# CSE 573 PMP: Artificial Intelligence

Hanna Hajishirzi

Perceptrons and Logistic

Regression

Agent Testing
Today!

slides adapted from Dan Klein, Pieter Abbeel ai.berkeley.edu And Dan Weld, Luke Zettlemoyer

#### Announcements

- Project proposals: Graded
- HW2 released -> Deadline: March 6<sup>th</sup>
- PS4 released -> Deadline: March 11<sup>th</sup>
- Instructions for Project Presentations -> New deadline:
   March 17<sup>th</sup>
- Project Report -> New deadline: March 20th

#### Last Lecture

Classification: given inputs x, predict labels (classes) y

Naïve Bayes



$$P(Y|F_{0,0}...F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$

- Parameter estimation:
  - MLE, MAP, priors  $P_{\text{ML}}(x) = \frac{\text{count}(x)}{\text{total samples}}$
- Laplace smoothing  $P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$
- Training set, held-out set, test set



#### Workflow

- Phase 1: Train model on Training Data. Choice points for "tuning"
  - Attributes / Features
  - Model types: Naïve Bayes vs. Perceptron vs. Logistic Regression vs. Neural Net etc..
  - Model hyperparameters
    - E.g. Naïve Bayes Laplace k
    - E.g. Logistic Regression weight regularization
    - E.g. Neural Net architecture, learning rate, ...
  - Make sure good performance on training data (why?)
- Phase 2: Evaluate on Hold-Out Data
  - If Hold-Out performance is close to Train performance
    - We achieved good generalization, onto Phase 3! ©
  - If Hold-Out performance is much worse than Train performance
    - We overfitted to the training data! ③
    - Take inspiration from the errors and:
      - Either: go back to Phase 1 for tuning (typically: make the model less expressive)
      - Or: if we are out of options for tuning while maintaining high train accuracy, collect more data (i.e., let the data drive generalization, rather than the tuning/regularization) and go to Phase 1
- Phase 3: Report performance on Test Data

Training Data

Held-Out Data

> Test Data

#### Practical Tip: Baselines

- First step: get a baseline
  - Baselines are very simple "straw man" procedures
  - Help determine how hard the task is
  - Help know what a "good" accuracy is
- Weak baseline: most frequent label classifier
  - Gives all test instances whatever label was most common in the training set
  - E.g. for spam filtering, might label everything as ham
  - Accuracy might be very high if the problem is skewed
  - E.g. calling everything "ham" gets 66%, so a classifier that gets 70% isn't very good...
- For real research, usually use previous work as a (strong) baseline

#### **Linear Classifiers**



#### Feature Vectors

f(x)# free : 2
YOUR\_NAME : 0
MISSPELLED : 2 Hello, **SPAM** Do you want free printr or cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just PIXEL-7,12 : 1
PIXEL-7,13 : 0
...
NUM\_LOOPS : 1

## Some (Simplified) Biology

Very loose inspiration: human neurons



#### Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation



$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
  - Positive, output +1
  - Negative, output -1



## Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples



## **Decision Rules**



## Binary Decision Rule

- In the space of feature vectors
  - Examples are points
  - Any weight vector is a hyperplane
  - One side corresponds to Y=+1
  - Other corresponds to Y=-1

w

BIAS : -3
free : 4
money : 2





## Binary Decision Rule

- In the space of feature vectors
  - Examples are points
  - Any weight vector is a hyperplane
  - One side corresponds to Y=+1
  - Other corresponds to Y=-1

w

free : 4 money : 2





## Binary Decision Rule

- In the space of feature vectors
  - Examples are points
  - Any weight vector is a hyperplane
  - One side corresponds to Y=+1
  - Other corresponds to Y=-1

 $\overline{w}$ 

BIAS : -3
free : 4
money : 2





# Weight Updates



## Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
  - Classify with current weights

■ If correct (i.e., y=y\*), no change!

If wrong: adjust the weight vector







## Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
  - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0\\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y\*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y\* is -1.

$$w = w + y^* \cdot f$$



## Examples: Perceptron

Separable Case



#### Multiclass Decision Rule

- If we have multiple classes:
  - A weight vector for each class:

$$w_y$$

Score (activation) of a class y:

$$w_y \cdot f(x)$$

Prediction highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} \ w_y \cdot f(x)$$





## Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = \arg\max_{y} w_{y} \cdot f(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$
$$w_{y^*} = w_{y^*} + f(x)$$



#### Example: Multiclass Perceptron

```
"win the vote" [1 1 0 1 1]

"win the election" [1 1 0 0 1]

"win the game" [1 1 1 0 1]
```

```
      WPOLITICS

      0
      3
      3

      BIAS : 0
      1
      0

      win : 0
      1
      0

      game : 0
      0
      -1

      vote : 0
      1
      1

      the : 0
      1
      0

      ...
      0
      1
```



## Properties of Perceptrons

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Non-separable?

#### Separable



Non-Separable



## Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
  - Averaging weight vectors over time can help (averaged perceptron)



 Mediocre generalization: finds a "barely" separating solution

- Overtraining: test / held-out accuracy usually rises, then falls
  - Overtraining is a kind of overfitting













# Improving the Perceptron



#### Non-Separable Case: Deterministic Decision



#### Non-Separable Case: Probabilistic Decision



#### How to get probabilistic decisions?

- Perceptron scoring:  $z = w \cdot f(x)$
- If  $z = w \cdot f(x)$  very positive  $\rightarrow$  want probability going to 1
- If  $z = w \cdot f(x)$  very negative  $\rightarrow$  want probability going to 0

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$



#### A 1D Example



#### The Soft Max



$$P(\text{red}|x) = \frac{e^{w_{\text{red}} \cdot x}}{e^{w_{\text{red}} \cdot x} + e^{w_{\text{blue}} \cdot x}}$$

#### Best w?

• Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

$$P(y^{(i)} = +1|x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

$$P(y^{(i)} = -1|x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

#### = Logistic Regression

#### Separable Case: Deterministic Decision – Many Options





#### Separable Case: Probabilistic Decision – Clear Preference





## Multiclass Logistic Regression

#### Recall Perceptron:

- ullet A weight vector for each class:  $w_y$
- Score (activation) of a class y:  $w_y \cdot f(x)$
- Prediction highest score wins  $y = \arg\max_{y} w_y \cdot f(x)$



How to make the scores into probabilities?

$$z_1,z_2,z_3 \to \frac{e^{z_1}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_2}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}, \frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}$$
 original activations softmax activations

#### Best w?

• Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with: 
$$P(y^{(i)}|x^{(i)};w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

#### Best w?

#### Optimization

• i.e., how do we solve:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

### Hill Climbing

- Simple, general idea
  - Start wherever
  - Repeat: move to the best neighboring state
  - If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
  - Optimization over a continuous space
    - Infinitely many neighbors!
    - How to do this efficiently?

#### **Gradient Ascent**

- Perform update in uphill direction for each coordinate
- The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate
- E.g., consider:  $g(w_1, w_2)$ 
  - Updates:

$$w_1 \leftarrow w_1 + \alpha * \frac{\partial g}{\partial w_1}(w_1, w_2)$$

$$w_2 \leftarrow w_2 + \alpha * \frac{\partial g}{\partial w_2}(w_1, w_2)$$

Updates in vector notation:

$$w \leftarrow w + \alpha * \nabla_w g(w)$$

with: 
$$\nabla_w g(w) = \begin{bmatrix} \frac{\partial g}{\partial w_1}(w) \\ \frac{\partial g}{\partial w_2}(w) \end{bmatrix}$$
 = gradient

#### Gradient in n dimensions

$$\nabla g = \begin{bmatrix} \frac{\partial g}{\partial w_1} \\ \frac{\partial g}{\partial w_2} \\ \cdots \\ \frac{\partial g}{\partial w_n} \end{bmatrix}$$

## Optimization Procedure: Gradient Ascent

```
• init w
• for iter = 1, 2, ... w \leftarrow w + \alpha * \nabla g(w)
```

- ullet  $\alpha$ : learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices
  - lacktriangle Crude rule of thumb: update changes w about 0.1 1 %

#### Batch Gradient Ascent on the Log Likelihood **Objective**

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

$$g(w)$$

- lacksquare init w

for iter = 1, 2, ... 
$$w \leftarrow w + \alpha * \sum_{i} \nabla \log P(y^{(i)}|x^{(i)};w)$$

#### Stochastic Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

**Observation:** once gradient on one training example has been computed, might as well incorporate before computing next one

- lacktriangledown init w
- for iter = 1, 2, ...
  - pick random j

$$w \leftarrow w + \alpha * \nabla \log P(y^{(j)}|x^{(j)};w)$$

# Mini-Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

**Observation:** gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

- lacktriangledown init w
- for iter = 1, 2, ...
  - pick random subset of training examples J

$$w \leftarrow w + \alpha * \sum_{j \in J} \nabla \log P(y^{(j)} | x^{(j)}; w)$$

## How about computing all the derivatives?

 We'll talk about that in neural networks, which are a generalization of logistic regression