CSEP 573: Artificial Intelligence

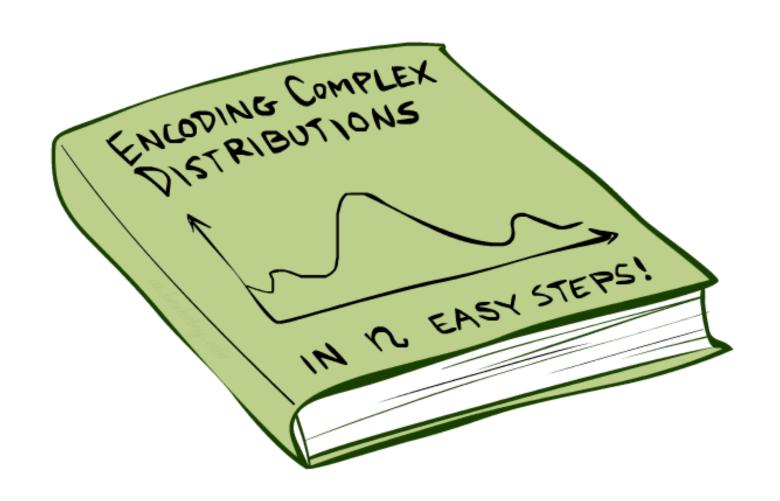
Graphical Models

slides adapted from Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu And Hanna Hajishirzi, Dan Weld, Luke Zettlemoyer

Reminder: elementary probability

- Basic laws: $0 \le P(\omega) \le 1$ $\sum_{\omega \in \Omega} P(\omega) = 1$
- Events: subsets of Ω : $P(A) = \sum_{\omega \in A} P(\omega)$
- Random variable $X(\omega)$ has a value in each ω
 - Distribution P(X) gives probability for each possible value X
 - Joint distribution P(X,Y) gives total probability for each combination X,Y
- Summing out/marginalization: $P(X=x) = \sum_{y} P(X=x, Y=y)$
- Conditional probability: P(X|Y) = P(X,Y)/P(Y)
- Product rule: P(X|Y)P(Y) = P(X,Y) = P(Y|X)P(X)
 - Generalize to chain rule: $P(X_1,...,X_n) = \prod_i P(X_i \mid X_1,...,X_{i-1})$

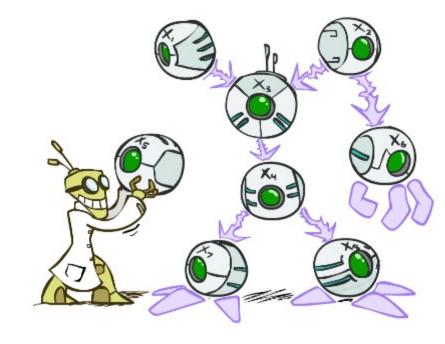
Bayes' Nets: Big Picture



Bayes Nets: Big Picture

- Bayes nets: a technique for describing complex joint distributions (models) using simple, conditional distributions
 - A subset of the general class of graphical models
 - Also called belief networks
- Use local causality/conditional independence:
 - the world is composed of many variables,
 - each interacting locally with a few others





Bayes Nets

Part I: Representation

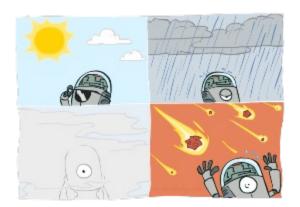
Part II: Independence

Part III: Exact inference

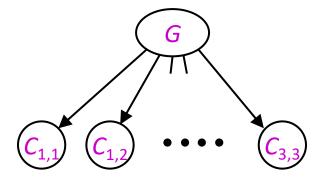
Part IV: Approximate Inference

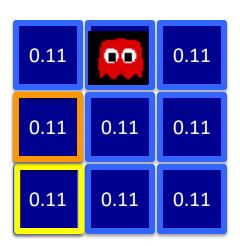
Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)



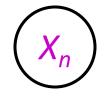
- Arcs: interactions
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more on this later)

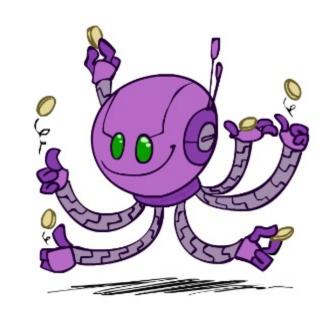




Example Bayes' Net: Coin Flips

N independent coin flips





No interactions between variables: absolute independence

Conditional Independence: Traffic

- What about this domain:
 - Traffic
 - Umbrella
 - Raining

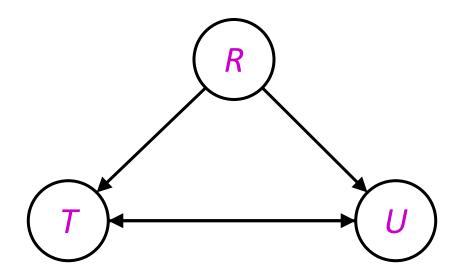
Example Bayes' Net: Traffic

Variables:

■ T: There is traffic

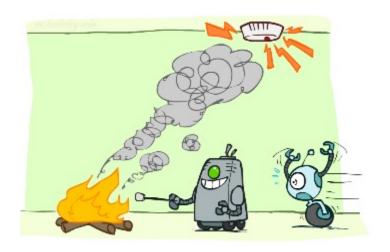
U: I'm holding my umbrella

R: It rains



Conditional Independence: Fire

- What about this domain:
 - Fire
 - Smoke
 - Alarm



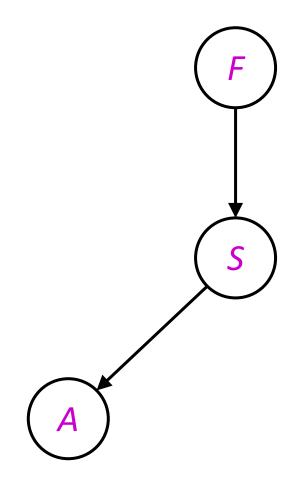
Example Bayes' Net: Smoke alarm

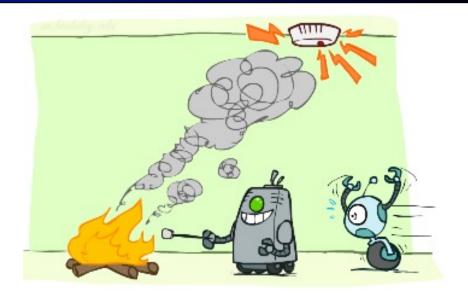
Variables:

• F: There is fire

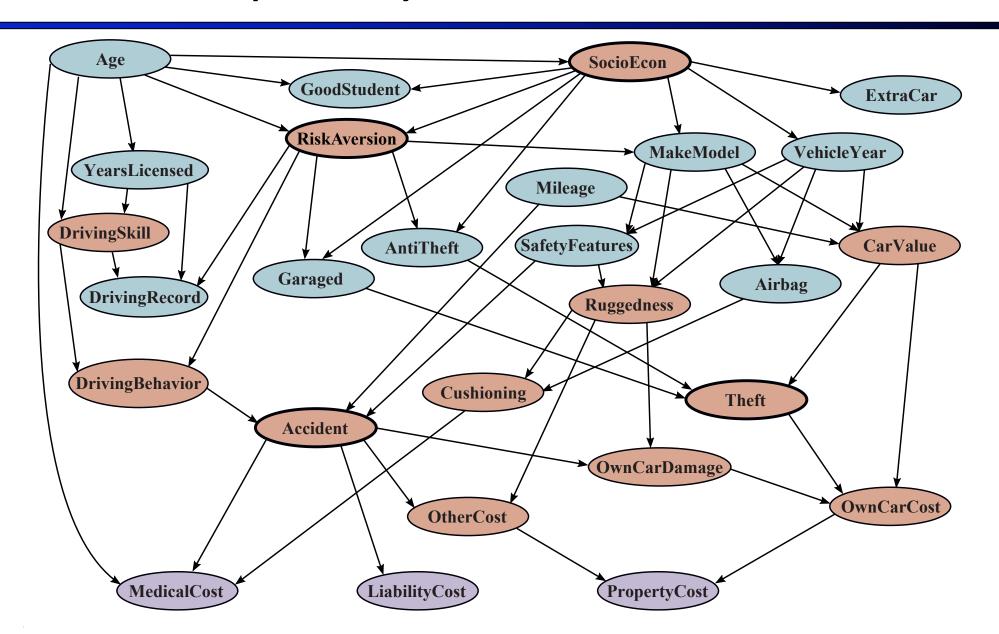
S: There is smoke

A: Alarm sounds



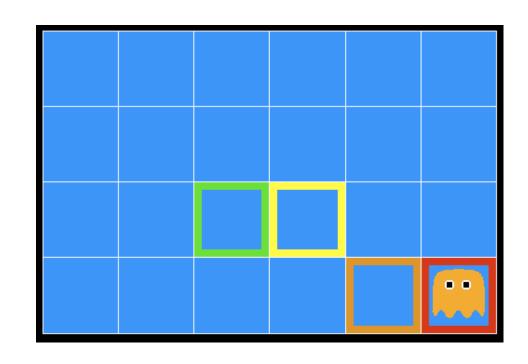


Example Bayes' Net: Car Insurance



Why do conditional independence?-- Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: usually red
 - 1 or 2 away: mostly orange
 - 3 or 4 away: typically yellow
 - 5+ away: often green
- Click on squares until confident of location, then "bust"

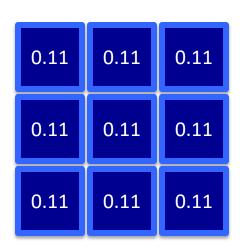


Video of Demo Ghostbusters with Probability

P(ghost is in this position given all of the evidence that we have seen so far)

Ghostbusters model

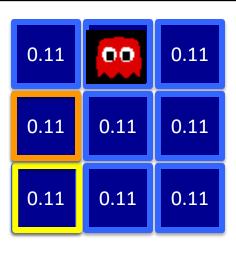
- Variables and ranges:
 - *G* (ghost location) in {(1,1),...,(3,3)}
 - $C_{x,y}$ (color measured at square x,y) in {red,orange,yellow,green}



- Ghostbuster physics:
 - Uniform prior distribution over ghost location: P(G)
 - Sensor model: $P(C_{x,y} \mid G)$ (depends only on distance to G)
 - E.g. $P(C_{1.1} = \text{yellow} \mid G = (1,1)) = 0.1$

Ghostbusters model, contd.

- **P**(G, $C_{1,1}$, ... $C_{3,3}$) has ...
 - $9 \times 4^9 = 2,359,296$ entries!
 - |G| = 9, $|C_{i,i}| = 4$; Grid squares times size of each



- Ghostbuster independence:
 - Are $C_{1,1}$ and $C_{1,2}$ independent?
 - E.g., does $P(C_{1,1} = yellow) = P(C_{1,1} = yellow | C_{1,2} = orange)$?
- Ghostbuster physics again:
 - $P(C_{x,y} \mid G)$ depends <u>only</u> on distance to G
 - So $P(C_{1,1} = \text{yellow} \mid \underline{G} = (2,3)) = P(C_{1,1} = \text{yellow} \mid \underline{G} = (2,3), C_{1,2} = \text{orange})$
 - I.e., $C_{1,1}$ is conditionally independent of $C_{1,2}$ given G

Ghostbusters model, contd.

Apply the chain rule to decompose the joint probability model:

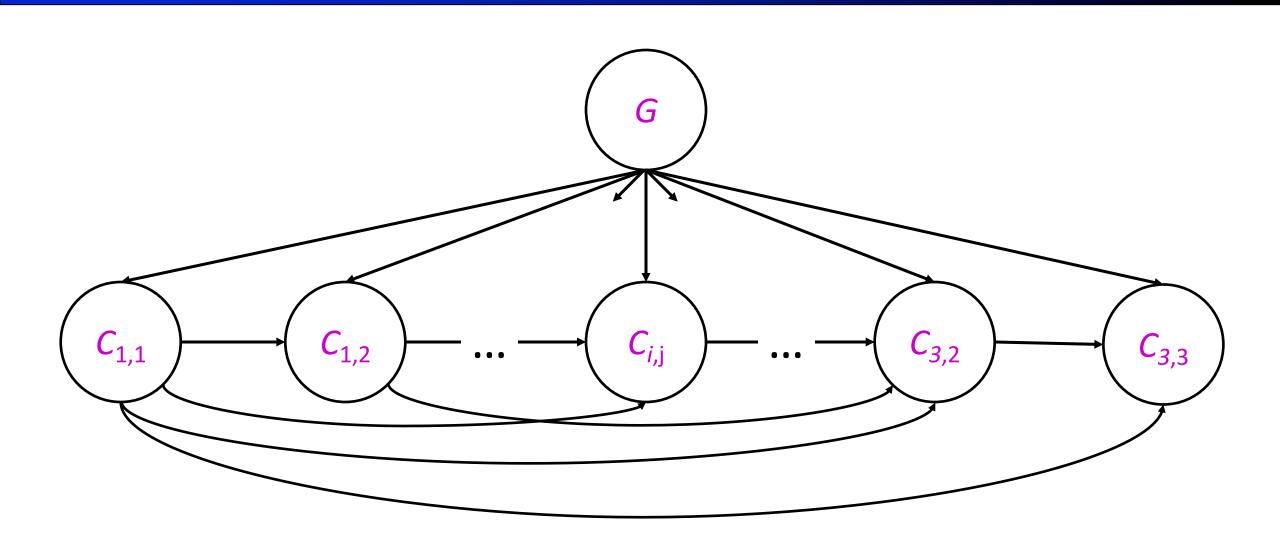
```
P(G, C_{1,1}, ... C_{3,3}) = P(G) P(C_{1,1} | G) P(C_{1,2} | G, \frac{C_{1,1}}{C_{1,1}}) P(C_{1,3} | G, \frac{C_{1,1}, C_{1,2}}{C_{1,1}}) ... P(C_{3,3} | G, \frac{C_{1,1}, ..., C_{3,2}}{C_{1,1}})
```

Now simplify using conditional independence:

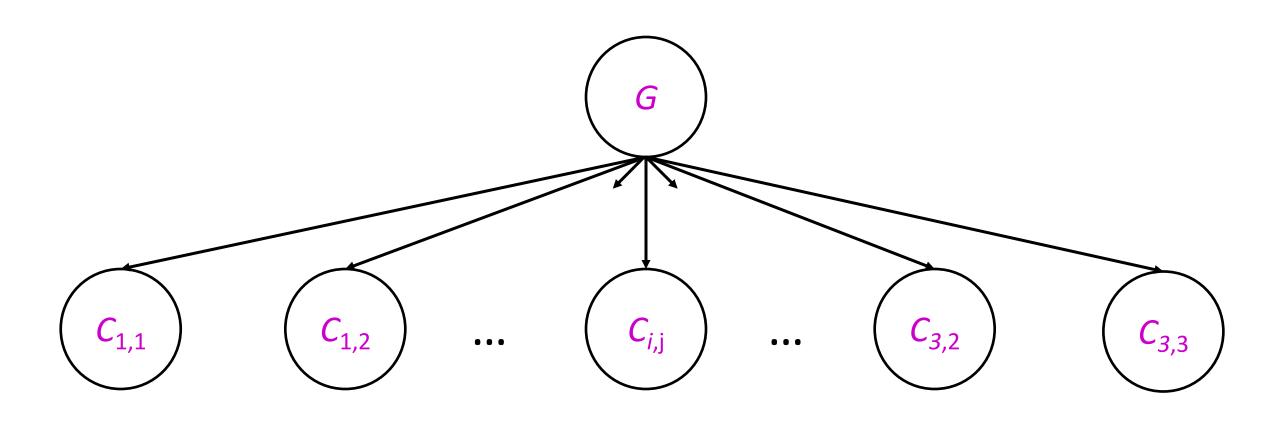
```
P(G, C_{1,1}, ... C_{3,3}) = P(G) P(C_{1,1} | G) P(C_{1,2} | G) P(C_{1,3} | G) ... P(C_{3,3} | G)
```

- I.e., conditional independence properties of ghostbuster physics simplify the probability model from *exponential* to *quadratic* in the number of squares
 - $|\mathbf{P}(C_{i,i} | G)| = 4 \times 9 \text{ rather than } |\mathbf{P}(C_{3,3} | G, C_{1,1}, ..., C_{3,2})| = 4 \times 9 \times 4^8$
 - In total: $9 + 9 \times (4 \times 9) = 333$ entries, before was $9 \times 4^9 = 2,359,296$ entries
- This is called a *Naïve Bayes* model:
 - One discrete query variable (often called the class or category variable)
 - All other variables are (potentially) evidence variables
 - Evidence variables are all conditionally independent given the query variable

Ghostbusters Full Joint



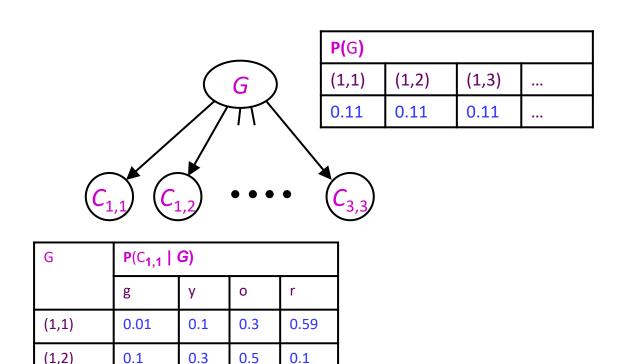
Ghostbusters Naïve Bayes



Bayes Net Syntax and Semantics

Bayes' Net Syntax

- A set of nodes, one per variable X_i
- A directed, acyclic graph
- A conditional distribution for each node given its *parent variables* in the graph
 - CPT (conditional probability table)
 each row is a distribution for child given values of
 its parents



0.01

Bayes net = Topology (graph) + Local Conditional Probabilities

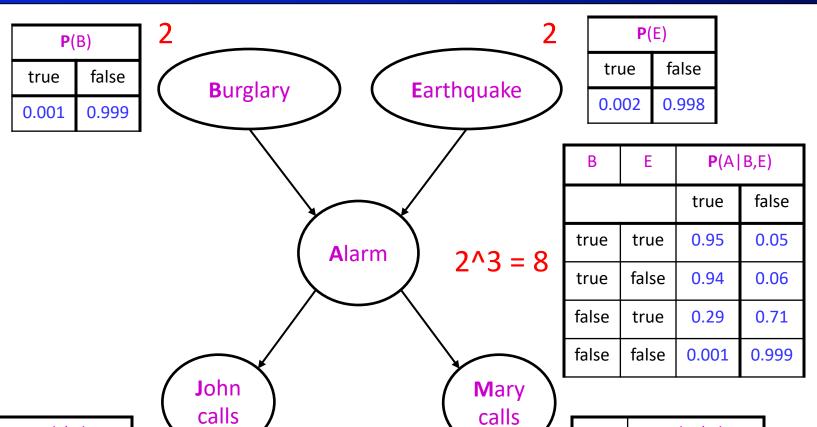
(1,3)

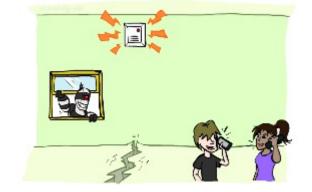
0.3

0.5

0.19

Example: Alarm Network





Factor size of each CPT:

 $d \prod d_i$

Parent range sizes: d₁,...,d_k

Child range size: d

Each table row must sum to 1

Α	P (J A)	
	true	false
true	0.9	0.1
false	0.05	0.95

$2^{2} = 4$		= 4
-------------	--	-----

$$2^2 = 4$$

	true	false
true	0.7	0.3
false	0.01	0.99

P(M|A)

General formula for sparse BNs

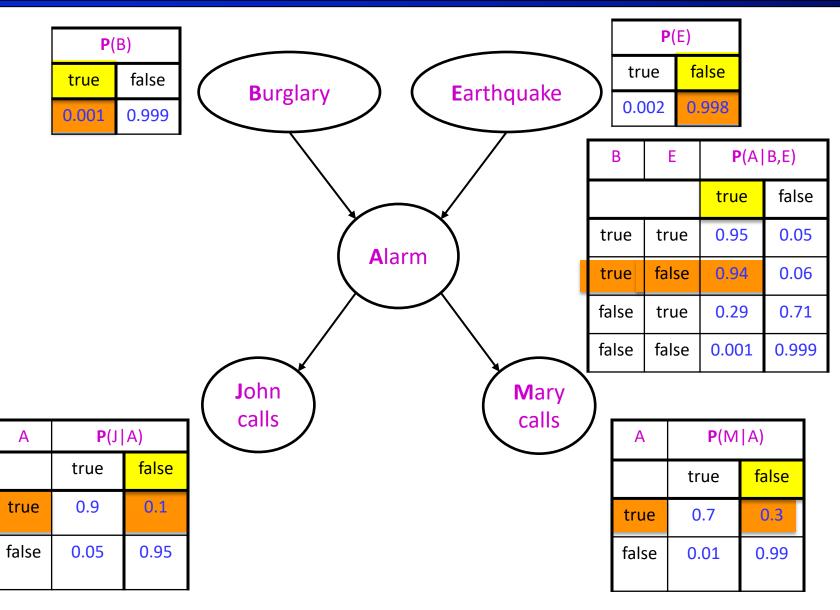
- Suppose
 - n variables
 - Maximum range size is d
 - Maximum number of parents is k
- Full joint distribution has size $O(d^n)$
- Bayes net has size $O(n \cdot d^k)$
 - Linear scaling with n as long as causal structure is local
- Often $O(n \cdot d^k) \ll O(d^n)$

Bayes net global semantics

Bayes nets encode joint distributions as product of conditional distributions on each variable:

$$P(X_1,...,X_n) = \prod_i P(X_i \mid Parents(X_i))$$

Example



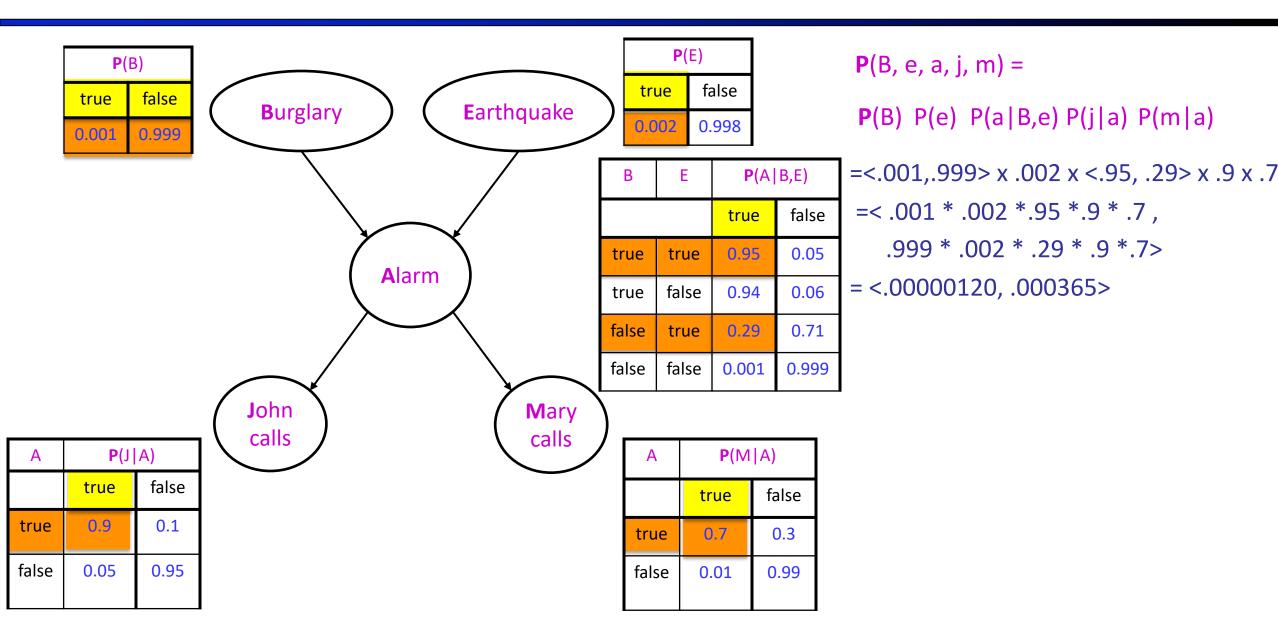
 $P(b,\neg e, a, \neg j, \neg m) =$

P(b) P(\neg e) P(a|b, \neg e) P(\neg j|a) P(\neg m|a)

 $=.001 \times .998 \times .94 \times .1 \times .3$

=.000028

Example: Your turn

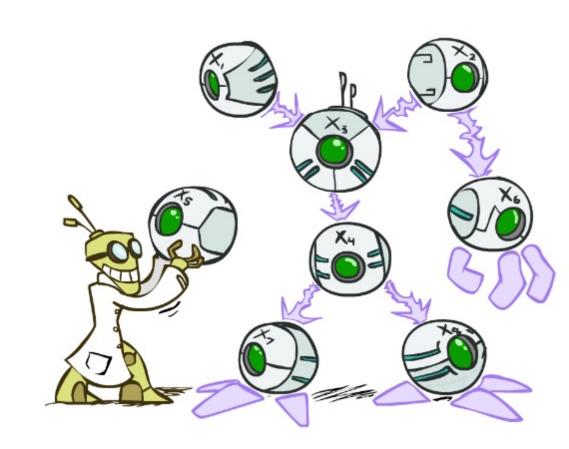


Question

- Which of the following does a Bayes' net model explicitly?
 - The joint probability distribution?
 - The conditional probability distribution?
- Is one of the following more expressive than the other?
 - The joint probability distribution
 - The conditional probability distribution
- Why do we use Bayes' nets?

Summary

- Independence and conditional independence are important forms of probabilistic knowledge
- Bayes net encode joint distributions efficiently by taking advantage of conditional independence
 - Global joint probability = product of local conditionals
- Next: more on independence
- Then: how to answer queries, i.e., compute conditional probabilities of queries given evidence



Bayes Nets

✓ Part I: Representation

Part II: Independence

Part III: Exact inference

- Enumeration (always exponential complexity)
- Variable elimination (worst-case exponential complexity, often better)
- Inference is NP-hard in general

Part IV: Approximate Inference

Conditional independence in BNs

Compare the Bayes net global semantics

$$P(X_1,...,X_n) = \prod_i P(X_i \mid Parents(X_i))$$

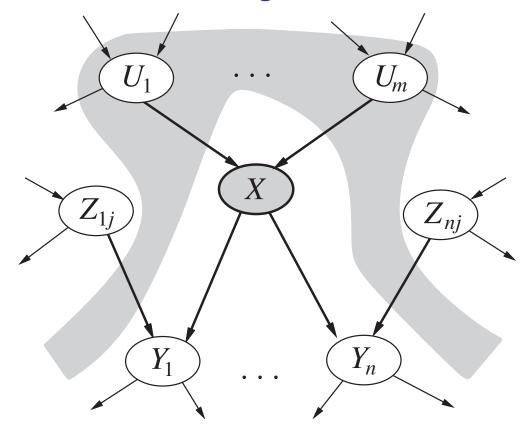
with the chain rule identity

$$P(X_1,...,X_n) = \prod_i P(X_i \mid X_1,...,X_{i-1})$$

- Assume (without loss of generality) that $X_1,...,X_n$ sorted in topological order according to the graph (i.e., parents before children), so $Parents(X_i) \subseteq X_1,...,X_{i-1}$
- So the Bayes net asserts conditional independences $P(X_i \mid X_1,...,X_{i-1}) = P(X_i \mid Parents(X_i))$
 - To ensure these are valid, choose parents for node X_i that "shield" it from other predecessors

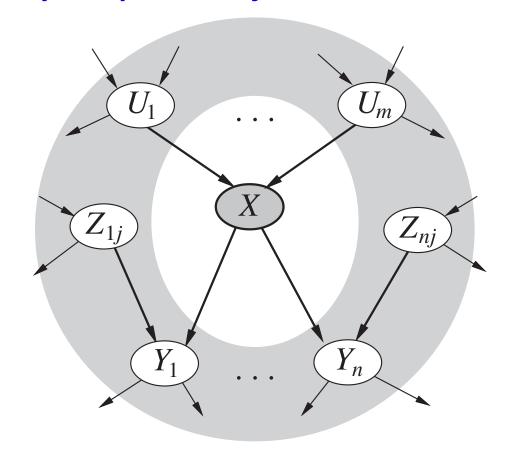
Conditional independence semantics

- Every variable is conditionally independent of its non-descendants given its parents
- Conditional independence semantics <=> global semantics



Markov blanket

- A variable's Markov blanket consists of parents, children, children's other parents
- Every variable is conditionally independent of all other variables given its Markov blanket



Reminder: Conditional Independence

X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) --- \rightarrow X \perp \!\!\!\perp Y$$

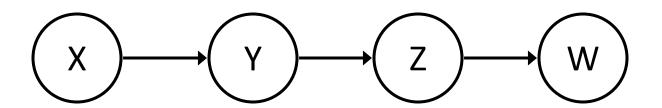
X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) --- \rightarrow X \perp \perp Y|Z$$

(Conditional) independence is a property of a distribution

• Example: $Alarm \perp Fire | Smoke$

Example



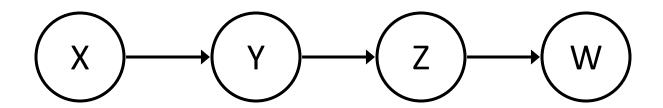
Conditional independence assumptions directly from simplifications in chain rule:

$$P(x, y, z, w) = P(x)P(y|x)P(z|x, y)P(w|x, y, z)$$

$$P(x, y, z, w) = P(x)P(y|x)P(z|y)P(w|z)$$

• Additional implied conditional independence assumptions?

Example



Conditional independence assumptions directly from simplifications in chain rule:

$$X \perp \!\!\! \perp Z|Y$$

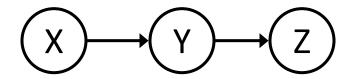
$$W \perp \!\!\! \perp \{X,Y\}|Z$$

• Additional implied conditional independence assumptions?

$$W \perp \!\!\! \perp X|Y$$

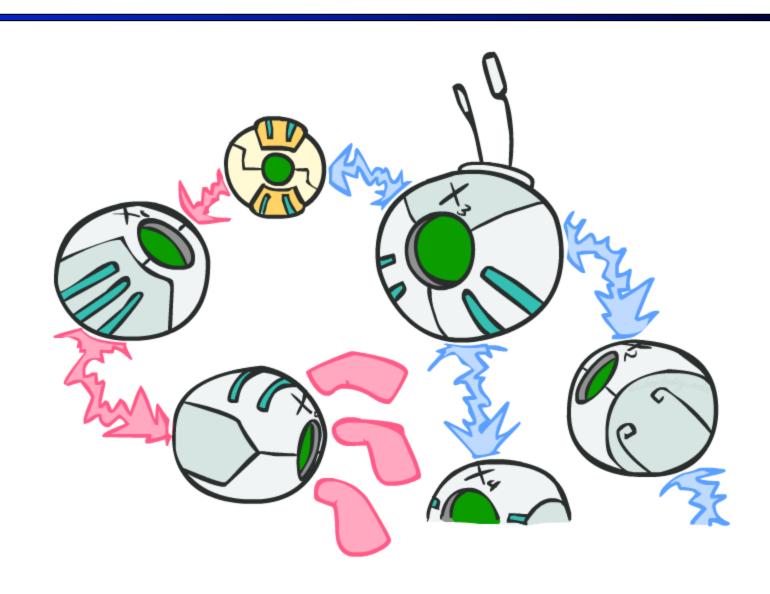
Independence in a Bayes' Net

- Important question about a Bayes' Net:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter-example
 - Example:



- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

D-separation: Outline



D-separation: Outline

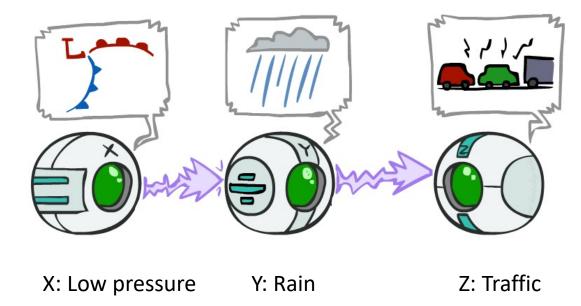
- Study independence properties for triples
 - Why triples?

Analyze complex cases in terms of member triples

 D-separation: a condition / algorithm for answering such queries

Causal Chains

This configuration is a "causal chain"



$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

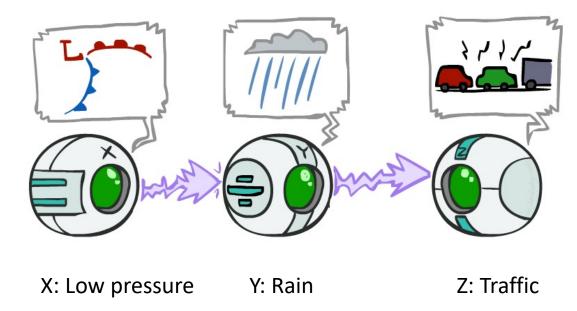
- Guaranteed X independent of Z?
- No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:

$$P(+y | +x) = 1, P(-y | -x) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Causal Chains

This configuration is a "causal chain"



$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

• Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

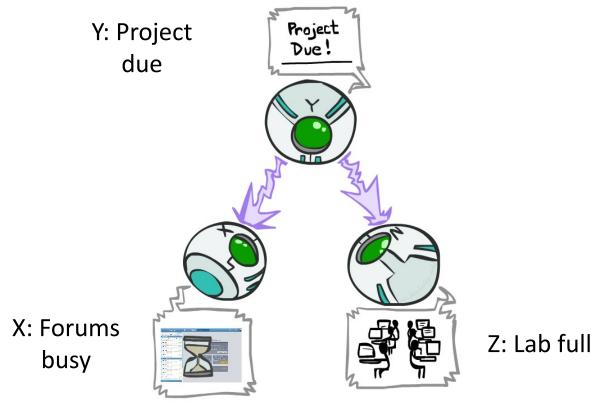
$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
Yes!

Evidence along the chain "blocks" the influence

Common Causes

This configuration is a "common cause"



$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

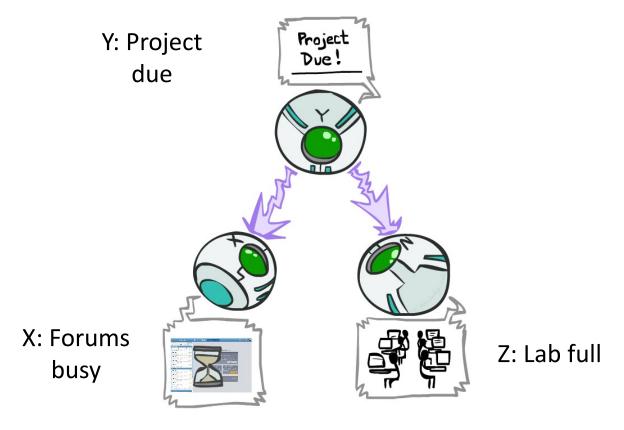
- Guaranteed X independent of Z?
- No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Project due causes both forums busy and lab full
 - In numbers:

$$P(+x | +y) = 1, P(-x | -y) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Common Cause

This configuration is a "common cause"



P(x, y, z) = P(y)P(x|y)P(z|y)

• Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

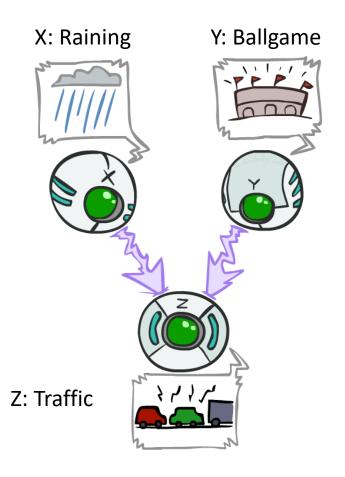
$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Yes!

 Observing the cause blocks influence between effects.

Common Effect

 Last configuration: two causes of one effect (v-structures)

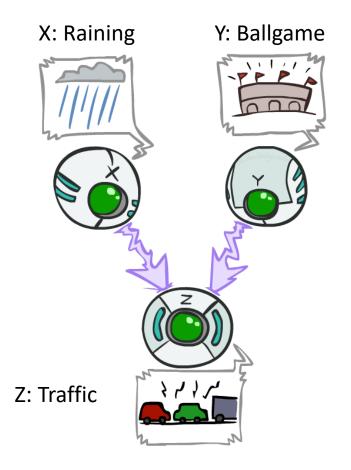


- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
- Proof:

$$P(x,y) = \sum P(x,y,z)$$

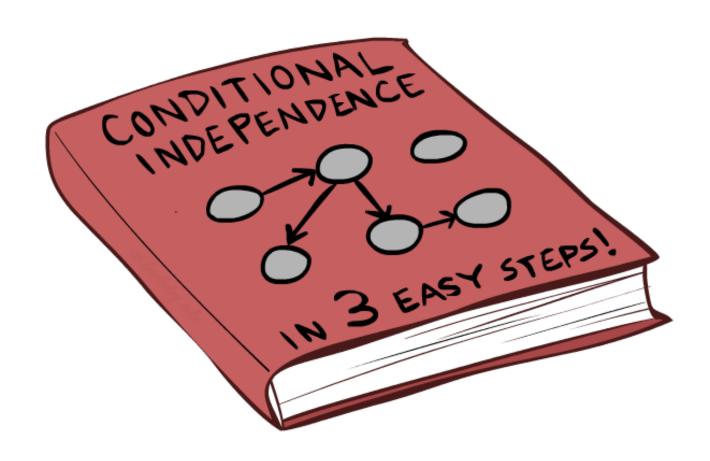
Common Effect

 Last configuration: two causes of one effect (v-structures)



- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - (Proved previously)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

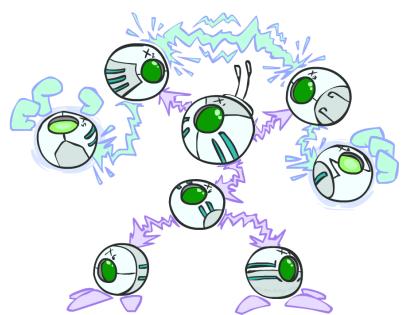


The General Case

General question: in a given BN, are two variables independent (given evidence)?

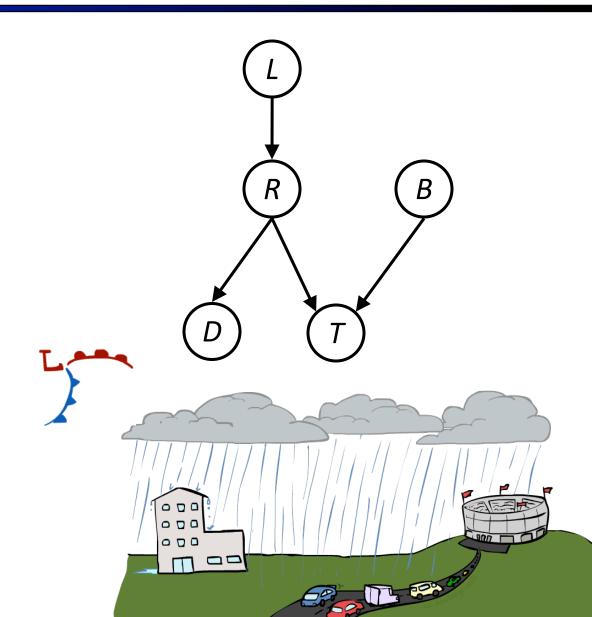
Solution: analyze the graph

 Any complex example can be broken into repetitions of the three canonical cases



Reachability

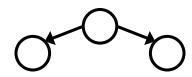
- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are not connected* they are conditionally independent
 - *There does not exist an undirected path between them, excluding those blocked by a shaded node.
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

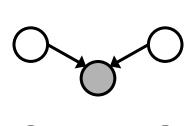


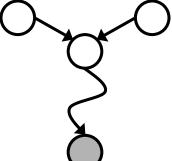
Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain: A -> B -> C where B is unobserved (either direction)
 - Common cause: A <- B -> C where B is unobserved
 - Common effect: (aka v-structure)
 A -> B <- C where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment

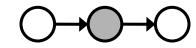
Active Triples

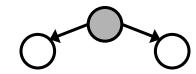






Inactive Triples





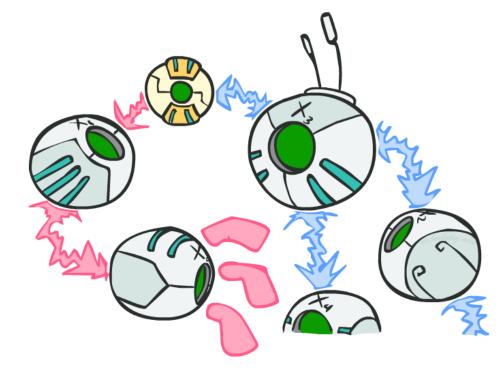
D-Separation

- Query: $X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

$$X_i \not \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

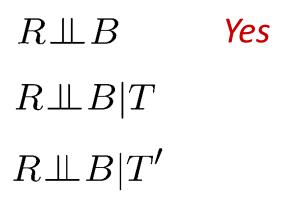
Otherwise (i.e. if all paths are inactive),
 then independence is guaranteed

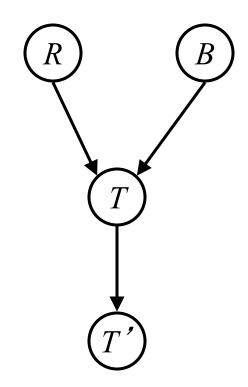
$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$



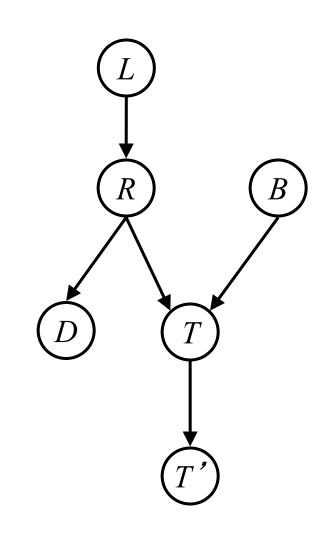
```
def d-separated(first, second):
      for path in paths(first, second):
             path_active = True
             for triple in path:
                   if not active(triple):
                          path_active = False
                          break
             if path_active:
                    return False
      return True
```

Example: which assumptions apply?





Example: which assumptions apply?



Example: which assumptions apply?

Variables:

R: Raining

■ T: Traffic

■ D: Roof drips

S: I'm sad

• Questions:

