5	h	0.5
t	0.5	t	0.5	t	0.5

Example: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence

- Two variables are independent if:

$$
\forall x, y: P(x, y)=P(x) P(y)
$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$
\forall x, y: P(x \mid y)=P(x)
$$

- We write: $X \Perp Y$
- Independence is a simplifying modeling assumption
- Empirical joint distributions: at best "close" to independent
- What could we assume for \{Weather, Traffic, Cavity, Toothache\}?

Example: Independence?

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- P (+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
- P (+catch | +toothache, \neg cavity $)=\mathrm{P}(+$ catch| \neg cavity $)$
- Catch is conditionally independent of Toothache given Cavity:
- P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent statements:
- P (Toothache | Catch , Cavity) $=\mathrm{P}$ (Toothache | Cavity)
- $\mathrm{P}($ Toothache, Catch | Cavity) $=\mathrm{P}($ Toothache | Cavity) $\mathrm{P}($ Catch | Cavity)
- One can be derived from the other easily

Conditional Independence

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments:

$$
\begin{aligned}
& \forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z) \\
& \forall x, y, z: P(x \mid z, y)=P(x \mid z)
\end{aligned}
$$

- What about this domain:
- Traffic
- Umbrella
- Raining
- What about fire, smoke, alarm?

Ghostbusters Chain Rule

- 2-position maze, each sensor indicates ghost location
- T : Top square is red

B: Bottom square is red G: Ghost is in the top

- That means, the two sensors are conditionally independent, given the ghost position
- Can assume:

$$
\begin{aligned}
& P(+g)=0.5 \\
& P(+t \mid+g)=0.8 \\
& P(+t \mid-g)=0.4 \\
& P(+b \mid+g)=0.4 \\
& P(+b \mid r g)=0.8
\end{aligned}
$$

$$
P(T, B, G)=P(G) P(T \mid G) P(B \mid G)
$$

\boldsymbol{T}	B	G	$P(T, B, G)$
+t	+b	+g	0.16
+t	+b	$\neg \mathrm{g}$	0.16
+t	$\neg \mathrm{b}$	+g	0.24
+t	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.04
$\neg \mathrm{t}$	+b	+g	0.04
$\neg \mathrm{t}$	+b	$\neg \mathrm{g}$	0.24
$\neg \mathrm{t}$	$\neg \mathrm{b}$	+g	0.06
$\neg \mathrm{t}$	$\neg \mathrm{b}$	$\neg \mathrm{g}$	0.06

Example: Traffic

- Variables:
- R: It rains
- T: There is traffic
- Model 1: independence
- Model 2: rain is conditioned on traffic
- Why is an agent using model 2 better?
- Model 3: traffic is conditioned on rain
- Is this better than model 2?

Example: Alarm Network

- Variables
- B: Burglary
- A: Alarm goes off
- M: Mary calls
- J: John calls
- E: Earthquake!

Example: Alarm Network

B	$P(B)$
$+b$	0.001
$\neg b$	0.999

A	J	$P(J \mid A)$
+a	+j	0.9
+a	$\neg \mathrm{j}$	0.1
$\neg \mathrm{a}$	+j	0.05
$\neg \mathrm{a}$	$\neg \mathrm{j}$	0.95

\mathbf{A}	\mathbf{M}	$P(M \mid A)$
+a	+m	0.7
+a	$\neg \mathrm{m}$	0.3
$\neg \mathrm{a}$	+m	0.01
$\neg \mathrm{a}$	$\neg \mathrm{m}$	0.99

B	E	A	$P(A \mid B, E)$
+b	+e	+a	0.95
+b	+e	$\neg \mathrm{a}$	0.05
+b	$\neg \mathrm{e}$	+a	0.94
+b	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.06
$\neg \mathrm{~b}$	+e	+a	0.29
$\neg \mathrm{~b}$	+e	$\neg \mathrm{a}$	0.71
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	+a	0.001
$\neg \mathrm{~b}$	$\neg \mathrm{e}$	$\neg \mathrm{a}$	0.999

Example: Traffic II

- Let's build a graphical model
- Variables
- T: Traffic
- R: It rains
- L: Low pressure
- D: Roof drips
- B: Ballgame
- C: Cavity

Changing Bayes' Net Structure

- The same joint distribution can be encoded in many different Bayes' nets
- Analysis question: given some edges, what other edges do you need to add?
- One answer: fully connect the graph
- Better answer: don't make any false conditional independence assumptions

Example: Independence

- For this graph, you can fiddle with θ (the CPTs) all you want, but you won't be able to represent any distribution in which the flips are dependent!

All distributions

Example: Coins

- Extra arcs don’t prevent representing independence, just allow non-independence

- Adding unneeded arcs isn't wrong, it's just inefficient

h	0.5
t	0.5

$\mathrm{h} \mid \mathrm{h}$	0.5
$\mathrm{t} \mid \mathrm{h}$	0.5
$\mathrm{~h} \mid \mathrm{t}$	0.5
$\mathrm{t} \mid \mathrm{t}$	0.5

Topology Limits Distributions

- Given some graph topology G, only certain joint distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution
(1)

Independence in a BN

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

- Question: are X and Z necessarily independent?
- Answer: no. Example: low pressure causes rain, which causes traffic.
- X can influence Z, Z can influence X (via Y)
- Addendum: they could be independent: how?

Causal Chains

- This configuration is a "causal chain"

X: Low pressure
Y: Rain
Z: Traffic

$$
P(x, y, z)=P(x) P(y \mid x) P(z \mid y)
$$

- Is X independent of Z given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(x) P(y \mid x) P(z \mid y)}{P(x) P(y \mid x)} \\
& =P(z \mid y) \quad \text { Yes! }
\end{aligned}
$$

- Evidence along the chain "blocks" the influence

Common Parent

- Another basic configuration: two effects of the same parent
- Are X and Z independent?
- Are X and Z independent given Y ?

$$
\begin{aligned}
P(z \mid x, y)=\frac{P(x, y, z)}{P(x, y)} & =\frac{P(y) P(x \mid y) P(z \mid y)}{P(y) P(x \mid y)} \\
& =P(z \mid y) \text { Yes! }
\end{aligned}
$$

Y: Project due
X: Newsgroup busy

Z: Lab full

- Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v -structures)
- Are X and Z independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Still need to prove they must be (try it!)

- Are X and Z independent given Y ?
- No: seeing traffic puts the rain and the ballgame in competition as explanation?
- This is backwards from the other cases

X : Raining
Z: Ballgame
Y: Traffic

- Observing an effect activates influence between possible causes.

The General Case

- Any complex example can be analyzed using these three canonical cases
- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph

Reachability

- Recipe: shade evidence nodes
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
- Where does it break?
- Answer: the v-structure at T doesn't count as a link in a path unless "active"

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars $\{Z\}$?
- Yes, if X and Y "separated" by Z
- Look for active paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$ where B is unobserved (either direction)
- Common cause $\mathrm{A} \leftarrow \mathrm{B} \rightarrow \mathrm{C}$ where B is unobserved
- Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Inactive Triples

Example: Independent?

$R \Perp B$
Yes
$R \Perp B \mid T$
$R \Perp B \mid T^{\prime}$

Example: Independent?

$L \Perp T^{\prime} \mid T \quad$ Yes
$L \Perp B$
$L \Perp B \mid T$
$L \Perp B \mid T^{\prime}$
$L \Perp B \mid T, R \quad$ Yes

Example

- Variables:
- R: Raining
- T: Traffic
- D: Roof drips
- S: l'm sad
- Questions:

$$
\begin{aligned}
& T \Perp D \\
& T \Perp D \mid R \quad \text { Yes } \\
& T \Perp D \mid R, S
\end{aligned}
$$

Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

