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Outline

§ Probabilistic sequence models (and inference) 
§ Markov Chains 
§ Hidden Markov Models 
§ Particle Filters



Ghostbusters, Revisited

§ Let’s say we have two distributions: 
§ Prior distribution over ghost location: P(G) 

§ Let’s say this is uniform 
§ Sensor reading model: P(R | G) 

§ Given: we know what our sensors do 
§ R = reading color measured at (1,1) 
§ E.g. P(R = yellow | G=(1,1)) = 0.1 

§ We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:



Markov Models (Markov Chains)
§ A Markov model is: 

§ a MDP with no actions (and no rewards)

X2X1 X3 X4
BRIEF ARTICLE

THE AUTHOR

P (Xt|Xt�1)

1

and

§ A Markov model includes: 
§ Random variables Xt for all time steps t (the state) 
§ Parameters: called transition probabilities or 

dynamics, specify how the state evolves over time 
(also, initial probs)

XN

§ a chain-structured Bayesian Network (BN)



Markov Models (Markov Chains)

§ A Markov model defines 
§ a joint probability distribution:

X2X1 X3 X4

§ One common inference problem: 
§ Compute marginals P(Xt) for all time steps t 
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Conditional Independence

§ Basic conditional independence: 
§ Past and future independent of the present 
§ Each time step only depends on the previous 
§ This is called the (first order) Markov property 

§ Note that the chain is just a (growing) BN 
§ As we will see later, we can use generic BN reasoning 

on it if we truncate the chain at a fixed length

X2X1 X3 X4



Example: Markov Chain

§ Weather: 
§ States: X = {rain, sun} 
§ Transitions: 

§ Initial distribution: 1.0 sun 
§ What’s the probability distribution after one step?

rain sun

0.9

0.9

0.1

0.1 This is a 
conditional 
distribution



Markov Chain Inference

§ Question: probability of being in state x at time t? 
§ Slow answer: 

§ Enumerate all sequences of length t which end in s 
§ Add up their probabilities

…



Mini-Forward Algorithm

§ Question: What’s P(X) on some day t? 
§ We don’t need to enumerate every sequence!

sun

rain

sun

rain

sun

rain

sun

rain

Forward simulation



=
X

xt�1

P (x
t

|x
t�1)

X

x1,...,xt�2

P (x1)
t�1Y

i=1

P (x
i

|x
i�1)

=
X

x1,...,xt�1

P (x1)
tY

i=1

P (x
i

|x
i�1)

X

x1,...,xt�1

P (x1, . . . , xt

)
P (xt) =

=
X

xt�1

P (x
t

|x
t�1)P (x

t�1)

=
X

xt�1

P (x
t

|x
t�1)

X

x1,...,xt�2

P (x1, . . . , xt�1)

Proof that



Example

§ From initial observation of sun 

§ From initial observation of rain

P(X1) P(X2) P(X3) P(X∞)

P(X1) P(X2) P(X3) P(X∞)



Stationary Distributions

§ If we simulate the chain long enough: 
§ What happens? 
§ Uncertainty accumulates 
§ Eventually, we have no idea what the state is! 

§ Stationary distributions: 
§ For most chains, the distribution we end up in is 

independent of the initial distribution 
§ Called the stationary distribution of the chain 
§ Usually, can only predict a short time out



Pac-man Markov Chain
Pac-man knows the ghost’s initial position, but gets no observations!



Web Link Analysis

§ PageRank over a web graph 
§ Each web page is a state 
§ Initial distribution: uniform over pages 
§ Transitions: 

§ With prob. c, uniform jump to a 
 random page (dotted lines, not all shown) 
§ With prob. 1-c, follow a random 
 outlink (solid lines) 

§ Stationary distribution 
§ Will spend more time on highly reachable pages 
§ E.g. many ways to get to the Acrobat Reader download page 
§ Somewhat robust to link spam 
§ Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines use link 
analysis along with many other factors (rank actually getting 
less important over time)



Hidden Markov Models
§ Markov chains not so useful for most agents 

§ Eventually you don’t know anything anymore 
§ Need observations to update your beliefs 

§ Hidden Markov models (HMMs) 
§ Underlying Markov chain over states S 
§ You observe outputs (effects) at each time step 
§ POMDPs without actions (or rewards).   
§ As a Bayes’ net:
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Example

§ An HMM is defined by: 
§ Initial distribution: 
§ Transitions: 
§ Emissions:
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Hidden Markov Models

§ Defines a joint probability distribution:
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Ghostbusters HMM
§ P(X1) = uniform 

§ P(X’|X) = usually move clockwise, but 
sometimes move in a random direction or 
stay in place 

§ P(E|X) = same sensor model as before: 
red means close, green means far away.
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HMM Computations
§ Given  

§ joint P(X1:n,E1:n)  
§ evidence E1:n =e1:n

§ Inference problems include: 
§ Filtering, find P(Xt|e1:t) for all t 
§ Smoothing, find P(Xt|e1:n) for all t 
§ Most probable explanation, find  

x*1:n = argmaxx1:n P(x1:n|e1:n)



Real HMM Examples

§ Speech recognition HMMs: 
§ Observations are acoustic signals (continuous valued) 
§ States are specific positions in specific words (so, tens of 

thousands) 

§ Machine translation HMMs: 
§ Observations are words (tens of thousands) 
§ States are translation options 

§ Robot tracking: 
§ Observations are range readings (continuous) 
§ States are positions on a map (continuous)



Filtering / Monitoring

§ Filtering, or monitoring, is the task of tracking the 
distribution B(X) (the belief state) over time 

§ We start with B(X) in an initial setting, usually uniform 

§ As time passes, or we get observations, we update B(X) 

§ The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program



Example: Robot Localization

t=0 
Sensor model: never more than 1 mistake 

Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Inference: Simple Cases

E1

X1

X2X1



Online Belief Updates

§ Every time step, we start with current P(X | evidence) 
§ We update for time: 

§ We update for evidence: 

X2X1

X2

E2



Passage of Time
§ Assume we have current belief P(X | evidence to date) 

§ Then, after one time step passes: 

§ Or, compactly: 

§ Basic idea: beliefs get “pushed” through the transitions 
§ With the “B” notation, we have to be careful about what time step 

t the belief is about, and what evidence it includes

X2X1



Example: Passage of Time

§ As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

Transition model: ghosts usually go clockwise



Observation
§ Assume we have current belief P(X | previous evidence): 

§ Then: 

§ Or: 

§ Basic idea: beliefs reweighted by likelihood of evidence 

§ Unlike passage of time, we have to renormalize

E1

X1



Example: Observation

§ As we get observations, beliefs get 
reweighted, uncertainty “decreases”

Before observation After observation



The Forward Algorithm

§ We to know: 
§ We can derive the following updates

§ To get            , compute each entry and normalize



Example: Run the Filter

§ An HMM is defined by: 
§ Initial distribution: 
§ Transitions: 
§ Emissions:
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Example HMM



Example HMM



Example Pac-man



Summary: Filtering

§ Filtering is the inference process of finding a distribution 
over XT given e1 through eT : P( XT | e1:t ) 

§ We first compute P( X1 | e1 ): 

§ For each t from 2 to T, we have P( Xt-1 | e1:t-1 )  

§ Elapse time: compute P( Xt | e1:t-1 ) 

§ Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t )



Filtering Complexity

§ Problem size:  
§ |X| states, |E| observations, T time steps 

§ Each Time Step 
§ Computation: O(|X|2) 
§ Space: O(|X|) 

§ Total 
§ Computation: O(|X|2T) 
§ Space: O(|X|)



Recap: Reasoning Over Time

§ Stationary Markov models

X2X1 X3 X4

rain sun
0.7

0.7

0.3

0.3

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X E P
rain umbrella 0.9
rain no umbrella 0.1
sun umbrella 0.2
sun no umbrella 0.8

§ Hidden Markov models



Particle Filtering
§ Sometimes |X| is too big to use 

exact inference 
§ |X| may be too big to even store B(X) 
§ E.g. X is continuous 
§ |X|2 may be too big to do updates 

§ Solution: approximate inference 
§ Track samples of X, not all values 
§ Samples are called particles 
§ Time per step is linear in the number 

of samples 
§ But: number needed may be large 
§ In memory: list of particles, not 

states 

§ This is how robot localization 
works in practice

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5



Representation: Particles
§ Our representation of P(X) is now 

a list of N particles (samples) 
§ Generally, N << |X| 
§ Storing map from X to counts 

would defeat the point 

§ P(x) approximated by number of 
particles with value x 
§ So, many x will have P(x) = 0!  
§ More particles, more accuracy 

§ For now, all particles have a 
weight of 1

Particles: 
    (3,3) 
    (2,3) 
    (3,3)    
    (3,2) 
    (3,3) 
    (3,2) 
    (2,1) 
    (3,3) 
    (3,3) 
    (2,1)



Particle Filtering: Elapse Time

§ Each particle is moved by sampling its 
next position from the transition model 

§ This is like prior sampling – samples’ 
frequencies reflect the transition probs 

§ Here, most samples move clockwise, but 
some move in another direction or stay in 
place 

§ This captures the passage of time 
§ If we have enough samples, close to the 

exact values before and after (consistent)



Particle Filtering: Observe

§ Slightly trickier: 
§ Don’t do rejection sampling (why not?) 
§ We don’t sample the observation, we fix it 
§ This is similar to likelihood weighting, so 

we downweight our samples based on 
the evidence 

§ Note that, as before, the probabilities 
don’t sum to one, since most have been 
downweighted (in fact they sum to an 
approximation of P(e))



Particle Filtering: Resample
§ Rather than tracking 

weighted samples, 
we resample 

§ N times, we choose 
from our weighted 
sample distribution 
(i.e. draw with 
replacement) 

§ This is equivalent to 
renormalizing the 
distribution 

§ Now the update is 
complete for this time 
step, continue with 
the next one

Old Particles: 
    (3,3) w=0.1 
    (2,1) w=0.9 
    (2,1) w=0.9   
    (3,1) w=0.4 
    (3,2) w=0.3 
    (2,2) w=0.4 
    (1,1) w=0.4 
    (3,1) w=0.4 
    (2,1) w=0.9 
    (3,2) w=0.3

New Particles: 
    (2,1) w=1 
    (2,1) w=1 
    (2,1) w=1   
    (3,2) w=1 
    (2,2) w=1 
    (2,1) w=1 
    (1,1) w=1 
    (3,1) w=1 
    (2,1) w=1 
    (1,1) w=1



Particle Filtering Summary
§ Represent current belief P(X | evidence to date) as set of 

n samples (actual assignments X=x) 
§ For each new observation e: 

1. Sample transition, once for each current particle x 

2. For each new sample x’, compute importance 
weights for the new evidence e: 

3. Finally, normalize the importance weights and 
resample N new particles 
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Robot Localization
§ In robot localization: 

§ We know the map, but not the robot’s position 
§ Observations may be vectors of range finder readings 
§ State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X) 
§ Particle filtering is a main technique



Robot Localization



Which Algorithm?
Exact filter, uniform initial beliefs



Which Algorithm?
Particle filter, uniform initial beliefs, 300 particles



Which Algorithm?
Particle filter, uniform initial beliefs, 25 particles



P4: Ghostbusters

§ Plot: Pacman's grandfather, Grandpac, 
learned to hunt ghosts for sport.   

§ He was blinded by his power, but could 
hear the ghosts’ banging and clanging. 

§ Transition Model: All ghosts move 
randomly, but are sometimes biased 

§ Emission Model: Pacman knows a 
“noisy” distance to each ghost

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

Noisy distance prob 
True distance = 8



Dynamic Bayes Nets (DBNs)

§ We want to track multiple variables over time, using 
multiple sources of evidence 

§ Idea: Repeat a fixed Bayes net structure at each time 
§ Variables from time t can condition on those from t-1 

§ Discrete valued dynamic Bayes nets are also HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3



DBN Particle Filters

§ A particle is a complete sample for a time step 
§ Initialize: Generate prior samples for the t=1 Bayes net 

§ Example particle: G1
a = (3,3) G1

b = (5,3)  

§ Elapse time: Sample a successor for each particle  
§ Example successor: G2

a = (2,3) G2
b = (6,3) 

§ Observe: Weight each entire sample by the likelihood of 
the evidence conditioned on the sample 
§ Likelihood: P(E1

a |G1
a ) * P(E1

b |G1
b )  

§ Resample: Select prior samples (tuples of values) in 
proportion to their likelihood


