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Recap: Search

§ Search problem:
§ States (configurations of the world)
§ Actions and costs
§ Successor function (world dynamics)
§ Start state and goal test

§ Search tree:
§ Nodes: represent plans for reaching states

§ Search algorithm:
§ Systematically builds a search tree
§ Chooses an ordering of the fringe (unexplored nodes)
§ Optimal: finds least-cost plans



Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)



Uniform Cost Issues

§ Remember: UCS explores increasing cost 
contours

§ The good: UCS is complete and optimal!

§ The bad:
§ Explores options in every “direction”
§ No information about goal location

§ We’ll fix that in this lecture!
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What we would like to have happen

Guide search towards the goal instead of all over the place

Start GoalStart Goal

UninformedInformed



Up next: Informed Search

§ Uninformed Search
§ DFS
§ BFS
§ UCS

§ Informed Search
§ Heuristics
§ Greedy Search
§ A* Search
§ Graph Search



Search Heuristics
§ A heuristic is:

§ A function that estimates how close a state is to a goal
§ Designed for a particular search problem
§ Pathing? 
§ Examples: Manhattan distance, Euclidean distance for pathing
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Example: route-finding in Romania
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Example: Heuristic Function

h(x)



Greedy Search



Greedy Search

Expand the node that seems closest…

Is it optimal?
No. Resulting path to Bucharest is not the shortest!



Greedy Search

Strategy: expand a node that you think is 
closest to a goal state

§ Heuristic: estimate of distance to nearest goal 
for each state

A common case:
§ Best-first takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS

…
b

…
b

python pacman.py --layout smallMaze --pacman=GreedyAgent 
python pacman.py --layout smallMaze --pacman=SearchAgent -a fn=dfs



Video of Demo Contours Greedy (Empty)



Video of Demo Contours Greedy (Pacman Small Maze)



A* Search



Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost  g(n)
Greedy orders by goal proximity, or forward cost  h(n)

A* Search orders by the sum: f(n) = g(n) + h(n)
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A*: the core idea

§ Expand a node n most likely to be on the optimal path
§ Expand a node n s.t. the cost of the best solution through n is optimal
§ Expand a node n with lowest value of g(n) + h*(n)

§ g(n) is the cost from root to n
§ h*(n) is the optimal cost from n to the closest goal 

§ We seldom know h*(n) but might have a heuristic approximation h(n)
§ A* = tree search with priority queue ordered by g(n) + h(n) 



When should A* terminate?

§ Should we stop when we enqueue a goal?

§ No: only stop when we dequeue a goal
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Is A* Optimal?

What went wrong?
§ Actual bad goal cost < estimated good goal cost
§ We need estimates to be less than actual costs!
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Admissible Heuristics



Idea: Admissibility

Inadmissible (pessimistic) heuristics
 break optimality by trapping 

good plans on the frontier

Admissible (optimistic) heuristics 
slow down bad plans but

 never outweigh true costs



Admissible Heuristics

§ A heuristic h is admissible (optimistic) if:

0 £ h(n) £ h*(n) 
where h*(n) is the true cost to a nearest goal

§ Example:

§ Finding good, cheap admissible heuristics is the key to success
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Properties of A*
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Uniform-Cost A*



UCS vs A* Contours

§ Uniform-cost expands equally in all 
“directions”

§ A* expands mainly toward the goal, 
but does hedge its bets to ensure 
optimality
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Video of Demo Contours (Empty) -- UCS



Video of Demo Contours (Empty) -- Greedy



Video of Demo Contours (Empty) – A*



Which Algorithm?



Summary

Greedy Uniform Cost A*



A*: Summary



A*: Summary

§ A* uses both backward costs and (estimates of) forward costs

§ A* is optimal with admissible (optimistic) heuristics

§ Heuristic design is key: often use relaxed problems



Video of Demo Empty Water Shallow/Deep
– Guess Algorithm



Creating Heuristics



Creating Admissible Heuristics

§ Most of the work in solving hard search problems optimally is in coming up 
with admissible heuristics

§ Often, admissible heuristics are solutions to relaxed problems, where new 
actions are available

§ Inadmissible heuristics are often useful too
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Example: 8 Puzzle

§ What are the states?
§ How many states?
§ What are the actions?
§ What are the step costs?

Start State Goal StateActions

Admissible 
heuristics?



8 Puzzle I

§ Heuristic: Number of tiles misplaced
§ Why is it admissible?
§ h(start) = 8

Average nodes expanded when 
the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A*TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore



8 Puzzle II

§ What if we had an easier 8-puzzle where 
any tile could slide any direction at any 
time, ignoring other tiles?

§ Total Manhattan distance

§ Why is it admissible?

§ h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded when 
the optimal path has…
…4 steps …8 steps …12 steps

A*TILES 13 39 227
A*MANHATTAN 12 25 73

Start State Goal State



8 Puzzle III

§ How about using the actual cost as a heuristic?
§ Would it be admissible?
§ Would we save on nodes expanded?
§ What’s wrong with it?

§ With A*: a trade-off between quality of estimate and work per node
§ As heuristics get closer to the true cost, you will expand fewer nodes but usually 

do more work per node to compute the heuristic itself



Example: Pancake Problem

Cost: Number of pancakes flipped



Example: Pancake Problem



Example: Pancake Problem
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Example: Heuristic Function
Heuristic: the number of the largest pancake that is still out of place
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Combining heuristics

§ Dominance: h1 ≥ h2 if    
"n h1(n) ³ h2(n)

§ Roughly speaking, larger value is better as long as both are admissible
§ The zero heuristic is pretty bad (what does A* do with h=0?)
§ The exact heuristic is pretty good, but usually too expensive!

§ What if we have two heuristics, neither dominates the other?
§ Form a new heuristic by taking the max of both:

h(n) = max( h1(n), h2(n))
§ Max of admissible heuristics is admissible and dominates both!
§ Example: number of knight’s moves to get from A to B

§ h1 = (Manhattan distance)/3 (rounded up to correct parity)
§ h2 = (Euclidean distance)/√5 (rounded up to correct parity)
§ h3 = (max x or y shift)/2 (rounded up to correct parity)



Optimality of A* Tree Search



Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the frontier
§ Some ancestor n of A is on the frontier, 

too (maybe A itself!)
§ Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)
2. f(A) is less than f(B)
3. n is expanded before B

§ All ancestors of A are expanded before B
§ A is expanded before B
§ A* tree search is optimal

…

A
B

n



Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the frontier
§ Some ancestor n of A is on the frontier, 

too (maybe A itself!)
§ Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)

f(n) = g(n) + h(n)              Definition of f-cost
f(n) £ g(A)                         Admissibility of h

…

g(A) = f(A)                         h = 0 at a goal

A
B

n



Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the frontier
§ Some ancestor n of A is on the frontier, 

too (maybe A itself!)
§ Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)
2. f(A) is less than f(B)

…

A
B

n

g(A) <  g(B)                       Suboptimality of B
f(A) <  f(B)                         h = 0 at a goal



Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the frontier
§ Some ancestor n of A is on the frontier, 

too (maybe A itself!)
§ Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)
2. f(A) is less than f(B)
3. n is expanded before B

§ All ancestors of A are expanded before B
§ A is expanded before B
§ A* tree search is optimal

…

A
B

n

f(n)  £ f(A)  <  f(B)  



UCS vs A* Contours

§ Uniform-cost expands equally in all 
“directions”

§ A* expands mainly toward the goal, 
but does hedge its bets to ensure 
optimality

Start Goal

Start Goal



What do each of these functions measure?

§ h(n)

§ h*(n)

§ g(n)

§ g*(n)

§ f(n) (from A*)



Comparison

Greedy (h) Uniform Cost (g) A* (g+h)



Optimality of A* Graph Search

This part is a bit technical…



Tree Search: Extra Work!

§ Failure to detect repeated states can cause exponentially more work.  

Search TreeState Graph



Graph Search

§ Idea: never expand a state twice

§ How to implement: 
§ Tree search + set of expanded states (“closed set”)
§ Expand the search tree node-by-node, but…
§ Before expanding a node, check to make sure its state has never 

been expanded before
§ If not new, skip it, if new add to closed set

§ Important: store the closed set as a set, not a list

§ Can graph search wreck completeness?  Why/why not?

§ How about optimality?



A* Graph Search Gone Wrong?
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Consistency of Heuristics

§ Main idea: estimated heuristic costs ≤ actual costs

§ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ h*(A)

§ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ c(A,C)

or h(A) ≤ c(A,C) + h(C) (triangle inequality)

§ Consequences of consistency:

§ The f value along a path never decreases:

h(A) ≤ c(A,C) + h(C)   => g(A) + h(A) ≤ g(A) + c(A,C) + h(C)

§ A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=3



Admissibility and Consistency Constraints
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Admissible?                                   Consistent?
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Admissible?                                   Consistent?
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Admissible?                                   Consistent?
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Optimality of A* Graph Search

§ Sketch: consider what A* does with a 
consistent heuristic:

§ Fact 1: In tree search, A* expands nodes in 
increasing total f value (f-contours)

§ Fact 2: For every state s, nodes that reach 
s optimally are expanded before nodes 
that reach s suboptimally

§ Result: A* graph search is optimal

…
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Optimality

§ Tree search:
§ A* is optimal if heuristic is admissible

§ Graph search:
§ A* optimal if heuristic is consistent

§ Consistency implies admissibility

§ Most natural admissible heuristics tend to be 
consistent, especially if from relaxed problems
§ For admissible but inconsistent heuristics see  

https://www.aaai.org/Papers/AAAI/2007/AAAI07-192.pdf


