CSEP 573: Artificial Intelligence Conclusion

Luke Zettlemoyer – University of Washington

[Many of these slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

CourseTopics

Search

- Problem spaces
- BFS, DFS, UCS, A* (tree and graph), local search
- Completeness and Optimality
- Heuristics: admissibility and consistency; pattern DBs

Games

- Minimax, Alpha-beta pruning,
- Expectimax
- Evaluation Functions

MDPs

- Bellman equations
- Value iteration, policy iteration
- Reinforcement Learning
 - Exploration vs Exploitation
 - Model-based vs. model-free
 - Q-learning
 - Linear value function approx.

- Hidden Markov Models
 - Markov chains, DBNs
 - Forward algorithm
 - Particle Filters
- Bayesian Networks
 - Basic definition, independence (d-sep)
 - Variable elimination
 - Sampling (rejection, importance)
- Learning
 - Naive Bayes
 - Perceptron
 - Neural Networks (not on exam)

What is intelligence?

(bounded) Rationality

- Agent has a performance measure to optimize
- Given its state of knowledge
- Choose optimal action
- With limited computational resources
- Human-like intelligence/behavior

Search in Discrete State Spaces

- Every discrete problem can be cast as a search problem.
 - states, actions, transitions, cost, goal-test
- Types
 - uninformed systematic: often slow
 - DFS, BFS, uniform-cost, iterative deepening
 - Heuristic-guided: better
 - Greedy best first, A*
 - relaxation leads to heuristics
 - Local: fast, fewer guarantees; often local optimal
 - Hill climbing and variations
 - Simulated Annealing: global optimal
 - (Local) Beam Search

Goal State

Which Algorithm?

• A*, Manhattan Heuristic:

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test can be any function over states
 - Successor function can also be anything
- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Making use of CSP formulation allows for optimized algorithms
 - Typical example of trading generality for utility (in this case, speed)

Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - {1,2,...,9}
- Constraints:

9-way alldiff for each column9-way alldiff for each row9-way alldiff for each region

(or can have a bunch of pairwise inequality constraints)

Adversarial Search

Adversarial Search

- AND/OR search space (max, min)
- minimax objective function
- minimax algorithm (~dfs)
 - alpha-beta pruning
- Utility function for partial search
 - Learning utility functions by playing with itself
- Openings/Endgame databases

Big News Today!

Google's AlphaGo wins second game against Go champion

AI machine takes 2-0 lead against South Korea's Lee Sedol, putting its owners one victory away from \$1m prize

AlphaGo beats world champion Lee Sedol in the second match of the Go tournament

Coorders Coordersing machine has seened a second vistory against the heat human

Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state

MDPs are non-deterministic search problems

- One way to solve them is with expectimax search
- We'll have new tools soon

[Demo – gridworld manual intro (L8D1)]

The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^*(s) = \max_a Q^*(s,a)$$

(1920-1984)

s, a

́s,a,s'

$$Q^{*}(s,a) = \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma V^{*}(s') \right]$$

These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Partially Observable Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions $a \in A$
 - A set of observation $o \in O$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the dynamics
 - A observation function O(s, a, o)
 - Probability of observing o, i.e., P(o| s, a)
 - T and O together are often called the model
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state

Pac-Man Beyond the Game!

Pacman: Beyond Simulation?

Students at Colorado University: http://pacman.elstonj.com

[VIDEO: Roomba Pacman.mp4]

Pacman: Beyond Simulation!

KR&R: Probability

- Representation: Bayesian Networks
 - encode probability distributions compactly
 - by exploiting conditional independences
- Reasoning
 - Exact inference: var elimination
 - Approx inference: sampling based methods
 - rejection sampling, likelihood weighting, MCMC/Gibbs

KR&R: Hidden Markov Models

- Representation
 - Spl form of BN
 - Sequence model
 - One hidden state, one observation

Reasoning/Search

- most likely state sequence: Viterbi algorithm
- marginal prob of one state: forward-backward

Learning Bayes Networks

- We focused on Naïve Bayes and Perceptron, but you could also:
- Learn Structure of Bayesian Networks
 - Search thru space of BN structures
- Learn Parameters for a Bayesian Network
 - Fully observable variables
 - Maximum Likelihood (ML), MAP & Bayesian estimation
 - Example: Naïve Bayes for text classification
 - Hidden variables
 - Expectation Maximization (EM)

Bayesian Learning

Or equivalently: $P(Y | X) \propto P(X | Y) P(Y)$

Personal Robotics

[VIDEO: 5pile_200x.mp4]

[Maitin-Shepard, Cusumano-Towner, Lei, Abbeel, 2010]

PR2 (autonomous)

Autonomous tying of a knot for previously unseen situations

[VIDEO: knots_apprentice.mp4]

[Schulman, Ho, Lee, Abbeel, 2013]

[VIDEO: suturing-short-sped-up.mp4]

Experiment: Suturing

[Schulman, Gupta, Venkatesan, Tayson-Frederick, Abbeel, 2013]

Where to Go Next?

That's It!

Help us out with some course evaluations

Have a great string, and always maximize your expected utilities!

