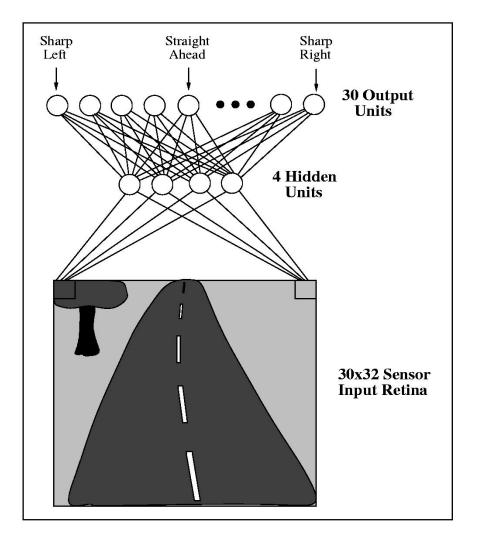
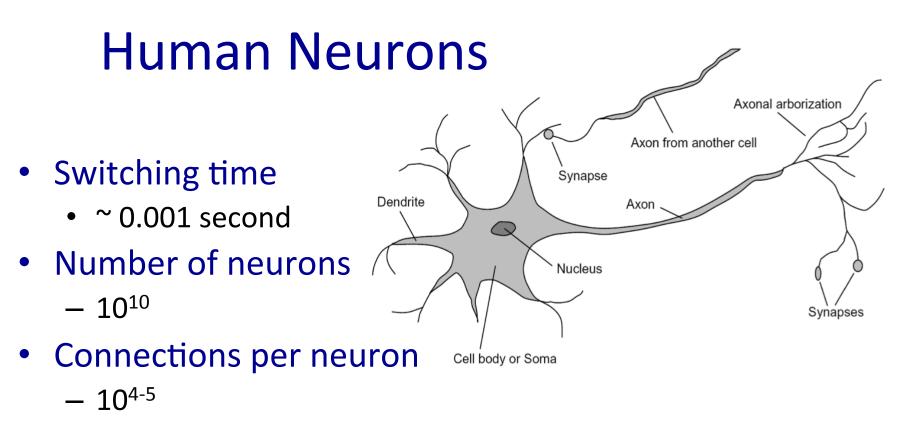
CSEP573: Neural Networks

Luke Zettlemoyer

Slides adapted from Carlos Guestrin

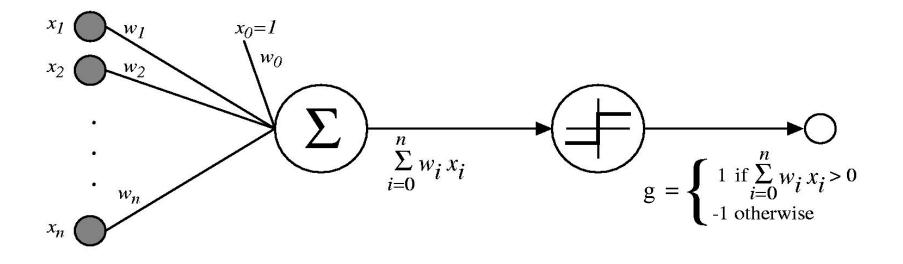


 •			• • •	• •	•			• •	•	٠		
 •			• •	•••	•		•	• •		•		
•	44		•					•••				
		000000										
	90											
	@@											
	9 4											
	04											
	******									<u>a</u>		
)))))	
					M							
		1		91								
 					9-0000					M		
				8880-69								
					μ.							
 		T. (11)	ter al la constante de la const	46A		• :				200		



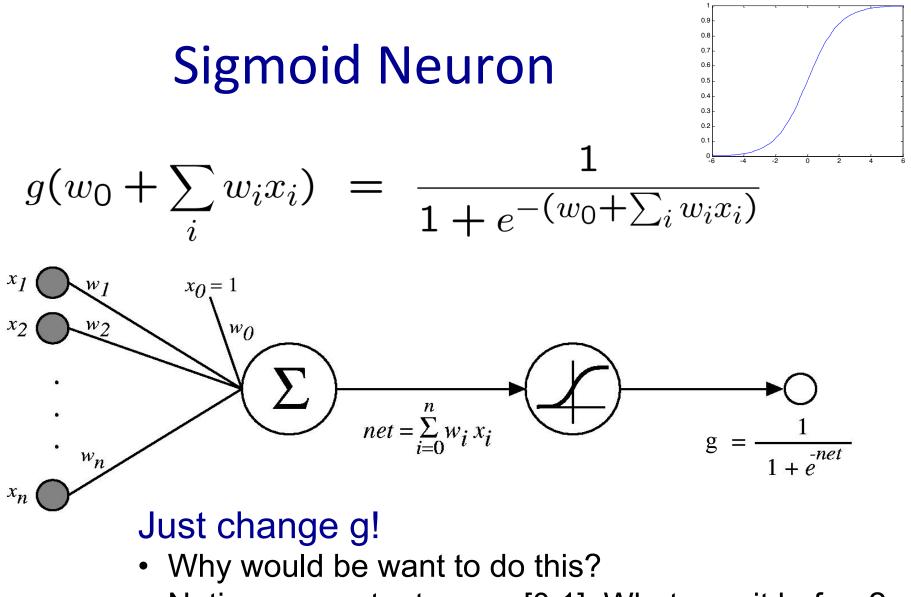
- Scene recognition time
 - 0.1 seconds
- Number of cycles per scene recognition?
 - 100 \rightarrow much parallel computation!

Perceptron as a Neural Network



This is one neuron:

- Input edges $x_1 \dots x_n$, along with basis
- The sum is represented graphically
- Sum passed through an activation function g



• Notice new output range [0,1]. What was it before?

Optimizing a neuron

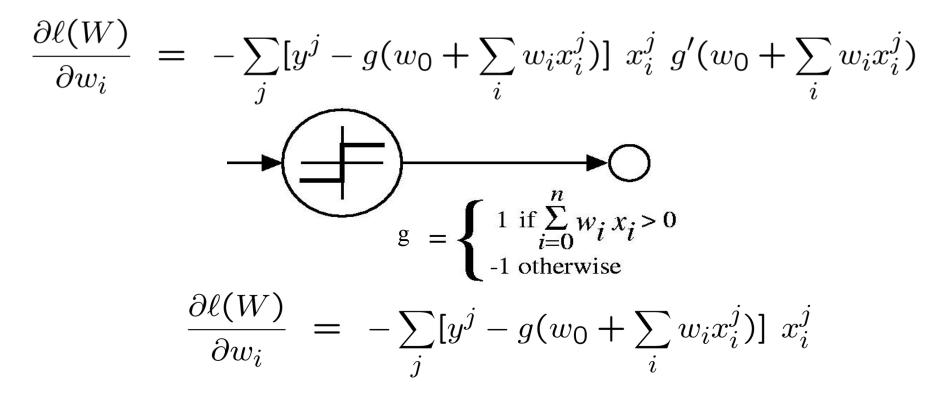
$$\frac{\partial}{\partial x}f(g(x)) = f'(g(x))g'(x)$$

We train to minimize sum-squared error

 $\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - g(w_{0} + \sum_{i} w_{i}x_{i}^{j})]^{2}$ $\frac{\partial l}{\partial w_{i}} = -\sum_{j} [y_{j} - g(w_{0} + \sum_{i} w_{i}x_{i}^{j})] \frac{\partial}{\partial w_{i}} g(w_{0} + \sum_{i} w_{i}x_{i}^{j})$ $\frac{\partial}{\partial w_{i}} g(w_{0} + \sum_{i} w_{i}x_{i}^{j}) = x_{i}^{j} \frac{\partial}{\partial w_{i}} g(w_{0} + \sum_{i} w_{i}x_{i}^{j}) = x_{i}^{j}g'(w_{0} + \sum_{i} w_{i}x_{i}^{j})$ $\frac{\partial \ell(W)}{\partial w_{i}} = -\sum_{j} [y^{j} - g(w_{0} + \sum_{i} w_{i}x_{i}^{j})] x_{i}^{j} g'(w_{0} + \sum_{i} w_{i}x_{i}^{j})$

Solution just depends on g': derivative of activation function!

Re-deriving the perceptron update



For a specific, incorrect example:

• w = w + y * x (our familiar update!)

Sigmoid units: have to differentiate g

$$\frac{\partial \ell(W)}{\partial w_i} = -\sum_j [y^j - g(w_0 + \sum_i w_i x_i^j)] x_i^j g'(w_0 + \sum_i w_i x_i^j)$$

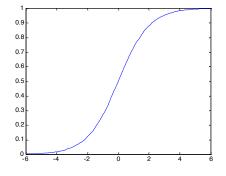
$$g(x) = \frac{1}{1 + e^{-x}} \qquad g'(x) = g(x)(1 - g(x))$$

$$w_i \leftarrow w_i + \eta \sum_j x_i^j \delta^j$$

$$\delta^j = [y^j - g(w_0 + \sum_i w_i x_i^j)]g^j(1 - g^j)$$

$$g^j = g(w_0 + \sum_i w_i x_i^j)$$

Aside: Comparison to logistic regression



• P(Y|X) represented by:

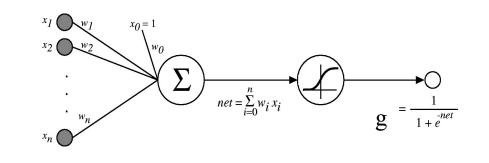
$$P(Y = 1 | x, W) = \frac{1}{1 + e^{-(w_0 + \sum_i w_i x_i)}}$$

= $g(w_0 + \sum_i w_i x_i)$
ule - MLE:

Learning rule – MLE:

 $\frac{\partial \ell(W)}{\partial w_i} = \sum_j x_i^j [y^j - P(Y^j = 1 \mid x^j, W)]$ $= \sum_j x_i^j [y^j - g(w_0 + \sum_i w_i x_i^j)]$ $w_i \leftarrow w_i + \eta \sum_j x_i^j \delta^j$ $\delta^j = y^j - g(w_0 + \sum_i w_i x_i^j)$ Perceptron, linear classification, Boolean functions: $x_i \in \{0,1\}$

- Can learn $x_1 \vee x_2$?
 - $-0.5 + x_1 + x_2$
- Can learn $x_1 \wedge x_2$?
 - $-1.5 + x_1 + x_2$

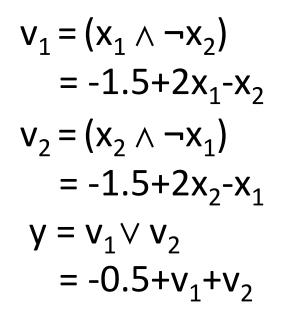


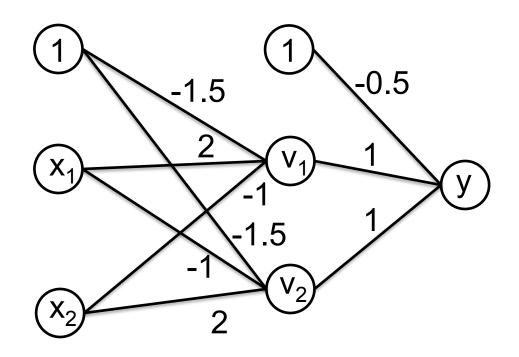
- Can learn any conjunction or disjunction?
 - $0.5 + x_1 + ... + x_n$
 - (-n+0.5) + x_1 + ... + x_n
- Can learn majority?
 - $(-0.5*n) + x_1 + ... + x_n$
- What are we missing? The dreaded XOR!, etc.

Going beyond linear classification

Solving the XOR problem

$$y = x_1 XOR x_2 = (x_1 \land \neg x_2) \lor (x_2 \land \neg x_1)$$





Hidden layer

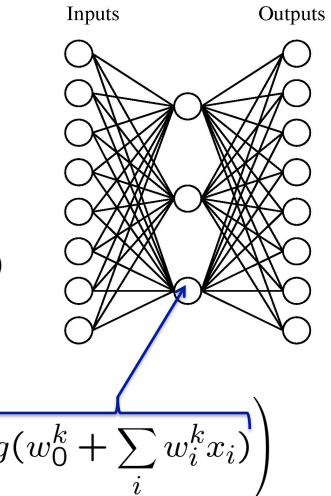
• Single unit:

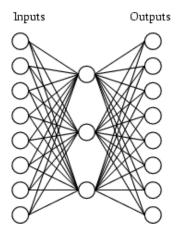
$$out(\mathbf{x}) = g(w_0 + \sum_i w_i x_i)$$

• 1-hidden layer:

$$out(\mathbf{x}) = g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$$

• No longer convex function!





Example data for NN with hidden layer

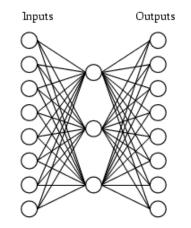
A target function:

Input	Output
$10000000 \rightarrow$	10000000
$01000000 \rightarrow$	01000000
$00100000 \rightarrow$	00100000
$00010000 \rightarrow$	00010000
$00001000 \rightarrow$	00001000
$00000100 \rightarrow$	00000100
$00000010 \rightarrow$	00000010
$00000001 \rightarrow$	00000001

Can this be learned??

A network:

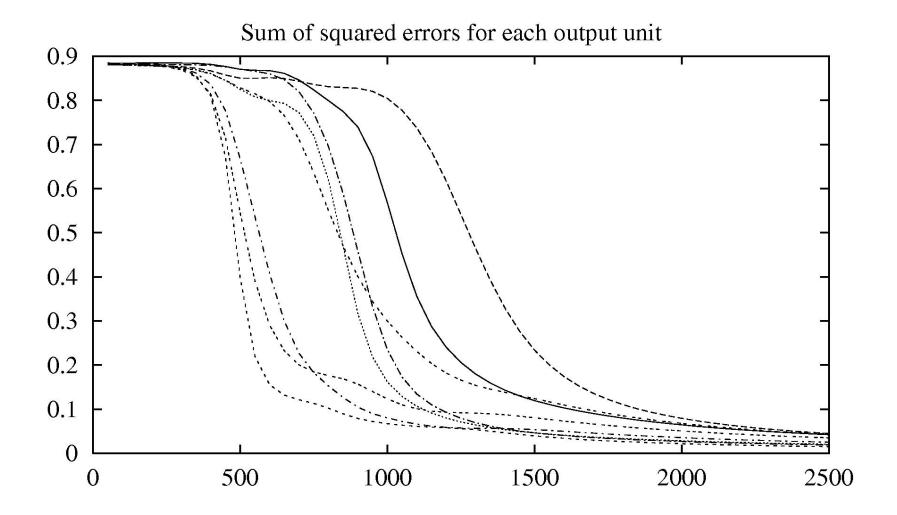
Learned weights for hidden layer



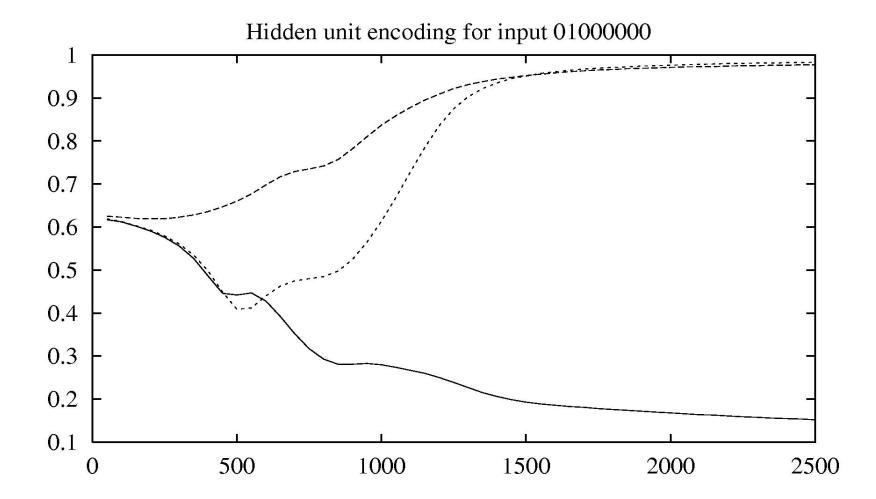
Learned hidden layer representation:

Input	Hidden	Output						
Values								
1000000 -	\rightarrow .89 .04 .08 -	→ 1000000						
01000000 -	ightarrow .01 .11 .88 -	→ 01000000						
00100000 -	ightarrow .01 .97 .27 -	→ 00100000						
00010000 -	ightarrow .99 .97 .71 $-$	→ 00010000						
00001000 -	ightarrow .03 .05 .02 -	→ 00001000						
00000100 -	ightarrow .22 .99 .99 –	→ 00000100						
0000010 -	ightarrow .80 .01 .98 -	→ 00000010						
0000001 -	ightarrow .60 .94 .01 -	→ 00000001						

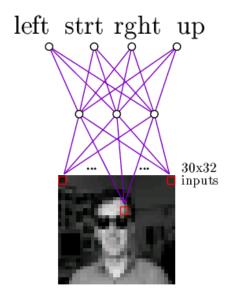
Learning the weights



Learning an encoding



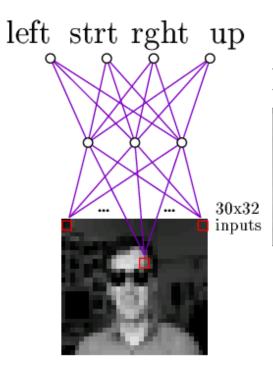
NN for images



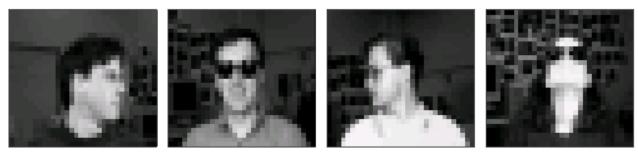
Typical input images

90% accurate learning head pose, and recognizing 1-of-20 faces

Weights in NN for images



Learned Weights



Typical input images

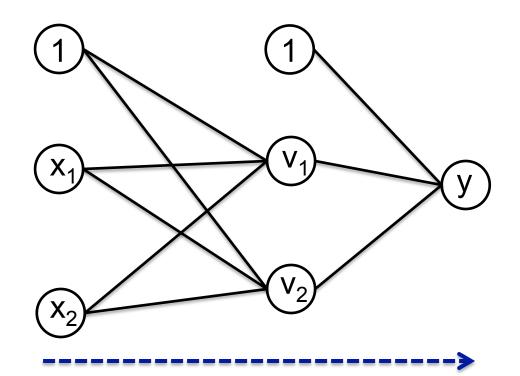
Forward propagation

1-hidden layer:

$$out(\mathbf{x}) = g\left(w_0 + \sum_k w_k g(w_0^k + \sum_i w_i^k x_i)\right)$$

Compute values left to right

- 1. Inputs: x₁, ..., x_n
- 2. Hidden: v₁,..., v_n
- 3. Output: y

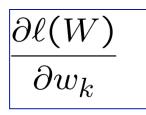


Back-propagation – learning

- Just gradient descent!!!
- Recursive algorithm for computing gradient
- For each example
 - Perform forward propagation
 - Start from output layer
 - Compute gradient of node V_k with parents U₁,U₂,...
 - Update weight w_i^k
 - Repeat (move to preceding layer)

Gradient descent for 1-hidden layer

$$\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - out(\mathbf{x}^{j})]^{2}$$
$$out(\mathbf{x}) = g\left(\sum_{k'} w_{k'}g(\sum_{i'} w_{i'}^{k'}x_{i'})\right)$$



Dropped w₀ to make derivation simpler

$$v_k^j = g\left(\sum_{i'} w_{i'}^{k'} x_{i'}\right)$$

$$\frac{\partial \ell(W)}{\partial w_k} = \sum_{j=1}^m -[y^j - out(\mathbf{x}^j)] \frac{\partial out(\mathbf{x}^j)}{\partial w_k}$$

$$out(x) = g\left(\sum_{k'} w_{k'} v_k^j\right) \qquad \qquad \frac{\partial out(\mathbf{x})}{\partial w_k} = v_k^j g'\left(\sum_{k'} w_{k'} v_k^j\right)$$

Gradient for last layer same as the single node case, but with hidden nodes v as input!

Gradient descent for 1-hidden layer

$$\ell(W) = \frac{1}{2} \sum_{j} [y^{j} - out(\mathbf{x}^{j})]^{2}$$
$$out(\mathbf{x}) = g\left(\sum_{k'} w_{k'}g(\sum_{i'} w_{i'}^{k'}x_{i'})\right)$$

 $\frac{\partial \ell(W)}{\partial w_i^k} = \sum_{j=1}^m -[y - out(\mathbf{x}^j)] \frac{\partial out(\mathbf{x}^j)}{\partial w_i^k}$

$$\frac{\partial \ell(W)}{\partial w_i^k}$$

Dropped w₀ to make derivation simpler

$$\frac{\partial}{\partial x}f(g(x)) = f'(g(x))g'(x)$$

For hidden layer, two parts:

- $\frac{\partial out(\mathbf{x})}{\partial w_i^k} = g' \left(\sum_{k'} w_{k'} g(\sum_{i'} w_{i'}^{k'} x_{i'}) \right) \frac{\partial}{\partial w_i^k} g \left(\sum_{i'} w_{i'}^{k'} x_{i'} \right)$ Normal update for single neuron
 - Recursive computation of gradient on output layer

Forward propagation – prediction

- Recursive algorithm
- Start from input layer
- Output of node V_k with parents $U_1, U_2, ...$:

$$V_k = g\left(\sum_i w_i^k U_i\right)$$

Back-propagation – pseudocode

Initialize all weights to small random numbers

- Until convergence, do:
 - For each training example x,y:
 - 1. Forward propagation, compute node values V_k
 - 2. For each output unit o (with labeled output y):

$$\delta_{o} = V_{o}(1 - V_{o})(y - V_{o})$$

3. For each hidden unit h:

$$\delta_h = V_h (1 - V_h) \Sigma_{k \text{ in output}(h)} W_{h,k} \delta_k$$

4. Update each network weight $w_{i,j}$ from node i to node j

$$W_{i,j} = W_{i,j} + \eta \delta_j X_{i,j}$$

Multilayer neural networks

Inputs

Outputs

Inference and Learning:

- Forward pass: left to right, each hidden layer in turn
- Gradient computation: right to left, propagating gradient for each node

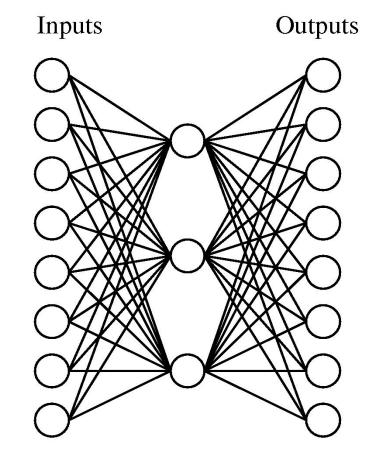


Convergence of backprop

- Perceptron leads to convex optimization
 - Gradient descent reaches global minima
- Multilayer neural nets **not convex**
 - Gradient descent gets stuck in local minima
 - Selecting number of hidden units and layers = fuzzy process
 - NNs have made a HUGE comeback in the last few years!!!
 - Neural nets are back with a new name!!!!
 - Deep belief networks
 - Huge error reduction when trained with lots of data on GPUs

Overfitting in NNs

- Are NNs likely to overfit?
 - Yes, they can represent arbitrary functions!!!
- Avoiding overfitting?
 - More training data
 - Fewer hidden nodes / better topology
 - Regularization
 - Early stopping



Object Recognition

stone wall [0.95, web]

judo [0.96, web]

tractor [0.91, web]

dishwasher [0.91, web]

judo [0.92, web]



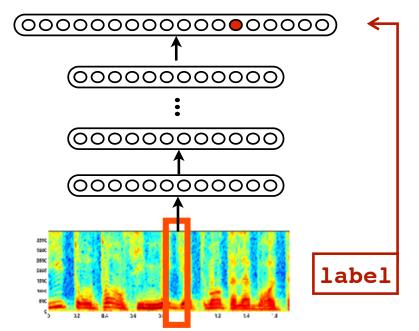
car show [0.99, web]

judo [0.91, web]

Slides from Jeff Dean at Google

Number Detection

Acoustic Modeling for Speech Recognition

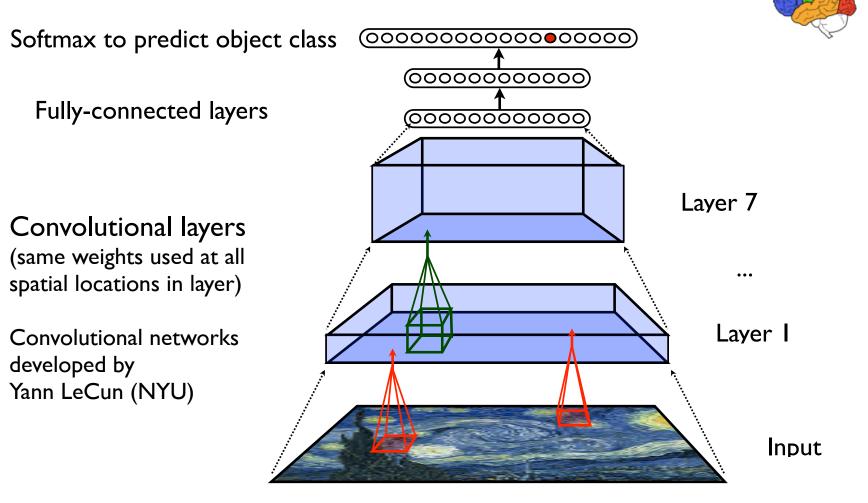


Close collaboration with Google Speech team

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate for English ("biggest single improvement in 20 years of speech research") Launched in 2012 at time of Jellybean release of Android

2012-era Convolutional Model for Object Recognition



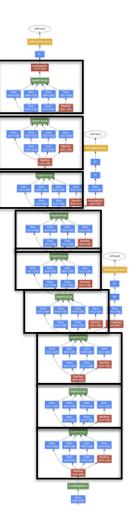
Basic architecture developed by Krizhevsky, Sutskever & Hinton (all now at Google).

Won 2012 ImageNet challenge with 16.4% top-5 error rate

2014-era Model for Object Recognition

Module with 6 separate convolutional layers

24 layers deep!



Developed by team of Google Researchers:

Won 2014 ImageNet challenge with 6.66% top-5 error rate

Good Fine-grained Classification

"hibiscus"

"dahlia" Slides from Jeff Dean at Google

Good Generalization

Both recognized as a "meal"

Sensible Errors

"snake"

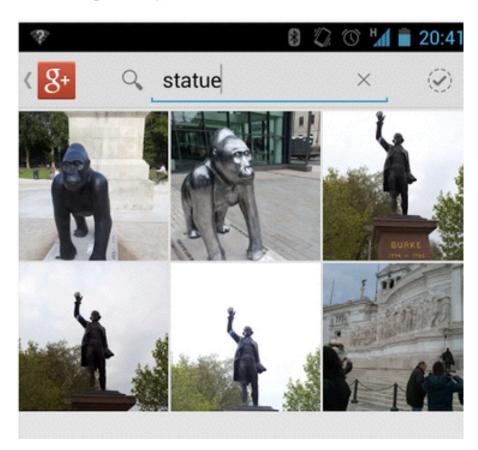
"dog"

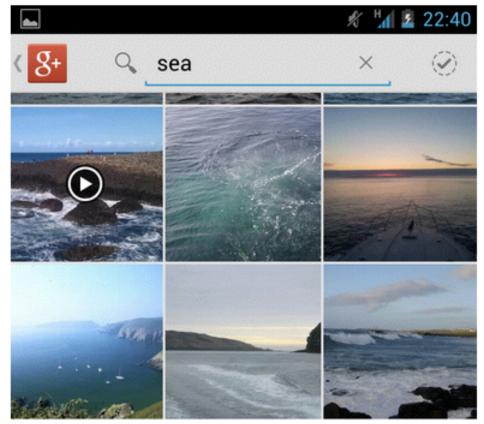
Works in practice for real users.

Wow.

The new Google plus photo search is a bit insane.

I didn't tag those ... :)

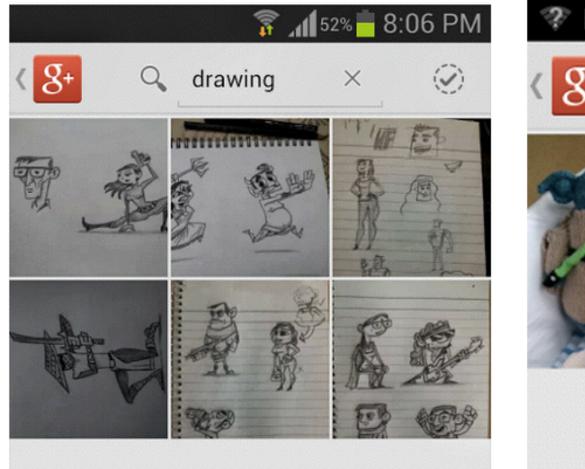


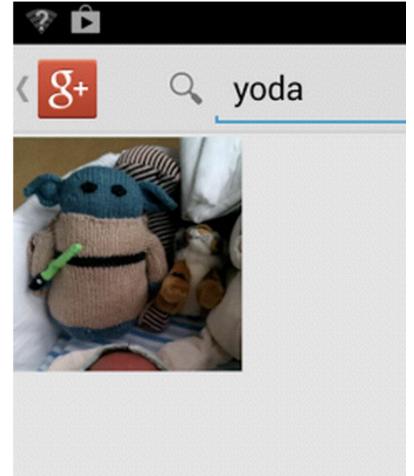


Works in practice

for real users.

Google Plus photo search is awesome. Searched with keyword 'Drawing' to find all my scribbles at once :D





What you need to know about neural networks

- Perceptron:
 - Relationship to general neurons
- Multilayer neural nets
 - Representation
 - Derivation of backprop
 - Learning rule
- Overfitting