
CSEP573:	Neural	Networks	

Luke	Ze7lemoyer	
	
	

Slides	adapted	from	Carlos	Guestrin	

Human	Neurons	

•  Switching	Dme	
•  ~	0.001	second	

•  Number	of	neurons	
–  1010	

•  ConnecDons	per	neuron	
–  104-5	

•  Scene	recogniDon	Dme	
–  0.1	seconds	

•  Number	of	cycles	per	scene	recogniDon?	
–  100	à	much	parallel	computaDon!	

Perceptron	as	a	Neural	Network	

g

This	is	one	neuron:	
–  Input	edges	x1	...	xn,	along	with	basis	
– The	sum	is	represented	graphically	
– Sum	passed	through	an	acDvaDon	funcDon	g	

Sigmoid	Neuron	
-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

g

Just change g!
•  Why would be want to do this?
•  Notice new output range [0,1]. What was it before?

OpDmizing	a	neuron	
We	train	to	minimize	sum-squared	error	

⌅(x) =

⇧

 ⌥

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

⌃

⌦⌦⌦⌦⌦⌦⌦⌦⌦⌦⌦�

⇧L

⇧w
= w �

↵

j

�jyjxj

⌅(u).⌅(v) =

⇤
u1
u2

⌅
.

⇤
v1
v2

⌅
= u1v1 + u2v2 = u.v

⌅(u).⌅(v) =

⇧

 ⌥

u21
u1u2
u2u1
u22

⌃

⌦⌦� .

⇧

 ⌥

v21
v1v2
v2v1
v22

⌃

⌦⌦� = u21v
2
1 + 2u1v1u2v2 + u22v

2
2

= (u1v1 + u2v2)
2

= (u.v)2

⌅(u).⌅(v) = (u.v)d

P (errortrue(h) ⇥ ⇤) ⇥ |H|e�m⇥ ⇥ ⇥

ln
�
|H|e�m⇥

⇥
⇥ ln ⇥

ln |H|�m⇤ ⇥ ln ⇥

m ⇤
ln |H|+ ln 1�

⇤

⇤ ⇤
ln |H|+ ln 1�

m

⇧l

⇧wi
= �

↵

j

[yj � g(w0 +
↵

i

wix
j
i)]

⇧

⇧wi
g(w0 +

↵

i

wix
j
i)

7

�l

�wi
= �

�

j

[yj � g(w0 +
�

i

wix
j
i)]

�

�wi
g(w0 +

�

i

wix
j
i)

�

�wi
g(w0 +

�

i

wix
j
i) = xj

i

�

�wi
g(w0 +

�

i

wix
j
i) = xj

ig
�(w0 +

�

i

wix
j
i)

8

Solution just depends on g’: derivative of activation function!

�l

�wi
= �

�

j

[yj � g(w0 +
�

i

wix
j
i)]

�

�wi
g(w0 +

�

i

wix
j
i)

�

�wi
g(w0 +

�

i

wix
j
i) = xj

i

�

�wi
g(w0 +

�

i

wix
j
i) = xj

ig
�(w0 +

�

i

wix
j
i)

g�(x) = g(x)(1� g(x))

�

�x
f(g(x)) = f �(g(x))g�(x)

8

g

Re-deriving	the	perceptron	update	

For a specific, incorrect example:
•  w = w + y*x (our	familiar	update!)

Sigmoid	units:	have	to	differenDate	g	
�l

�wi
= �

�

j

[yj � g(w0 +
�

i

wix
j
i)]

�

�wi
g(w0 +

�

i

wix
j
i)

�

�wi
g(w0 +

�

i

wix
j
i) = xj

i

�

�wi
g(w0 +

�

i

wix
j
i) = xj

ig
�(w0 +

�

i

wix
j
i)

g�(x) = g(x)(1� g(x))

8

Aside:	Comparison	to	logisDc	
regression	

•  P(Y|X)	represented	by:	

•  Learning	rule	–	MLE:	

-6 -4 -2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Perceptron,	linear	classificaDon,	
Boolean	funcDons:	xi�{0,1}		

•  Can	learn	x1	�	x2?	
•  -0.5	+	x1	+	x2	

•  Can	learn	x1	�	x2?	
•  -1.5	+	x1	+	x2	

•  Can	learn	any	conjuncDon	or	disjuncDon?	
•  0.5	+	x1	+	…	+	xn	
•  (-n+0.5)	+	x1	+	…	+	xn	

•  Can	learn	majority?	
•  (-0.5*n)	+	x1	+	…	+	xn	

•  What	are	we	missing?	The	dreaded	XOR!,	etc.	

	

g

Going	beyond	linear	classificaDon	
Solving	the	XOR	problem	
	y	=	x1	XOR	x2	

	
	v1	=	(x1	�	¬x2)		
	=	-1.5+2x1-x2		

	v2	=	(x2	�	¬x1)		
	=	-1.5+2x2-x1		

		y	=	v1�	v2	
	=	-0.5+v1+v2	

			

x1

x2

1

v1

v2

y

1
-0.5

1

1

-1.5

2
-1

2

-1
-1.5

= (x1 � ¬x2) � (x2 � ¬x1)

Hidden	layer	

•  Single	unit:	

•  1-hidden	layer:			

	
•  No	longer	convex	funcDon!	

©Carlos Guestrin 2005-2009

Example
data for NN
with hidden
layer

Learned
weights for
hidden layer

Learning the weights

Learning an encoding

©Carlos Guestrin 2005-2009

NN for images

Weights
in NN
for
images

Forward	propagaDon	
1-hidden	layer:	
	
	
	
Compute	values	lem	
to	right			
1.  Inputs:	x1,	…,	xn	
2.  Hidden:	v1	,…,	vn	
3.  Output:	y	

x1

x2

1

v1

v2

y

1

Back-propagaDon	–	learning	

•  Just	gradient	descent!!!		
•  Recursive	algorithm	for	compuDng	gradient	
•  For	each	example	

– Perform	forward	propagaDon		
– Start	from	output	layer	

•  Compute	gradient	of	node	Vk	with	parents	U1,U2,…	
•  Update	weight	wi

k	

•  Repeat	(move	to	preceding	layer)	

Gradient	descent	for	
1-hidden	layer	

Dropped w0 to make derivation simpler

�l

�wi
= �

⇤

j

[yj � g(w0 +
⇤

i

wix
j
i)]

�

�wi
g(w0 +

⇤

i

wix
j
i)

�

�wi
g(w0 +

⇤

i

wix
j
i) = xj

i

�

�wi
g(w0 +

⇤

i

wix
j
i) = xj

ig
�(w0 +

⇤

i

wix
j
i)

g�(x) = g(x)(1� g(x))

�

�x
f(g(x)) = f �(g(x))g�(x)

�out(x)
�wk

i

= g�

�
⇤

k�

wk�g(
⇤

i�

wk�
i� xi�)

⇥
�

�wk
i

g

�
⇤

i�

wk�
i� xi�

⇥

�out(x)
�wk

i

= g�

�
⇤

k�

wk�g(
⇤

i�

wk�
i� xi�)

⇥
g�

�
⇤

i�

wk�
i� xi�

⇥
wkxi

vj
k = g

�
⇤

i�

wk�
i� xi�

⇥

8

�l

�wi
= �

⇤

j

[yj � g(w0 +
⇤

i

wix
j
i)]

�

�wi
g(w0 +

⇤

i

wix
j
i)

�

�wi
g(w0 +

⇤

i

wix
j
i) = xj

i

�

�wi
g(w0 +

⇤

i

wix
j
i) = xj

ig
�(w0 +

⇤

i

wix
j
i)

g�(x) = g(x)(1� g(x))

�

�x
f(g(x)) = f �(g(x))g�(x)

�out(x)
�wk

i

= g�

�
⇤

k�

wk�g(
⇤

i�

wk�
i� xi�)

⇥
�

�wk
i

g

�
⇤

i�

wk�
i� xi�

⇥

�out(x)
�wk

i

= g�

�
⇤

k�

wk�g(
⇤

i�

wk�
i� xi�)

⇥
g�

�
⇤

i�

wk�
i� xi�

⇥
wkxi

vj
k = g

�
⇤

i�

wk�
i� xi�

⇥

out(x) = g

�
⇤

k�

wk�vj
k

⇥

8

�l

�wi
= �

⇤

j

[yj � g(w0 +
⇤

i

wix
j
i)]

�

�wi
g(w0 +

⇤

i

wix
j
i)

�

�wi
g(w0 +

⇤

i

wix
j
i) = xj

i

�

�wi
g(w0 +

⇤

i

wix
j
i) = xj

ig
�(w0 +

⇤

i

wix
j
i)

g�(x) = g(x)(1� g(x))

�

�x
f(g(x)) = f �(g(x))g�(x)

�out(x)
�wk

i

= g�

�
⇤

k�

wk�g(
⇤

i�

wk�
i� xi�)

⇥
�

�wk
i

g

�
⇤

i�

wk�
i� xi�

⇥

�out(x)
�wk

i

= g�

�
⇤

k�

wk�g(
⇤

i�

wk�
i� xi�)

⇥
g�

�
⇤

i�

wk�
i� xi�

⇥
wkxi

vj
k = g

�
⇤

i�

wk�
i� xi�

⇥

out(x) = g

�
⇤

k�

wk�vj
k

⇥

�out(x)
�wk

= vj
kg

�

�
⇤

k�

wk�vj
k

⇥

8

Gradient for last layer same as the single node
case, but with hidden nodes v as input!

Gradient	descent	for	
1-hidden	layer		

Dropped w0 to make derivation simpler

�l

�wi
= �

�

j

[yj � g(w0 +
�

i

wix
j
i)]

�

�wi
g(w0 +

�

i

wix
j
i)

�

�wi
g(w0 +

�

i

wix
j
i) = xj

i

�

�wi
g(w0 +

�

i

wix
j
i) = xj

ig
�(w0 +

�

i

wix
j
i)

g�(x) = g(x)(1� g(x))

�

�x
f(g(x)) = f �(g(x))g�(x)

8

�l

�wi
= �

⇤

j

[yj � g(w0 +
⇤

i

wix
j
i)]

�

�wi
g(w0 +

⇤

i

wix
j
i)

�

�wi
g(w0 +

⇤

i

wix
j
i) = xj

i

�

�wi
g(w0 +

⇤

i

wix
j
i) = xj

ig
�(w0 +

⇤

i

wix
j
i)

g�(x) = g(x)(1� g(x))

�

�x
f(g(x)) = f �(g(x))g�(x)

�out(x)
�wk

i

= g�

�
⇤

k�

wk�g(
⇤

i�

wk�
i� xi�)

⇥
�

�wk
i

g

�
⇤

i�

wk�
i� xi�

⇥

8

For hidden layer,
two parts:
•  Normal update

for single neuron
•  Recursive

computation of
gradient on
output layer

Forward	propagaDon	–	predicDon	

•  Recursive	algorithm	
•  Start	from	input	layer	
•  Output	of	node	Vk	with	parents	U1,U2,…:	

Back-propagaDon	–	pseudocode	
IniDalize	all	weights	to	small	random	numbers	
•  UnDl	convergence,	do:	

–  For	each	training	example	x,y:	
1.  Forward	propagaDon,	compute	node	values	Vk	

2.  For	each	output	unit	o	(with	labeled	output	y):	
	 	δo	=	Vo(1-Vo)(y-Vo)	

3.  For	each	hidden	unit	h:	

	 	δh	=	Vh(1-Vh)	Σk	in	output(h)	wh,kδk	
4.  Update	each	network	weight	wi,j	from	node	i	to	node	j	

	 	 	wi,j	=	wi,j	+	ηδjxi,j	
	

MulDlayer	neural	networks	

Inference and
Learning:
•  Forward pass:

left to right, each
hidden layer in
turn

•  Gradient
computation:
right to left,
propagating
gradient for
each node Forward

Gradient

Convergence	of	backprop	
•  Perceptron	leads	to	convex	opDmizaDon	

–  Gradient	descent	reaches	global	minima	
•  MulDlayer	neural	nets	not	convex	

–  Gradient	descent	gets	stuck	in	local	minima	
–  SelecDng	number	of	hidden	units	and	layers	=		fuzzy	process	
–  NNs	have	made	a	HUGE	comeback	in	the	last	few	years!!!	

•  Neural	nets	are	back	with	a	new	name!!!!	
–  Deep	belief	networks	
–  Huge	error	reducDon	when	trained	with	lots	of	data	on	GPUs	

Overfiung	in	NNs	
•  Are	NNs	likely	to	overfit?	

– Yes,	they	can	represent	
arbitrary	funcDons!!!	

•  Avoiding	overfiung?	
– More	training	data	
– Fewer	hidden	nodes	/	be7er	
topology	

– RegularizaDon	
– Early	stopping	

Image ModelsObject	RecogniDon	

Slides from Jeff Dean at Google

Number	DetecDon	

Slides from Jeff Dean at Google

What are these numbers?

Slides from Jeff Dean at Google

Acoustic Modeling for Speech Recognition

Trained in <5 days on cluster of 800 machines

30% reduction in Word Error Rate for English!
(“biggest single improvement in 20 years of speech research”)

Launched in 2012 at time of Jellybean release of Android

Close collaboration with Google Speech team

label

Slides from Jeff Dean at Google

Fully-connected layers

Input

Layer 1

Layer 7

...

Softmax to predict object class

Convolutional layers!
(same weights used at all!
spatial locations in layer)!
!
Convolutional networks
developed by!
Yann LeCun (NYU)

Basic architecture developed by Krizhevsky, Sutskever & Hinton
(all now at Google).!

Won 2012 ImageNet challenge with 16.4% top-5 error rate

2012-era Convolutional Model for Object Recognition

Slides from Jeff Dean at Google

24 layers deep!

2014-era Model for Object Recognition

Developed by team of Google Researchers:!
Won 2014 ImageNet challenge with 6.66% top-5 error rate

Module with 6 separate!
convolutional layers

Slides from Jeff Dean at Google

Good Fine-grained Classification

“hibiscus” “dahlia”

Slides from Jeff Dean at Google

Good Generalization

Both recognized as a
“meal”

Slides from Jeff Dean at Google

Sensible Errors

“snake” “dog”

Slides from Jeff Dean at Google

Works in practice
 for real users.

Slides from Jeff Dean at Google

Works in practice
 for real users.

What	you	need	to	know	about	neural	
networks	

•  Perceptron:	
– RelaDonship	to	general	neurons	

•  MulDlayer	neural	nets	
– RepresentaDon	
– DerivaDon	of	backprop	
– Learning	rule	

•  Overfiung	

