CSEP573: Neural Networks

Luke Zettlemoyer

Slides adapted from Carlos Guestrin

Human Neurons

- Switching time
- ~ 0.001 second
- Number of neurons
- 10^{10}
- Connections per neuron
- 104-5
- Scene recognition time
- 0.1 seconds
- Number of cycles per scene recognition?
- $100 \rightarrow$ much parallel computation!

Perceptron as a Neural Network

This is one neuron:

- Input edges $x_{1} \ldots x_{n}$, along with basis
- The sum is represented graphically
- Sum passed through an activation functiong

Sigmoid Neuron

$$
g\left(w_{0}+\sum_{i} w_{i} x_{i}\right)=\frac{1}{1+e^{-\left(w_{0}+\sum_{i} w_{i} x_{i}\right)}}
$$

Just change g!

- Why would be want to do this?
- Notice new output range [0,1]. What was it before?

Optimizing a neuron
 $$
\frac{\partial}{\partial x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

We train to minimize sum-squared error

$$
\begin{gathered}
\ell(W)=\frac{1}{2} \sum_{j}\left[y^{j}-g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)\right]^{2} \\
\frac{\partial l}{\partial w_{i}}=-\sum_{j}\left[y_{j}-g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)\right] \frac{\partial}{\partial w_{i}} g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right) \\
\frac{\partial}{\partial w_{i}} g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)=x_{i}^{j} \frac{\partial}{\partial w_{i}} g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)=x_{i}^{j} g^{\prime}\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right) \\
\frac{\partial \ell(W)}{\partial w_{i}}=-\sum_{j}\left[y^{j}-g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)\right] x_{i}^{j} g^{\prime}\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)
\end{gathered}
$$

Solution just depends on g': derivative of activation function!

Re-deriving the perceptron update

$$
\begin{aligned}
& \frac{\partial \ell(W)}{\partial w_{i}}=-\sum_{j}\left[y^{j}-g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)\right] x_{i}^{j} g^{\prime}\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \ell(W)}{\partial w_{i}}=-\sum_{j}\left[y^{j}-g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)\right] x_{i}^{j}
\end{aligned}
$$

For a specific, incorrect example:

- $w=w+y^{*} x$ (our familiar update!)

Sigmoid units: have to differentiate g

$$
\begin{aligned}
\frac{\partial \ell(W)}{\partial w_{i}} & =-\sum_{j}\left[y^{j}-g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)\right] x_{i}^{j} g^{\prime}\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right) \\
g(x) & =\frac{1}{1+e^{-x}} \quad g^{\prime}(x)=g(x)(1-g(x))
\end{aligned}
$$

$$
w_{i} \leftarrow w_{i}+\eta \sum_{j} x_{i}^{j} \delta^{j}
$$

$$
\delta^{j}=\left[y^{j}-g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)\right] g^{j}\left(1-g^{j}\right)
$$

$$
g^{j}=g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)
$$

Aside: Comparison to logistic regression

- $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$ represented by:

$$
\begin{aligned}
P(Y=1 \mid x, W) & =\frac{1}{1+e^{-\left(w_{0}+\sum_{i} w_{i} x_{i}\right)}} \\
\text { ule-MLE: } & =g\left(w_{0}+\sum_{i} w_{i} x_{i}\right)
\end{aligned}
$$

- Learning rule - MLE:

$$
\begin{aligned}
& \frac{\partial \ell(W)}{\partial w_{i}}=\sum_{j} x_{i}^{j}\left[y^{j}-P\left(Y^{j}=1 \mid x^{j}, W\right)\right] \\
&=\sum_{j} x_{i}^{j}\left[y^{j}-g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)\right] \\
& w_{i} \leftarrow w_{i}+ \eta \sum_{j} x_{i}^{j} \delta^{j} \\
& \delta^{j}=y^{j}-g\left(w_{0}+\sum_{i} w_{i} x_{i}^{j}\right)
\end{aligned}
$$

Perceptron, linear classification, Boolean functions: $x_{i} \in\{0,1\}$

- Can learn $\mathrm{x}_{1} \vee \mathrm{x}_{2}$?
- $-0.5+x_{1}+x_{2}$
- Can learn $x_{1} \wedge x_{2}$?

- $-1.5+x_{1}+x_{2}$
- Can learn any conjunction or disjunction?
- $0.5+x_{1}+\ldots+x_{n}$
- $(-n+0.5)+x_{1}+\ldots+x_{n}$
- Can learn majority?
- $\left(-0.5^{*} n\right)+x_{1}+\ldots+x_{n}$
- What are we missing? The dreaded XOR!, etc.

Going beyond linear classification

Solving the XOR problem

$$
\begin{aligned}
y & =x_{1} \text { XOR } x_{2}=\left(x_{1} \wedge \neg x_{2}\right) \vee\left(x_{2} \wedge \neg x_{1}\right) \\
v_{1} & =\left(x_{1} \wedge \neg x_{2}\right) \\
& =-1.5+2 x_{1}-x_{2} \\
v_{2} & =\left(x_{2} \wedge \neg x_{1}\right) \\
& =-1.5+2 x_{2}-x_{1} \\
y & =v_{1} \vee v_{2} \\
& =-0.5+v_{1}+v_{2}
\end{aligned}
$$

Hidden layer

- Single unit:

$$
\operatorname{out}(\mathrm{x})=g\left(w_{0}+\sum_{i} w_{i} x_{i}\right)
$$

- 1-hidden layer:

- No longer convex function!

Example data for NN

 with hidden layer

A target function:

Input	Output
$10000000 \rightarrow 10000000$	
$01000000 \rightarrow 01000000$	
$00100000 \rightarrow 00100000$	
$00010000 \rightarrow 00010000$	
$00001000 \rightarrow 00001000$	
$00000100 \rightarrow 00000100$	
$00000010 \rightarrow 00000010$	
$00000001 \rightarrow 00000001$	

Can this be learned??

A network:

Learned weights for hidden layer

Learned hidden layer representation:

Input		Hidden Values		Output
10000000	\rightarrow. 8	89.04 .08	\rightarrow	10000000
01000000	\rightarrow. 0	. 01.11 .88	\rightarrow	01000000
00100000	\rightarrow. 0	. 01.97 .27	\rightarrow	00100000
00010000	\rightarrow. 9	99 . 97.71	\rightarrow	00010000
00001000	\rightarrow. 0	03 . 05.02	\rightarrow	00001000
00000100	\rightarrow. 2	22.99.99	\rightarrow	00000100
00000010	\rightarrow. 8	80 . 01.98	\rightarrow	00000010
00000001	\rightarrow. 6	60.94.01	\rightarrow	00000001

Learning the weights

Learning an encoding

Hidden unit encoding for input 01000000

NN for images

Typical input images
90% accurate learning head pose, and recognizing 1-of-20 faces

Typical input images

Forward propagation

1-hidden layer:

$$
\operatorname{out}(\mathrm{x})=g\left(w_{0}+\sum_{k} w_{k} g\left(w_{0}^{k}+\sum_{i} w_{i}^{k} x_{i}\right)\right)
$$

Compute values left to right

1. Inputs: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$
2. Hidden: $\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$
3. Output: y

Back-propagation - learning

- Just gradient descent!!!
- Recursive algorithm for computing gradient
- For each example
- Perform forward propagation
- Start from output layer
- Compute gradient of node V_{k} with parents $\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots$
- Update weight $w_{i}{ }^{k}$
- Repeat (move to preceding layer)

Gradient descent for 1-hidden layer

$$
\begin{aligned}
\ell(W) & =\frac{1}{2} \sum_{j}\left[y^{j}-\operatorname{out}\left(\mathbf{x}^{j}\right)\right]^{2} \\
\operatorname{out}(\mathbf{x}) & =g\left(\sum_{k^{\prime}} w_{k^{\prime}} g\left(\sum_{i^{\prime}} w_{i^{\prime}}^{k^{\prime}} x_{i^{\prime}}\right)\right)
\end{aligned}
$$

$$
\frac{\partial \ell(W)}{\partial w_{k}}=\sum_{j=1}^{m}-\left[y^{j}-\operatorname{out}\left(\mathbf{x}^{j}\right)\right] \frac{\partial o u t\left(\mathrm{x}^{j}\right)}{\partial w_{k}}
$$

$$
\operatorname{out}(x)=g\left(\sum_{k^{\prime}} w_{k^{\prime}} v_{k}^{j}\right) \quad \frac{\partial o u t(\mathbf{x})}{\partial w_{k}}=v_{k}^{j} g^{\prime}\left(\sum_{k^{\prime}} w_{k^{\prime}} v_{k}^{j}\right)
$$

Gradient for last layer same as the single node case, but with hidden nodes v as input!

Gradient descent for

1-hidden layer

$$
\begin{aligned}
\ell(W) & =\frac{1}{2} \sum_{j}\left[y^{j}-\operatorname{out}\left(\mathrm{x}^{j}\right)\right]^{2} \\
\operatorname{out}(\mathrm{x}) & =g\left(\sum_{k^{\prime}} w_{k^{\prime}} g\left(\sum_{i^{\prime}} w_{i^{\prime}}^{k^{\prime}} x_{i^{\prime}}\right)\right)
\end{aligned}
$$

$$
\frac{\partial \ell(W)}{\partial w_{i}^{k}}=\sum_{j=1}^{m}-\left[y-\operatorname{out}\left(\mathbf{x}^{j}\right)\right] \frac{\partial o u t\left(\mathbf{x}^{j}\right)}{\partial w_{i}^{k}}
$$

$$
\frac{\partial o u t(\mathbf{x})}{\partial w_{i}^{k}}=g^{\prime}\left(\sum_{k^{\prime}} w_{k^{\prime}} g\left(\sum_{i^{\prime}} w_{i^{\prime}}^{k^{\prime}} x_{i^{\prime}}\right)\right) \frac{\partial}{\partial w_{i}^{k}} g\left(\sum_{i^{\prime}} w_{i^{\prime}}^{k^{\prime}} x_{i^{\prime}}\right) \quad \begin{aligned}
& \text { Normal update } \\
& \text { for single neuron }
\end{aligned}
$$

- Recursive computation of gradient on output layer

Forward propagation - prediction

- Recursive algorithm
- Start from input layer
- Output of node V_{k} with parents $\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots$:

$$
V_{k}=g\left(\sum_{i} w_{i}^{k} U_{i}\right)
$$

Back-propagation - pseudocode

Initialize all weights to small random numbers

- Until convergence, do:
- For each training example x, y :

1. Forward propagation, compute node values V_{k}
2. For each output unit o (with labeled output y):

$$
\delta_{0}=V_{0}\left(1-V_{0}\right)\left(y-V_{0}\right)
$$

3. For each hidden unit h :

$$
\delta_{h}=V_{h}\left(1-V_{h}\right) \sum_{k \text { in output }(h)} w_{h, k} \delta_{k}
$$

4. Update each network weight $\mathrm{w}_{\mathrm{i}, \mathrm{j}}$ from node i to node j

$$
w_{i, j}=w_{i, j}+\eta \delta_{j} x_{i, j}
$$

Multilayer neural networks

Inputs
Outputs
Inference and Learning:

- Forward pass: left to right, each hidden layer in turn
- Gradient computation: right to left, propagating gradient for each node

<-------------Gradient

Convergence of backprop

- Perceptron leads to convex optimization
- Gradient descent reaches global minima
- Multilayer neural nets not convex
- Gradient descent gets stuck in local minima
- Selecting number of hidden units and layers = fuzzy process
- NNs have made a HUGE comeback in the last few years!!!
- Neural nets are back with a new name!!!!
- Deep belief networks
- Huge error reduction when trained with lots of data on GPUs

Overfitting in NNs

- Are NNs likely to overfit?
- Yes, they can represent arbitrary functions!!!
- Avoiding overfitting?
- More training data
- Fewer hidden nodes / better topology
- Regularization
- Early stopping

Object Recognition

judo [0.96, web]

tractor [0.91, web]

dishwasher [0.91, web]

judo [0.92, web]

tractor [0.91, web]

car show [0.99, web]

judo [0.91, web]

Slides from Jeff Dean at Google

Number Detection

Slides from Jeff Dean at Google

Acoustic Modeling for Speech Recognition

Close collaboration with Google Speech team
Trained in <5 days on cluster of 800 machines
30\% reduction in Word Error Rate for English ("biggest single improvement in 20 years of speech research")

Launched in 20I2 at time of Jellybean release of Android

Slides from Jeff Dean at Google

20I2-era Convolutional Model for Object Recognition

Softmax to predict object class 000000000000000000

Fully-connected layers

Convolutional layers (same weights used at all spatial locations in layer)

Convolutional networks developed by
Yann LeCun (NYU)

Basic architecture developed by Krizhevsky, Sutskever \& Hinton (all now at Google).
Won 2012 ImageNet challenge with I6.4\% top-5 error rate
Slides from Jeff Dean at Google

2014-era Model for Object Recognition

Module with 6 separate convolutional layers

24 layers deep!

Developed by team of Google Researchers:
Won 2014 ImageNet challenge with 6.66% top-5 error rate
Slides from Jeff Dean at Google

Good Fine-grained Classification

"hibiscus"

"dahlia"
Slides from Jeff Dean at Google

Good Generalization

Both recognized as a "meal"

Slides from Jeff Dean at Google

Sensible Errors

"snake"

"dog"

Slides from Jeff Dean at Google

Works in practice

 for real users.Wow.

The new Google plus photo search is a bit insane.

I didn't tag those... .)

Slides from Jeff Dean at Google

Works in practice for real users.

Google Plus photo search is awesome. Searched with keyword 'Drawing' to find all my scribbles at once :D

Slides from Jeff Dean at Google

What you need to know about neural networks

- Perceptron:
- Relationship to general neurons
- Multilayer neural nets
- Representation
- Derivation of backprop
- Learning rule
- Overfitting

