CSEP 573: Artificial Intelligence Conclusion

Luke Zettlemoyer - University of Washington

CourseTopics

- Search
- Problem spaces
- BFS, DFS, UCS, A* (tree and graph), local search
- Completeness and Optimality
- Heuristics: admissibility and consistency; pattern DBs
- Games
- Minimax, Alpha-beta pruning,
- Expectimax
- Evaluation Functions
- MDPs
- Bellman equations
- Value iteration, policy iteration
- Reinforcement Learning
- Exploration vs Exploitation
- Model-based vs. model-free
- Q-learning
- Linear value function approx.
- Hidden Markov Models
- Markov chains, DBNs
- Forward algorithm
- Particle Filters
- Bayesian Networks
- Basic definition, independence (d-sep)
- Variable elimination
- Sampling (rejection, importance)
- Learning
- Naive Bayes
- Perceptron
- Neural Networks (not on exam)

What is intelligence?

- (bounded) Rationality
- Agent has a performance measure to optimize
- Given its state of knowledge
- Choose optimal action
- With limited computational resources
- Human-like intelligence/behavior

Search in Discrete State Spaces

- Every discrete problem can be cast as a search problem.
- states, actions, transitions, cost, goal-test
- Types
- uninformed systematic: often slow
- DFS, BFS, uniform-cost, iterative deepening
- Heuristic-guided: better
- Greedy best first, A*

- relaxation leads to heuristics
- Local: fast, fewer guarantees; often local optimal
- Hill climbing and variations
- Simulated Annealing: global optimal

- (Local) Beam Search

Which Algorithm?

- A*, Manhattan Heuristic:

Constraint Satisfaction Problems

- Standard search problems:
- State is a "black box": arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything
- Constraint satisfaction problems (CSPs):
- A special subset of search problems
- State is defined by variables \boldsymbol{X}_{i} with values from a domain \boldsymbol{D} (sometimes \boldsymbol{D} depends on \boldsymbol{i})
- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables
- Making use of CSP formulation allows for optimized algorithms
- Typical example of trading generality for utility (in this case, speed)

Example: Sudoku

- Variables:
- Each (open) square
- Domains:
- $\{1,2, \ldots, 9\}$
- Constraints:

9-way alldiff for each column
9-way alldiff for each row
9-way alldiff for each region
(or can have a bunch of pairwise inequality constraints)

Adversarial Search

$\operatorname{MAX}(X)$

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

Adversarial Search

- AND/OR search space (max, min)
- minimax objective function
- minimax algorithm (~dfs)
- alpha-beta pruning
- Utility function for partial search
- Learning utility functions by playing with itself
- Openings/Endgame databases

Big News Today!

Google's AlphaGo wins second game against Go champion

AI machine takes 2-O lead against South Korea's Lee Sedol, putting its owners one victory away from $\$ 1 \mathrm{~m}$ prize

AlphaGo beats world champion Lee Sedol in the second match of the Go tournament

Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A transition function $T\left(s, a, s^{\prime}\right)$
- Probability that a from s leads to s', i.e., P(s'|s, a)
- Also called the model or the dynamics
- A reward function $R\left(s, a, s^{\prime}\right)$
- Sometimes just R(s) or R(s')
- A start state
- Maybe a terminal state

- MDPs are non-deterministic search problems
- One way to solve them is with expectimax search
- We'll have new tools soon

The Bellman Equations

- Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$
\begin{aligned}
V^{*}(s) & =\max _{a} Q^{*}(s, a) \\
Q^{*}(s, a) & =\sum_{s^{\prime}} T\left(s, a, s^{\prime}\right)\left[R\left(s, a, s^{\prime}\right)+\gamma V^{*}\left(s^{\prime}\right)\right]
\end{aligned}
$$

- These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

Partially Observable Markov Decision Processes

- An MDP is defined by:
- A set of states $s \in S$
- A set of actions $a \in A$
- A set of observation o $\in O$
- A transition function T(s, a, s')
- Probability that a from s leads to s', i.e., P(s'|s, a)
- Also called the dynamics
- A observation function O(s, a, o)
- Probability of observing o, i.e., P(o| s, a)
- T and O together are often called the model
- A reward function $R\left(s, a, s^{\prime}\right)$
- Sometimes just R(s) or R(s')
- A start state
- Maybe a terminal state

Pac-Man Beyond the Game!

Pacman: Beyond Simulation?

KR\&R: Probability

- Representation: Bayesian Networks

- encode probability distributions compactly
- by exploiting conditional independences
- Reasoning
- Exact inference: var elimination

- Approx inference: sampling based methods
- rejection sampling, likelihood weighting, MCMC/Gibbs

KR\&R: Hidden Markov Models

- Representation
- Spl form of BN
- Sequence model
- One hidden state, one observation

- Reasoning/Search
- most likely state sequence: Viterbi algorithm
- marginal prob of one state: forward-backward

Learning Bayes Networks

- We focused on Naïve Bayes and Perceptron, but you could also:
- Learn Structure of Bayesian Networks
- Search thru space of BN structures
- Learn Parameters for a Bayesian Network
- Fully observable variables
- Maximum Likelihood (ML), MAP \& Bayesian estimation
- Example: Naïve Bayes for text classification
- Hidden variables
- Expectation Maximization (EM)

Bayesian Learning

Use Bayes rule:
Data Likelihood
\downarrow

Normalization

Or equivalently: $\mathrm{P}(\mathrm{Y} \mid \mathbf{X}) \propto \mathrm{P}(\mathbf{X} \mid \mathrm{Y}) \mathrm{P}(\mathrm{Y})$

Personal Robotics

Autonomous tying of a knot for previously unseen situations

[VIDEO: suturing-short-sped-up.mp4]

Where to Go Next?

That's It!

- Help us out with some course evaluations
- Have a great string, and always maximize your expected utilities!

