CSE 573 PMP:
Artificial Intelligence

Hanna Hajishirzi

Perceptrons and Logistic
Regression

Agent Testing
'Todau)!

slides adapted from
Dan Klein, Pieter Abbeel ai.berkeley.edu

And Dan Weld, Luke Zettlemoyer

Announcements

Project proposals: Graded
HW?2 released -> Deadline: March 6th
PS4 released -> Deadline: March 11th

Instructions for Project Presentations -> New deadline:
March 17t

Project Report -> New deadline: March 20th

Last Lecture

= (Classification: given inputs x,
predict labels (classes) y

.- 0 (9
HCn‘ﬁFy the Object:

A) Deg

®) Car

C) Box

P) Alligator

= Naive Bayes

P(Y|Fo0...Fi515) x P(Y) || P(F;,|Y)
1,]
= Parameter estimation:

= MLE, MAP, priors Py, (z) = count(x)

total samples

5 I_aplace smoothing PLAP,k(x) — ;(j_)];I‘_)Z

= Training set, held-out set, test set

Workflow

= Phase 1: Train model on Training Data. Choice points for “tuning”
= Attributes / Features
= Model types: Naive Bayes vs. Perceptron vs. Logistic Regression vs. Neural Net etc..
= Model hyperparameters
= E.g. Naive Bayes — Laplace k
= E.g. Logistic Regression — weight regularization
= E.g. Neural Net — architecture, learning rate, ...
= Make sure good performance on training data (why?)

= Phase 2: Evaluate on Hold-Out Data

= If Hold-Out performance is close to Train performance
= We achieved good generalization, onto Phase 3! ©
= If Hold-Out performance is much worse than Train performance
= We overfitted to the training data! ®
= Take inspiration from the errors and:
= Either: go back to Phase 1 for tuning (typically: make the model less expressive)

= Or:if we are out of options for tuning while maintaining high train accuracy, collect more data
(i.e., let the data drive generalization, rather than the tuning/regularization) and go to Phase 1

= Phase 3: Report performance on Test Data

Possible outer-loop: Collect more data ©

Training
Data

Held-Out
Data

Test
Data

Practical Tip: Baselines

= First step: get a baseline
= Baselines are very simple “straw man” procedures
» Help determine how hard the task is
= Help know what a “good” accuracy is

= Weak baseline: most frequent label classifier
= Gives all test instances whatever label was most common in the training set
= E.g. for spam filtering, might label everything as ham
= Accuracy might be very high if the problem is skewed
= E.g. calling everything "ham” gets 66%, so a classifier that gets 70% isn’t very good...

» For real research, usually use previous work as a (strong) baseline

Linear Classifiers

Feature Vectors

Hello,

Do you want free printr
cartriges? Why pay more
when you can get them
ABSOLUTELY FREE! Just

~
free
YOUR NAME
MISSPELLED
FROM FRIEND

~

PIXEL-7,12
PIXEL-7,13

NUM LOOPS

~

SPAM
or

“2”

Some (Simplified) Biology

= Very loose inspiration: human neurons

Cell body or Soma

Linear Classifiers

Inputs are feature values
Each feature has a weight
Sum is the activation

activationy(x) = Zwi - filx) =w- f(x)

C . "
If the .a.ctlvatlon IS] Wl
= Positive, output +1 L F—=— > —»>0?—>
= Negative, output -1 [,

Weights

= Binary case: compare features to a weight vector
= Learning: figure out the weight vector from examples

s N
free : 4
YOUR NAME :-1 e B
MISSPELLED : 1 # free P2
. YOUR_NAME : 0
?I?C_)M_FRIEND T w MISSPELLED : 2
N y f L1 FROM_FRIEND : 0
e)
s N
free 0
f ('CU 2) YOUR_NAME 1
. MISSPELLED : 1
Dot product w - f positive FROM FRIEND : 1
means the positive class

- J

Decision Rules

Binary Decision Rule

= In the space of feature vectors
» Examples are points
» Any weight vector is a hyperplane
» One side corresponds to Y=+1
= Other corresponds to Y=-1

w

BIAS : -3
free : 4
money : 2 0

0 1 free

Binary Decision Rule

= In the space of feature vectors
» Examples are points
» Any weight vector is a hyperplane
» One side corresponds to Y=+1
= Other corresponds to Y=-1

w

free : 4
money : 2
0)

0 1 free

Binary Decision Rule

= In the space of feature vectors
» Examples are points
» Any weight vector is a hyperplane
» One side corresponds to Y=+1
= Other corresponds to Y=-1

o

2 2

£

w +1 = SPAM
BIAS : -3 3
free : 4
money : 2 0
1= HAM 0 1 free

Weight Updates

Learning: Binary Perceptron

= Start with weights = 0 =R
= For each training instance: @ — i
» Classify with current weights 7 + -
+ * + -

= If correct (i.e., y=y*), no change!

» If wrong: adjust the weight vector

Learning: Binary Perceptron

= Start with weights = 0
= For each training instance: w
» Classify with current weights

| y*- f
1 it w- f(x) >0
y_{—l if w-f(z)<0

= If correct (i.e., y=y*), no change!

» If wrong: adjust the weight vector
by adding or subtracting the
feature vector. Subtract if y* is -1.

w=w+y"f

Examples: Perceptron

= Separable Case

a5
113
413

15 o)

Multiclass Decision Rule

= If we have multiple classes:
= A weight vector for each class:

Wy
= Score (activation) of a class y:

= Prediction highest score wins

y = argmax wy - f(x)
Y

/f:_/
: o °JS
. + T o+ + o O o @)
(o]
$ +++++ + o O
w1y - f biggest
w3
w
w9 3
wo - f w3 - f
biggest biggest

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

Start with all weights = 0
Pick up training examples one by one
Predict with current weights

y = argmax, wy- f(x)

If correct, no change!

If wrong: lower score of wrong
answer, raise score of right answer

wy = wy — f(x)

Waept = Wy + f(z)

Example: Multiclass Perceptron

“‘win the vote” [11011]

“win the election” [11001]

“win the game” [11101]

WSPORTS WpOLITICS WTECH
1 -2 -2 0 3 3

BIAS 1 0 1 BIAS 0 1 0 BIAS : O

win : 0 -1 0 win : 0 1 0 win : 0

game : O 0 1 game : O 0 -1 game : O

vote 0 -1 1 vote 0 1 1 vote 0

the 0 -1 0 the 0 1 0 the : 0

Properties of Perceptrons

- . . Separable
Separability: true if some parameters get the training P
set perfectly correct -
- vy,
Convergence: if the training is separable, perceptron - .
will eventually converge (binary case) -
Non-separable? Non-Separable
*
- .
- %

Problems with the Perceptron

Noise: if the data isn't separable,
weights might thrash

= Averaging weight vectors over time
can help (averaged perceptron)

Mediocre generalization: finds a
"barely” separating solution

training
Overtraining: test / held-out >
accuracy usually rises, then falls O
= Qvertraining is a kind of overfitting § test
T held-out

iterations

Improving the Perceptron

Non-Separable Case: Deterministic Decision

Even the best linear boundary makes at least one mistake
o~

4.5
4tk
3.9 F
31
2.0
= |

1o

11

0.5 F

0

Non-Separable Case: Probabilistic Decision

T 0.9]0.1
4.5 0.7]0.3
4t 0.5] 0.5
3.5 0.3]0.7
!
25
o L
15}

How to get probabilistic decisions?

= Perceptron scoring:z = w - f(x)
» If z=w-f(z) very positive 2 want probability going to 1
" If z=w-f(z) verynegative 2 want probability going to 0

= Sigmoid function

1
1 +e %

p(z) =

A 1D Example

P(red|x)
| 19
S
[
=1 almost 1.0
£
Ry
|
I
I
I
I
almost 0.0 :
N I
o o o o—0 0 0 060 60 6 @ »
\ J \ J \ J L
Y Y Y
definitely blue not sure definitely red

probability increases exponentially
. /
eWred T as we move away from boundary

P(red|x) =

eWred'T L eWhlue'T + normalizer

The Soft Max

P(red|x) 5Wred

eOWred & + edWhlue T

6100wr8d s

elOOwred T 4 B100wblue T

« —— looks like max, wy, -

ewred "L

ewred X —|— ewblue L

O O o0 0 0 060 060600 @ >

ewred T

elljl"ed'$ —I— ewblue'x

P(red|z) =

Best w?

= Maximum likelihood estimation:

w

max [l(w) = max ZlogP(y(i)\az(i);w)

| . 1
o . (Z) p— (7’)° p—
with: P(y —|—1|;13 7w) 1+ e—w f(z®)

1

= Logistic Regression

Separable Case: Deterministic Decision — Many Options

5_
5 - .
a5k
42 a5k
4L
T 2 + +
35t
A9 a5t
3_
3 3 e
25}
a8 25t
2_
2_
z QO QO
15}
15} sl
‘I_
‘I_
1 O QO
05}
05} asl
|:|_
0 . ,
0 1 7 3 4 5 0 1 . . P .

Separable Case: Probabilistic Decision — Clear Preference

0.7] 0.3 S

- T T - T T - T T - T T - T 1
on —t on ra on a4} on = on n
T T T T T T T T T 1

= |

Multiclass Logistic Regression

w1 - f biggest
= Recall Perceptron: w1
= A weight vector for each class: Wy
" Score (activation) of a classy: wy - f(aj) w3
w2
= Prediction highest score wins y = arg max wy, - f(x) ws - f w3 - f
Y biggest biggest
= How to make the scores into probabilities?
e~? e~? e~s

21,422,223 —7 y y
e°l + e*2 + e*3 e*l - e*2 + e*3 e*l - e*2 + e*3

| J L]
| Y

original activations softmax activations

Best w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\az(i);w)

w

oWy () F(x)

e ()]0 .) =
with: Py |z ; w) Zy Wy f(x(D))

= Multi-Class Logistic Regression

Best w?

= Optimization

= |.e., how do we solve;

max [l(w) = max ZlogP(y(i)\zv(i);w)

w

Hill Climbing

= Simple, general idea
= Start wherever
» Repeat: move to the best neighboring state
» If no neighbors better than current, quit

= What's particularly tricky when hill-climbing for
multiclass logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?

Gradient Ascent

= Perform update in uphill direction for each coordinate

» The steeper the slope (i.e. the higher the derivative) the bigger the
step for that coordinate

= E.g. consider: g(wi,w2)

= Updates: = Updates in vector notation:
dg

’wl%wl*‘@*a—wl(wlau&) w — w~+ a*x Vy,g(w)

Jws A (w)

0g 9
Wy — Wy + o x —— (W, wa) with: Vg(w) = [8“?1 (w)] = gradient

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

"= Init W

= for 1ter =1, 2, ..

w < w~+ a*x Vg(w)

= «v:learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices
" Crude rule of thumb: update changes w about 0.1 -1 %

Batch Gradient Ascent on the Log Likelihood
biect;

max [l(w) = max ZlogP(y(i)kz:(i);w)

w

\ J

g(w)

" nit W

= for 1ter =1, 2, ..

w 4— w + ok Z V log P(y' |z w)

Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)kB(i);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

= init w
= for 1ter =1, 2,

" pick random 7

w4 w~+ a x Viog P(yY |z w)

Mini-Batch Gradient Ascent on the Log Likelihood
Objective
max [l(w) = max Zlog P(y'Dz®; w)

w

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

" Init w
" for i1ter = 1, 2,
" pick random subset of tralning examples J

W — W+ Q * ZVIogP(y(j)\a:(j);w)
jedJ

How about computing all the derivatives?

= \We'll talk about that in neural networks, which are a
generalization of logistic regression

