CSEP 573: Artificial Intelligence

ExpectiMax – Complex Games

slides adapted from Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu And Hanna Hajishirzi, Jared Moore, Dan Weld

Video of Demo Min vs. Exp (Min)

SCORE: 0

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

Why wouldn't we know what the result of an action will be?

- Explicit randomness: rolling dice
- Unpredictable opponents: the ghosts respond randomly
- Unpredictable humans: humans are not perfect
- Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertainresult problems as Markov Decision Processes

4

Expectimax Pseudocode

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

Minimax

Expectiminimax

function value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return max_{a in Actions(s)} value(Result(s,a))
if Player(s) = MIN then return min_{a in Actions(s)} value(Result(s,a))
if Player(s) = CHANCE then return sum_{a in Actions(s)} Pr(a) * value(Result(s,a))

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

What Probabilities to Use?

- In expectimax search, we have a probabilistic note of how the opponent (or environment) will behave any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a chance node for any outcome out of our contor opponent or environment
 - The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Having a probabilistic belief about another agent's action does not mean **14** at the agent is flipping any coins!

 $\mathbf{\Sigma}$

00

 $\mathbf{\Sigma}$

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

- Answer: Expectimax!
 - To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
 - This kind of thing gets very slow very quickly
 - Even worse if you have to simulate your opponent simulating you...
 - ... except for minimax and maximax, which have the nice property that it all collapses into one game tree

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism Assuming chance when the world is adversarial

Dangerous Pessimism Assuming the worst case when it's not likely

Assumptions vs. Reality

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Video of Demo World Assumptions Random Ghost – Expectimax Pacman

Video of Demo World Assumptions Adversarial Ghost – Minimax Pacman

Video of Demo World Assumptions Random Ghost – Minimax Pacman

Video of Demo World Assumptions Adversarial Ghost – Expectimax Pacman

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Other Game Types

Mixed Layer Types

- E.g. Backgammon
- Expecti-minimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node computes the appropriate combination of its children

if state is a MAX node then

return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*) if *state* is a MIN node then

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*) if *state* is a chance node then return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(*state*)

Example: Backgammon

- Dice rolls increase b: 21 possible rolls with 2 dice
 - Backgammon ≈ 20 legal moves
 - Depth 2 = 20 x (21 x 20)³ = 1.2 x 10⁹
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st AI world champion in any game!

Multi-Agent Utilities

• What if the game is not zero-sum, or has multiple players?

1,6,6

1,6,6

7,1,2

6,1,2

7,2,1

- Generalization of minimax:
 - Terminals have utility tuples
 - Node values are also utility tuples
 - Each player maximizes its own component
 - Can give rise to cooperation and competition dynamically...

5,1,7

1,5,2

<mark>5,2,</mark>5

7,7,1