CSE 573 PMP: Artificial Intelligence

Hanna Hajishirzi

Perceptrons and Logistic

Regression

Agent Testing
Today!

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

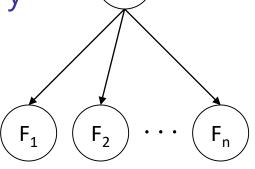
Announcements

- Project proposals: Graded
- HW2 released -> Deadline: March 6th
- PS4 released -> Deadline: March 11th
- Instructions for Project Presentations -> New deadline:
 March 17th
- Project Report -> New deadline: March 20th

Last Lecture

Classification: given inputs x, predict labels (classes) y

Naïve Bayes



$$P(Y|F_{0,0}...F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$

- Parameter estimation:
 - MLE, MAP, priors $P_{\text{ML}}(x) = \frac{\text{count}(x)}{\text{total samples}}$
- Laplace smoothing $P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$
- Training set, held-out set, test set

Workflow

- Phase 1: Train model on Training Data. Choice points for "tuning"
 - Attributes / Features
 - Model types: Naïve Bayes vs. Perceptron vs. Logistic Regression vs. Neural Net etc..
 - Model hyperparameters
 - E.g. Naïve Bayes Laplace k
 - E.g. Logistic Regression weight regularization
 - E.g. Neural Net architecture, learning rate, ...
 - Make sure good performance on training data (why?)
- Phase 2: Evaluate on Hold-Out Data
 - If Hold-Out performance is close to Train performance
 - We achieved good generalization, onto Phase 3! ©
 - If Hold-Out performance is much worse than Train performance
 - We overfitted to the training data! ③
 - Take inspiration from the errors and:
 - Either: go back to Phase 1 for tuning (typically: make the model less expressive)
 - Or: if we are out of options for tuning while maintaining high train accuracy, collect more data (i.e., let the data drive generalization, rather than the tuning/regularization) and go to Phase 1
- Phase 3: Report performance on Test Data

Training Data

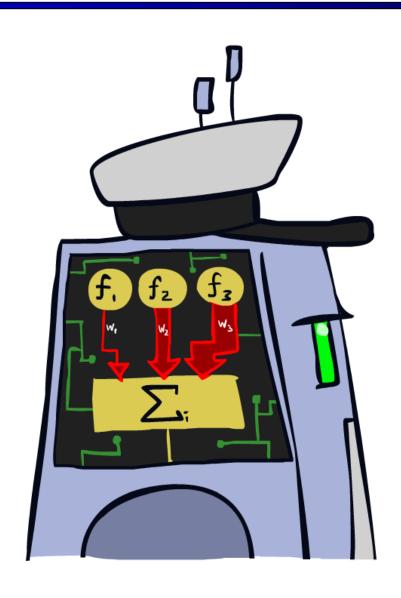
Held-Out Data

> Test Data

Practical Tip: Baselines

- First step: get a baseline
 - Baselines are very simple "straw man" procedures
 - Help determine how hard the task is
 - Help know what a "good" accuracy is
- Weak baseline: most frequent label classifier
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed
 - E.g. calling everything "ham" gets 66%, so a classifier that gets 70% isn't very good...
- For real research, usually use previous work as a (strong) baseline

Linear Classifiers

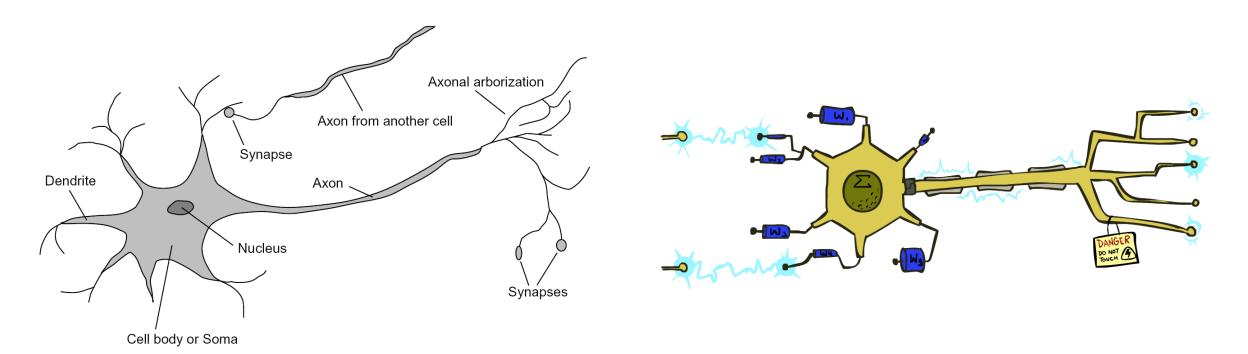


Feature Vectors

f(x)# free : 2
YOUR_NAME : 0
MISSPELLED : 2 Hello, **SPAM** Do you want free printr or cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM_LOOPS : 1

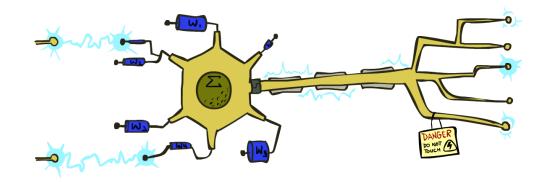
Some (Simplified) Biology

Very loose inspiration: human neurons



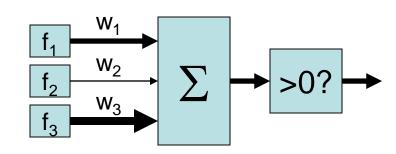
Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation



$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1



Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples



Decision Rules

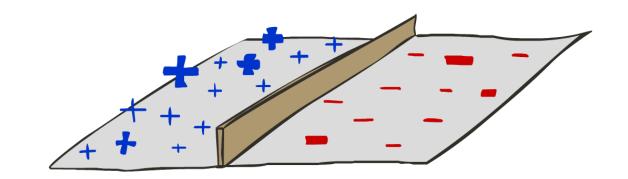


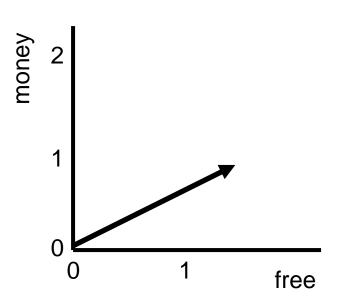
Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

BIAS : -3
free : 4
money : 2



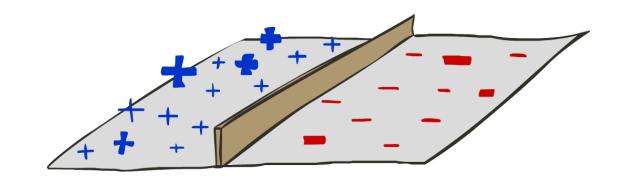


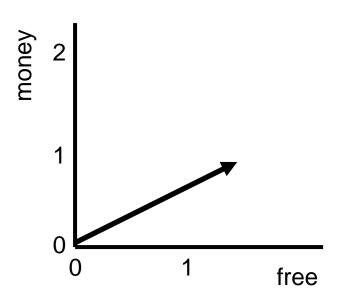
Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

w

free : 4 money : 2



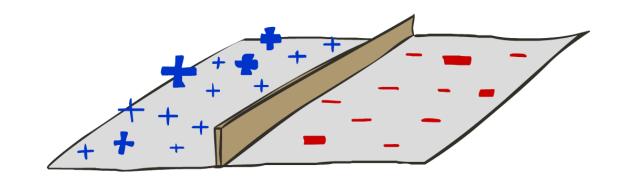


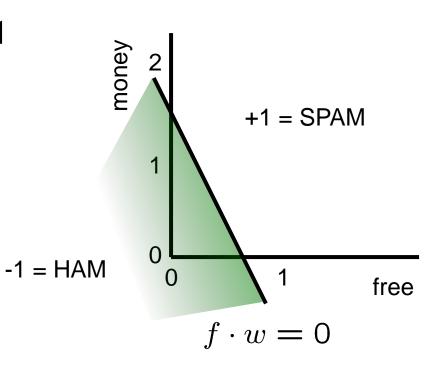
Binary Decision Rule

- In the space of feature vectors
 - Examples are points
 - Any weight vector is a hyperplane
 - One side corresponds to Y=+1
 - Other corresponds to Y=-1

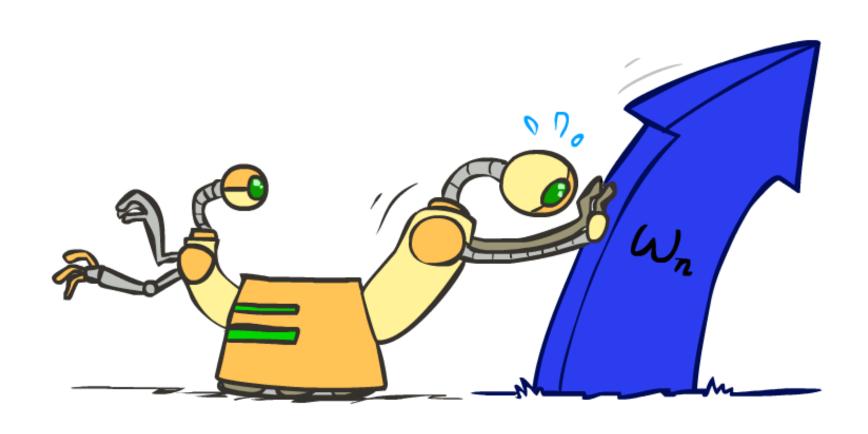
 \overline{w}

BIAS : -3
free : 4
money : 2





Weight Updates

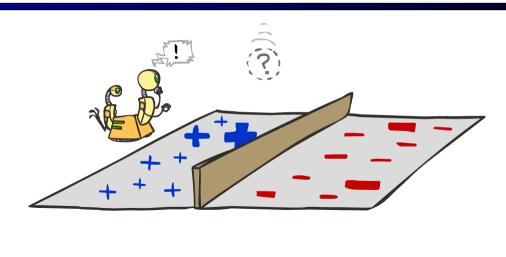


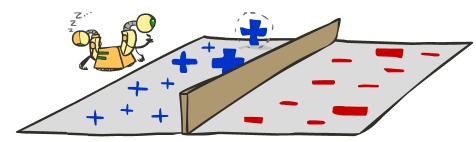
Learning: Binary Perceptron

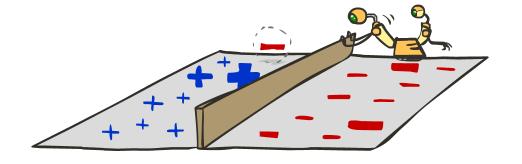
- Start with weights = 0
- For each training instance:
 - Classify with current weights

■ If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector







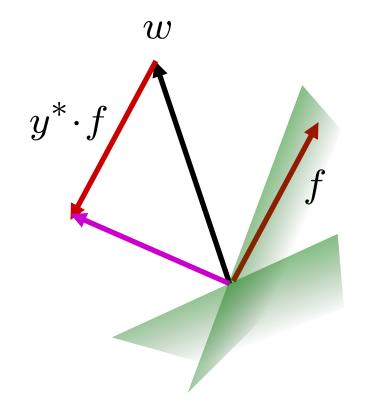
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

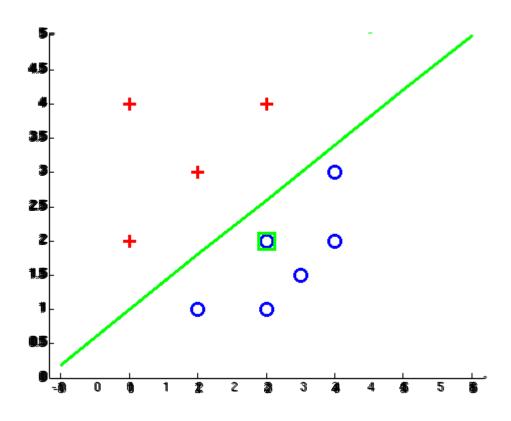
- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$



Examples: Perceptron

Separable Case



Multiclass Decision Rule

- If we have multiple classes:
 - A weight vector for each class:

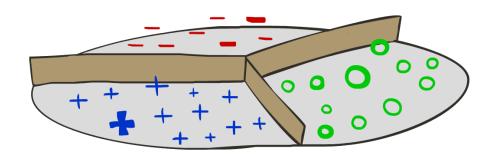
$$w_y$$

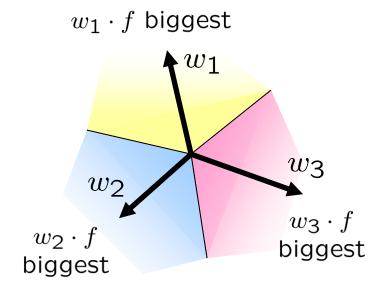
Score (activation) of a class y:

$$w_y \cdot f(x)$$

Prediction highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} \ w_y \cdot f(x)$$





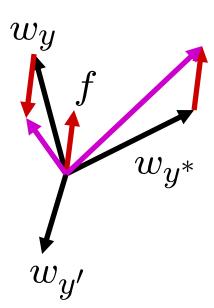
Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = \arg\max_{y} w_{y} \cdot f(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$
$$w_{y^*} = w_{y^*} + f(x)$$



Example: Multiclass Perceptron

```
"win the vote" [1 1 0 1 1]

"win the election" [1 1 0 0 1]

"win the game" [1 1 1 0 1]
```

```
      WPOLITICS

      0
      3
      3

      BIAS : 0
      1
      0

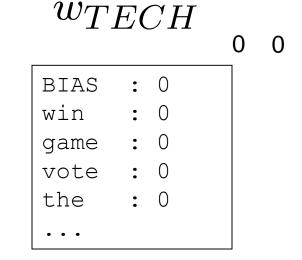
      win : 0
      1
      0

      game : 0
      0
      -1

      vote : 0
      1
      1

      the : 0
      1
      0

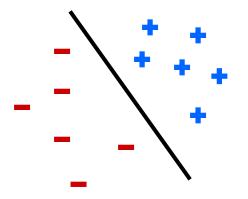
      ...
      0
      1
```



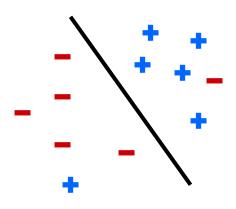
Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Non-separable?

Separable

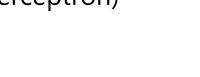


Non-Separable



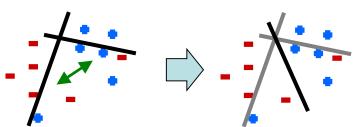
Problems with the Perceptron

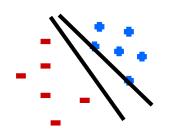
- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

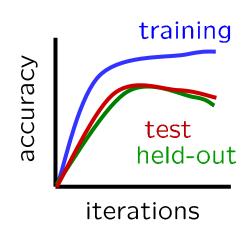


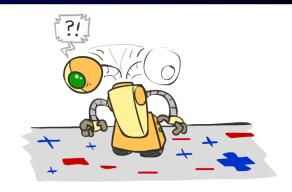
 Mediocre generalization: finds a "barely" separating solution

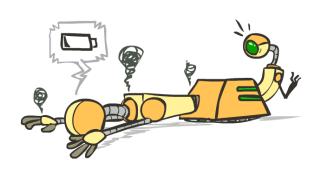
- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting







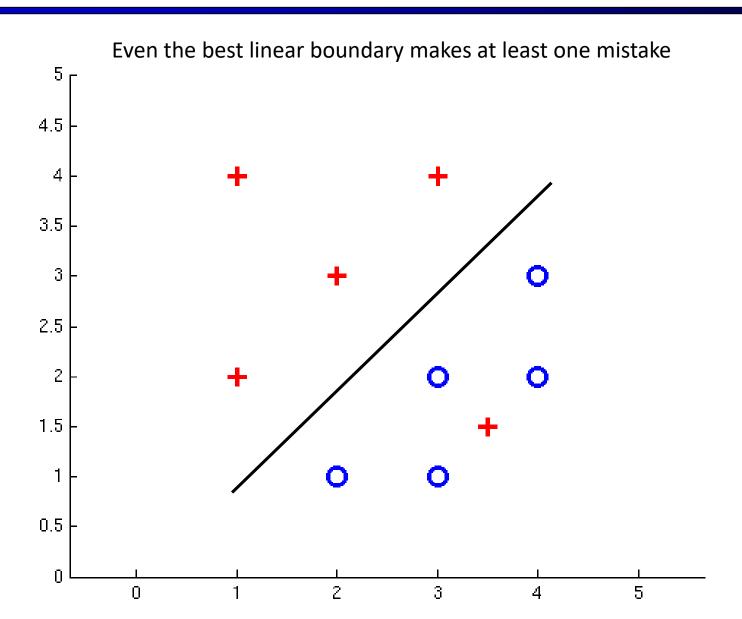




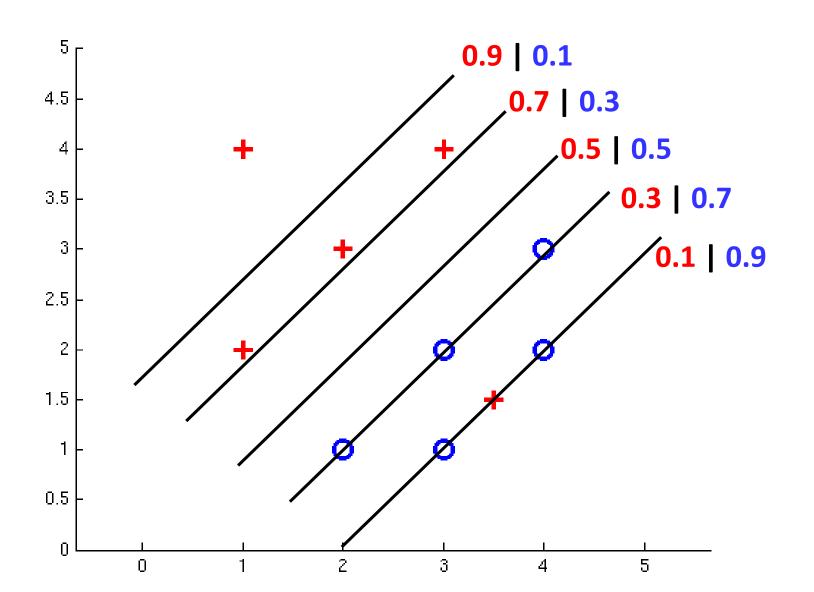
Improving the Perceptron



Non-Separable Case: Deterministic Decision



Non-Separable Case: Probabilistic Decision

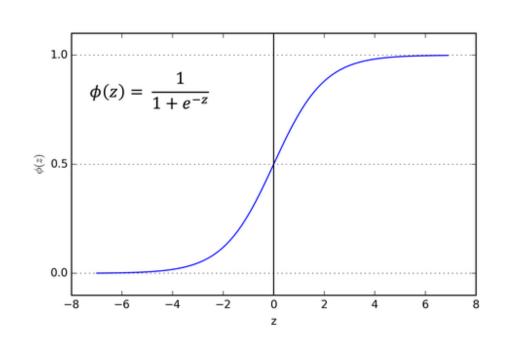


How to get probabilistic decisions?

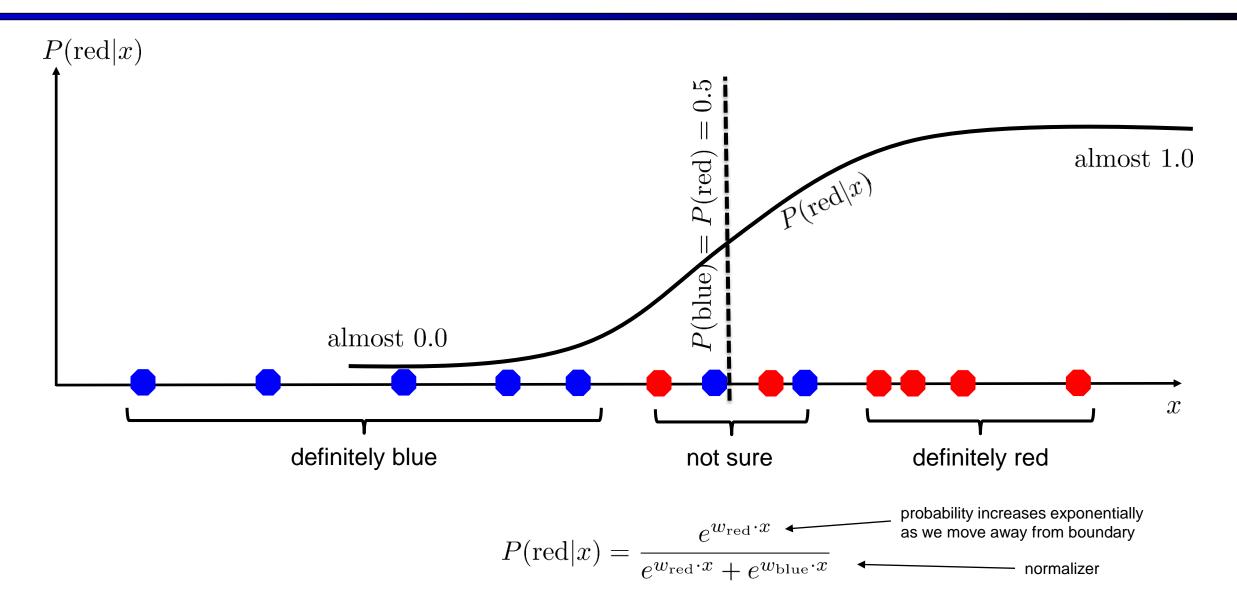
- Perceptron scoring: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0

Sigmoid function

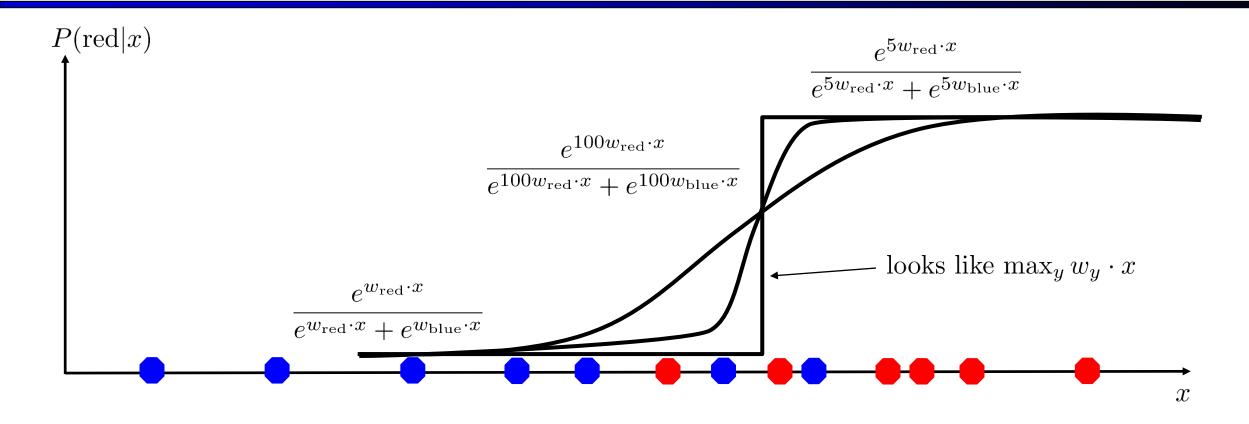
$$\phi(z) = \frac{1}{1 + e^{-z}}$$



A 1D Example



The Soft Max



$$P(\text{red}|x) = \frac{e^{w_{\text{red}} \cdot x}}{e^{w_{\text{red}} \cdot x} + e^{w_{\text{blue}} \cdot x}}$$

Best w?

• Maximum likelihood estimation:

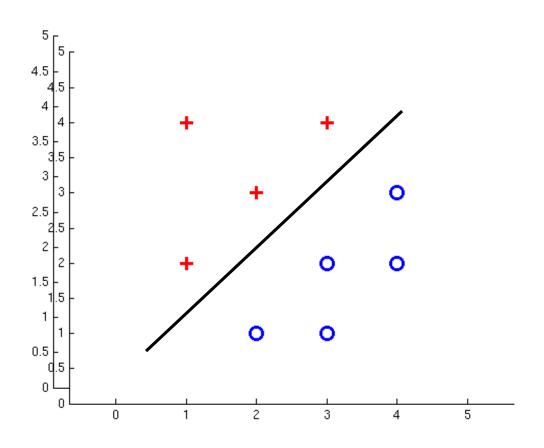
$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

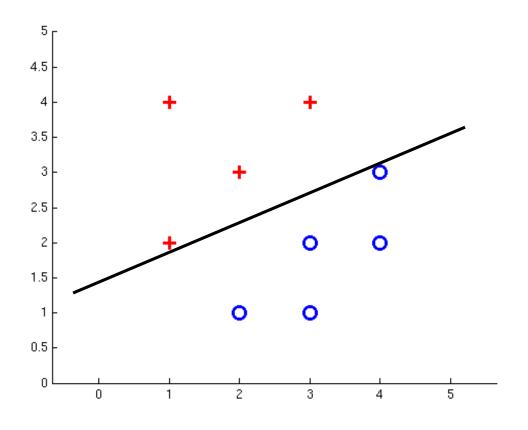
$$P(y^{(i)} = +1|x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

$$P(y^{(i)} = -1|x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

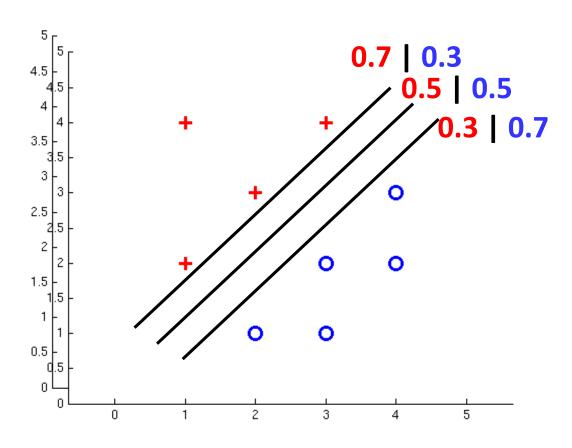
= Logistic Regression

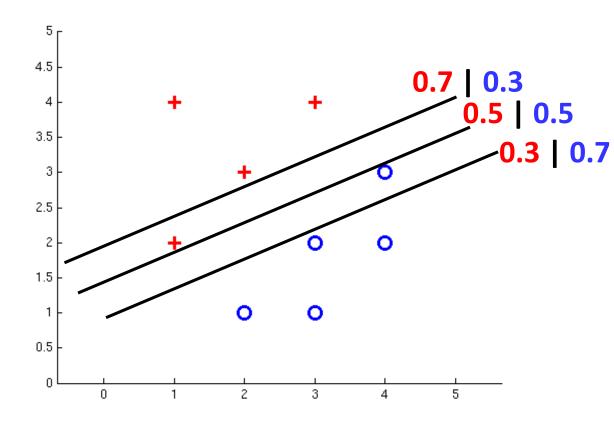
Separable Case: Deterministic Decision – Many Options





Separable Case: Probabilistic Decision – Clear Preference

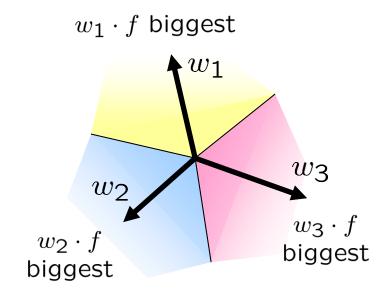




Multiclass Logistic Regression

Recall Perceptron:

- ullet A weight vector for each class: w_y
- Score (activation) of a class y: $w_y \cdot f(x)$
- Prediction highest score wins $y = \arg\max_{y} w_y \cdot f(x)$



How to make the scores into probabilities?

$$z_1,z_2,z_3 \to \frac{e^{z_1}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_2}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}$$
 original activations softmax activations

Best w?

• Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with:
$$P(y^{(i)}|x^{(i)};w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

Best w?

Optimization

• i.e., how do we solve:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Hill Climbing

- Simple, general idea
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
 - Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?

Gradient Ascent

- Perform update in uphill direction for each coordinate
- The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate
- E.g., consider: $g(w_1, w_2)$
 - Updates:

$$w_1 \leftarrow w_1 + \alpha * \frac{\partial g}{\partial w_1}(w_1, w_2)$$

$$w_2 \leftarrow w_2 + \alpha * \frac{\partial g}{\partial w_2}(w_1, w_2)$$

Updates in vector notation:

$$w \leftarrow w + \alpha * \nabla_w g(w)$$

with:
$$\nabla_w g(w) = \begin{bmatrix} \frac{\partial g}{\partial w_1}(w) \\ \frac{\partial g}{\partial w_2}(w) \end{bmatrix}$$
 = gradient

Gradient in n dimensions

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \\ \cdots \\ \frac{\partial g}{\partial w_n} \end{bmatrix}$$

Optimization Procedure: Gradient Ascent

```
• init w
• for iter = 1, 2, ... w \leftarrow w + \alpha * \nabla g(w)
```

- ullet α : learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
 - lacktriangle Crude rule of thumb: update changes w about 0.1 1 %

Batch Gradient Ascent on the Log Likelihood **Objective**

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

$$g(w)$$

- lacksquare init w

for iter = 1, 2, ...
$$w \leftarrow w + \alpha * \sum_{i} \nabla \log P(y^{(i)}|x^{(i)};w)$$

Stochastic Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

- lacktriangledown init w
- for iter = 1, 2, ...
 - pick random j

$$w \leftarrow w + \alpha * \nabla \log P(y^{(j)}|x^{(j)};w)$$

Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

- lacktriangledown init w
- for iter = 1, 2, ...
 - pick random subset of training examples J

$$w \leftarrow w + \alpha * \sum_{j \in J} \nabla \log P(y^{(j)} | x^{(j)}; w)$$

How about computing all the derivatives?

 We'll talk about that in neural networks, which are a generalization of logistic regression