CSEP 573: Artificial Intelligence

Graphical Models

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Dan Weld, Luke Zettlemoyer

Reminder: elementary probability

- Basic laws: $0 \leq P(\omega) \leq 1 \quad \sum_{\omega \in \Omega} P(\omega)=1$
- Events: subsets of $\Omega: \boldsymbol{P}(A)=\sum_{\omega \in A} P(\omega)$
- Random variable $X(\omega)$ has a value in each ω
- Distribution $\boldsymbol{P}(X)$ gives probability for each possible value x
- Joint distribution $P(X, Y)$ gives total probability for each combination x, y
- Summing out/marginalization: $P(X=x)=\sum_{y} P(X=x, Y=y)$
- Conditional probability: $\mathbf{P}(X \mid Y)=\mathbf{P}(X, Y) / \mathbf{P}(Y)$
- Product rule: $\boldsymbol{P}(X \mid Y) \boldsymbol{P}(Y)=\mathbf{P}(X, Y)=\boldsymbol{P}(Y \mid X) \boldsymbol{P}(X)$
- Generalize to chain rule: $\boldsymbol{P}\left(X_{1}, . ., X_{n}\right)=\prod_{i} \boldsymbol{P}\left(X_{i} \mid X_{1}, . ., X_{i-1}\right)$

Bayes' Nets: Big Picture

Bayes Nets: Big Picture

- Bayes nets: a technique for describing complex joint distributions (models) using simple, conditional distributions
- A subset of the general class of graphical models
- Also called belief networks

- Use local causality/conditional independence:
- the world is composed of many variables,
- each interacting locally with a few others

Bayes Nets

Part I: Representation

Part II: Independence

Part III: Exact inference

Part IV: Approximate Inference

Graphical Model Notation

- Nodes: variables (with domains)
- Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
- Indicate "direct influence" between variables
- Formally: encode conditional independence (more on this later)

Example Bayes' Net: Coin Flips

- N independent coin flips

- No interactions between variables: absolute independence

Conditional Independence: Traffic

- What about this domain:
- Traffic
- Umbrella
- Raining

Example Bayes' Net: Traffic

- Variables:
- T: There is traffic
- U: I'm holding my umbrella
- R: It rains

Conditional Independence: Fire

- What about this domain:
- Fire
- Smoke
- Alarm

Example Bayes' Net: Smoke alarm

- Variables:
- F: There is fire
- S: There is smoke
- A: Alarm sounds

Example Bayes' Net: Car Insurance

Why do conditional independence?-- Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
- On the ghost: usually red
- 1 or 2 away: mostly orange
- 3 or 4 away: typically yellow
- 5+ away: often green

- Click on squares until confident of location, then "bust"

Video of Demo Ghostbusters with Probability

Ghostbusters model

- Variables and ranges:
- G (ghost location) in $\{(1,1), \ldots,(3,3)\}$
- $C_{x, y}$ (color measured at square x, y) in \{red,orange,yellow,green\}
- Ghostbuster physics:
- Uniform prior distribution over ghost location: $\boldsymbol{P}(G)$
- Sensor model: $P\left(C_{x, y} \mid G\right)$ (depends only on distance to G)
- E.g. $P\left(C_{1,1}=\right.$ yellow $\left.\mid G=(1,1)\right)=0.1$

Ghostbusters model, contd.

- $\mathbf{P}\left(G, C_{1,1}, \ldots C_{3,3}\right)$ has ...
- $9 \times 4^{9}=2,359,296$ entries!
- $|\mathrm{G}|=9,\left|\mathrm{C}_{\mathrm{i}, \mathrm{i}}\right|=4$; Grid squares times size of each

- Ghostbuster independence:
- Are $C_{1,1}$ and $C_{1,2}$ independent?
- E.g., does $P\left(C_{1,1}=\right.$ yellow $)=P\left(C_{1,1}=\right.$ yellow $\mid C_{1,2}=$ orange $)$?
- Ghostbuster physics again:
- $P\left(C_{x, y} \mid G\right)$ depends only on distance to G
- So $P\left(C_{1,1}\right.$ = yellow $\left.\mid \underline{G}=(2,3)\right)=P\left(C_{1,1}=\right.$ yellow $\mid \underline{G}=(2,3), C_{1,2}=$ orange)
- I.e., $C_{1,1}$ is conditionally independent of $C_{1,2}$ given G

Ghostbusters model, contd.

- Apply the chain rule to decompose the joint probability model:

$$
\mathbf{P}\left(G, C_{1,1}, \ldots C_{3,3}\right)=\mathbf{P}(G) \mathbf{P}\left(C_{1,1} \mid G\right) \mathbf{P}\left(C_{1,2} \mid G, \mathbb{C}_{1,1}\right) \mathbf{P}\left(C_{1,3} \mid G, \subset_{1,1}, C_{1,2}\right) \ldots \mathbf{P}\left(C_{3,3} \mid G, \mathfrak{C}_{1,1}, \ldots, C_{3,2}\right)
$$

- Now simplify using conditional independence:

$$
\mathbf{P}\left(G, C_{1,1}, \ldots C_{3,3}\right)=\mathbf{P}(G) \mathbf{P}\left(C_{1,1} \mid G\right) \mathbf{P}\left(C_{1,2} \mid G\right) \mathbf{P}\left(C_{1,3} \mid G\right) \ldots \mathbf{P}\left(C_{3,3} \mid G\right)
$$

- I.e., conditional independence properties of ghostbuster physics simplify the probability model from exponential to quadratic in the number of squares
- $\left|\mathbf{P}\left(C_{i, 1} \mid G\right)\right|=4 \times 9$ rather than $\left|\mathbf{P}\left(C_{3,3} \mid G, C_{1,1}, \ldots, C_{3,2}\right)\right|=4 \times 9 \times 4^{8}$
- In total: $9+9 \times(4 \times 9)=333$ entries, before was $9 \times 4^{9}=2,359,296$ entries
- This is called a Naïve Bayes model:
- One discrete query variable (often called the class or category variable)
- All other variables are (potentially) evidence variables
- Evidence variables are all conditionally independent given the query variable

Ghostbusters Full Joint

Ghostbusters Naïve Bayes

Bayes Net Syntax and Semantics

Bayes' Net Syntax

- A set of nodes, one per variable X_{i}
- A directed, acyclic graph
- A conditional distribution for each node given its parent variables in the graph
- CPT (conditional probability table)
each row is a distribution for child given values of its parents

G	$\mathrm{P}\left(\mathrm{C}_{1,1} \mid \mathrm{G}\right)$			
	g	y	o	r
$(1,1)$	0.01	0.1	0.3	0.59
$(1,2)$	0.1	0.3	0.5	0.1
$(1,3)$	0.3	0.5	0.19	0.01
\ldots				

Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

Factor size of each CPT:

$d \Pi d_{i}$

Parent range sizes: $\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{k}}$ Child range size: d

Each table row must sum to 1

General formula for sparse BNs

- Suppose
- n variables
- Maximum range size is d
- Maximum number of parents is k
- Full joint distribution has size $O\left(d^{n}\right)$
- Bayes net has size $O\left(n \cdot d^{k}\right)$
- Linear scaling with n as long as causal structure is local
- Often $O\left(n \cdot d^{k}\right) \ll O\left(d^{n}\right)$

Bayes net global semantics

- Bayes nets encode joint distributions as product of conditional distributions on each variable:

$$
\boldsymbol{P}\left(X_{1}, . ., X_{n}\right)=\prod_{i} \boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

Example

Example: Your turn

Question

- Which of the following does a Bayes' net model explicitly?
- The joint probability distribution?
- The conditional probability distribution?
- Is one of the following more expressive than the other?
- The joint probability distribution
- The conditional probability distribution
- Why do we use Bayes' nets?

Summary

- Independence and conditional independence are important forms of probabilistic knowledge
- Bayes net encode joint distributions efficiently by taking advantage of conditional independence
- Global joint probability = product of local conditionals
- Next: more on independence
- Then: how to answer queries, i.e., compute conditional probabilities of queries given evidence

Bayes Nets

Part I: Representation

Part II: Independence

Part III: Exact inference

- Enumeration (always exponential complexity)
- Variable elimination (worst-case exponential complexity, often better)
- Inference is NP-hard in general

Part IV: Approximate Inference

Conditional independence in BNs

- Compare the Bayes net global semantics

$$
\boldsymbol{P}\left(X_{1}, . ., X_{n}\right)=\prod_{i} \boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

with the chain rule identity

$$
\boldsymbol{P}\left(X_{1}, . ., X_{n}\right)=\prod_{i} \boldsymbol{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

- Assume (without loss of generality) that $X_{1}, ., X_{n}$ sorted in topological order according to the graph (i.e., parents before children), so Parents $\left(X_{i}\right) \subseteq X_{1}, \ldots, X_{i-1}$
- So the Bayes net asserts conditional independences $\boldsymbol{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)=\boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- To ensure these are valid, choose parents for node X_{i} that "shield" it from other predecessors

Conditional independence semantics

- Every variable is conditionally independent of its non-descendants given its parents
- Conditional independence semantics <=> global semantics

Markov blanket

- A variable's Markov blanket consists of parents, children, children's other parents
- Every variable is conditionally independent of all other variables given its Markov blanket

Reminder: Conditional Independence

- X and Y are independent if

$$
\forall x, y P(x, y)=P(x) P(y) \rightarrow-\rightarrow \quad X \Perp Y
$$

- X and Y are conditionally independent given Z

$$
\forall x, y, z P(x, y \mid z)=P(x \mid z) P(y \mid z) \cdots X \Perp Y \mid Z
$$

- (Conditional) independence is a property of a distribution
- Example: Alarm \Perp Fire \mid Smoke

Example

- Conditional independence assumptions directly from simplifications in chain rule:

$$
\begin{aligned}
& P(x, y, z, w)=P(x) P(y \mid x) P(z \mid x, y) P(w \mid x, y, z) \\
& P(x, y, z, w)=P(x) P(y \mid x) P(z \mid y) P(w \mid z)
\end{aligned}
$$

- Additional implied conditional independence assumptions?

Example

- Conditional independence assumptions directly from simplifications in chain rule:

$$
\begin{aligned}
& X \Perp Z \mid Y \\
& W \Perp\{X, Y\} \mid Z
\end{aligned}
$$

- Additional implied conditional independence assumptions?

$$
W \Perp X \mid Y
$$

Independence in a Bayes' Net

- Important question about a Bayes' Net:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter-example
- Example:

- Question: are X and Z necessarily independent?
- Answer: no. Example: low pressure causes rain, which causes traffic.
- X can influence Z, Z can influence X (via Y)
- Addendum: they could be independent: how?

D-separation: Outline

D-separation: Outline

- Study independence properties for triples
- Why triples?
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering such queries

Causal Chains

- This configuration is a "causal chain"

- Guaranteed X independent of Z ?
- No!
- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:
- Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
- In numbers:

$$
\begin{aligned}
& P(+y \mid+x)=1, P(-y \mid-x)=1 \\
& P(+z \mid+y)=1, P(-z \mid-y)=1
\end{aligned}
$$

Causal Chains

- This configuration is a "causal chain"

- Guaranteed X independent of Z given Y ?

$$
\begin{aligned}
P(z \mid x, y) & =\frac{P(x, y, z)}{P(x, y)} \\
& =\frac{P(x) P(y \mid x) P(z \mid y)}{P(x) P(y \mid x)} \\
& =P(z \mid y)
\end{aligned}
$$

Yes!

- Evidence along the chain "blocks" the influence

Common Causes

- This configuration is a "common cause"

- Guaranteed X independent of Z ?
- No!
- One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
- Example:
- Project due causes both forums busy and lab full
- In numbers:

$$
\begin{aligned}
& P(+x \mid+y)=1, P(-x \mid-y)=1 \\
& P(+z \mid+y)=1, P(-z \mid-y)=1
\end{aligned}
$$

Common Cause

- This configuration is a "common cause"

$$
P(x, y, z)=P(y) P(x \mid y) P(z \mid y)
$$

- Guaranteed X and Z independent given Y ?

$$
\begin{aligned}
P(z \mid x, y) & =\frac{P(x, y, z)}{P(x, y)} \\
& =\frac{P(y) P(x \mid y) P(z \mid y)}{P(y) P(x \mid y)} \\
& =P(z \mid y) \\
& \text { Yes! }
\end{aligned}
$$

- Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)
X : Raining $\quad Y$: Ballgame

Z: Traffic

- Are X and Y independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Proof:

$$
P(x, y)=\sum P(x, y, z)
$$

Common Effect

- Last configuration: two causes of one effect (v-structures)

- Are X and Y independent?
- Yes: the ballgame and the rain cause traffic, but they are not correlated
- (Proved previously)
- Are X and Y independent given Z ?
- No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
- Observing an effect activates influence between possible causes.

The General Case

The General Case

- General question: in a given BN , are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be broken into repetitions of the three canonical cases

Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are not connected* they are conditionally independent
- *There does not exist an undirected path between them, excluding those blocked by a shaded node.
- Almost works, but not quite
- Where does it break?
- Answer: the v-structure at T doesn't count as a link in a path unless "active"

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables $\{Z\}$?
- Yes, if X and Y "d-separated" by Z
- Consider all (undirected) paths from X to Y
- No active paths = independence!
- A path is active if each triple is active:
- Causal chain: A -> B -> C where B is unobserved (either direction)
- Common cause: A <- B-> C where B is unobserved
- Common effect: (aka v-structure)
$A->B<-C$ where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment

Active Triples

D-Separation

- Query: $\quad X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}$?
- Check all (undirected!) paths between X_{i} and X_{j}
- If one or more active, then independence not guaranteed

$$
X_{i} \mathbb{X} X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

- Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$
X_{i} \Perp X_{j} \mid\left\{X_{k_{1}}, \ldots, X_{k_{n}}\right\}
$$

def d-separated(first, second):
for path in paths(first, second):
path_active = True
for triple in path:
if not active(triple):
path_active = False
break
if path_active:
return False
return True

Example: which assumptions apply?

$R \Perp B$	Yes
$R \Perp B \mid T$	
$R \Perp B \mid T^{\prime}$	

Example: which assumptions apply?

Example: which assumptions apply?

- Variables:
- R: Raining
- T: Traffic
- D: Roof drips
- S: I'm sad
- Questions:

$$
\begin{array}{lr}
T \Perp D & \\
T \Perp D \mid R \quad \text { Yes } \\
T \Perp D \mid R, S &
\end{array}
$$

