
CSEP 573: Artificial Intelligence

Informed Search

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld

Recap: Search

§ Search problem:
§ States (configurations of the world)
§ Actions and costs
§ Successor function (world dynamics)
§ Start state and goal test

§ Search tree:
§ Nodes: represent plans for reaching states

§ Search algorithm:
§ Systematically builds a search tree
§ Chooses an ordering of the fringe (unexplored nodes)
§ Optimal: finds least-cost plans

Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)

Uniform Cost Issues

§ Remember: UCS explores increasing cost
contours

§ The good: UCS is complete and optimal!

§ The bad:
§ Explores options in every “direction”
§ No information about goal location

§ We’ll fix that in this lecture!

Start Goal

…

c £ 3
c £ 2

c £ 1

What we would like to have happen

Guide search towards the goal instead of all over the place

Start GoalStart Goal

UninformedInformed

Up next: Informed Search

§ Uninformed Search
§ DFS
§ BFS
§ UCS

§ Informed Search
§ Heuristics
§ Greedy Search
§ A* Search
§ Graph Search

Search Heuristics
§ A heuristic is:

§ A function that estimates how close a state is to a goal
§ Designed for a particular search problem
§ Pathing?
§ Examples: Manhattan distance, Euclidean distance for pathing

10

5
11.2

Example: route-finding in Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt
Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75
120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Example: Heuristic Function

h(x)

Greedy Search

Greedy Search

Expand the node that seems closest…

Is it optimal?
No. Resulting path to Bucharest is not the shortest!

Greedy Search

Strategy: expand a node that you think is
closest to a goal state

§ Heuristic: estimate of distance to nearest goal
for each state

A common case:
§ Best-first takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS

…
b

…
b

python pacman.py --layout smallMaze --pacman=GreedyAgent
python pacman.py --layout smallMaze --pacman=SearchAgent -a fn=dfs

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)
Greedy orders by goal proximity, or forward cost h(n)

A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

A*: the core idea

§ Expand a node n most likely to be on the optimal path
§ Expand a node n s.t. the cost of the best solution through n is optimal
§ Expand a node n with lowest value of g(n) + h*(n)

§ g(n) is the cost from root to n
§ h*(n) is the optimal cost from n to the closest goal

§ We seldom know h*(n) but might have a heuristic approximation h(n)
§ A* = tree search with priority queue ordered by g(n) + h(n)

When should A* terminate?

§ Should we stop when we enqueue a goal?

§ No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2
h = 1

h = 2

h = 0h = 3

S 0 3 3

g h +

S->A 2 2 4

S->B 2 1 3

S->B->G 5 0 5

S->A->G 4 0 4

Is A* Optimal?

What went wrong?
§ Actual bad goal cost < estimated good goal cost
§ We need estimates to be less than actual costs!

A

GS

1 3
h = 6

h = 0

5

h = 7

g, h, f

S 0 7 7
S->A 1 6 7

S->G 5 0 5

Admissible Heuristics

Idea: Admissibility

Inadmissible (pessimistic) heuristics
 break optimality by trapping

good plans on the frontier

Admissible (optimistic) heuristics
slow down bad plans but

 never outweigh true costs

Admissible Heuristics

§ A heuristic h is admissible (optimistic) if:

0 £ h(n) £ h*(n)
where h*(n) is the true cost to a nearest goal

§ Example:

§ Finding good, cheap admissible heuristics is the key to success

15

Properties of A*

…
b

…
b

Uniform-Cost A*

UCS vs A* Contours

§ Uniform-cost expands equally in all
“directions”

§ A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

Start Goal

Start Goal

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Which Algorithm?

Summary

Greedy Uniform Cost A*

A*: Summary

A*: Summary

§ A* uses both backward costs and (estimates of) forward costs

§ A* is optimal with admissible (optimistic) heuristics

§ Heuristic design is key: often use relaxed problems

Video of Demo Empty Water Shallow/Deep
– Guess Algorithm

Creating Heuristics

Creating Admissible Heuristics

§ Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

§ Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

§ Inadmissible heuristics are often useful too

15
366

Example: 8 Puzzle

§ What are the states?
§ How many states?
§ What are the actions?
§ What are the step costs?

Start State Goal StateActions

Admissible
heuristics?

8 Puzzle I

§ Heuristic: Number of tiles misplaced
§ Why is it admissible?
§ h(start) = 8

Average nodes expanded when
the optimal path has…
…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

A*TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II

§ What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

§ Total Manhattan distance

§ Why is it admissible?

§ h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded when
the optimal path has…
…4 steps …8 steps …12 steps

A*TILES 13 39 227
A*MANHATTAN 12 25 73

Start State Goal State

8 Puzzle III

§ How about using the actual cost as a heuristic?
§ Would it be admissible?
§ Would we save on nodes expanded?
§ What’s wrong with it?

§ With A*: a trade-off between quality of estimate and work per node
§ As heuristics get closer to the true cost, you will expand fewer nodes but usually

do more work per node to compute the heuristic itself

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

Example: Pancake Problem

3

2

4

3

3

2

2

2

4

State space graph with costs as weights

3
4

3

4

2

Example: Heuristic Function
Heuristic: the number of the largest pancake that is still out of place

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)

Combining heuristics

§ Dominance: h1 ≥ h2 if
"n h1(n) ³ h2(n)

§ Roughly speaking, larger value is better as long as both are admissible
§ The zero heuristic is pretty bad (what does A* do with h=0?)
§ The exact heuristic is pretty good, but usually too expensive!

§ What if we have two heuristics, neither dominates the other?
§ Form a new heuristic by taking the max of both:

h(n) = max(h1(n), h2(n))
§ Max of admissible heuristics is admissible and dominates both!
§ Example: number of knight’s moves to get from A to B

§ h1 = (Manhattan distance)/3 (rounded up to correct parity)
§ h2 = (Euclidean distance)/√5 (rounded up to correct parity)
§ h3 = (max x or y shift)/2 (rounded up to correct parity)

Optimality of A* Tree Search

Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the frontier
§ Some ancestor n of A is on the frontier,

too (maybe A itself!)
§ Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)
2. f(A) is less than f(B)
3. n is expanded before B

§ All ancestors of A are expanded before B
§ A is expanded before B
§ A* tree search is optimal

…

A
B

n

Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the frontier
§ Some ancestor n of A is on the frontier,

too (maybe A itself!)
§ Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)

f(n) = g(n) + h(n) Definition of f-cost
f(n) £ g(A) Admissibility of h

…

g(A) = f(A) h = 0 at a goal

A
B

n

Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the frontier
§ Some ancestor n of A is on the frontier,

too (maybe A itself!)
§ Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)
2. f(A) is less than f(B)

…

A
B

n

g(A) < g(B) Suboptimality of B
f(A) < f(B) h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:
§ Imagine B is on the frontier
§ Some ancestor n of A is on the frontier,

too (maybe A itself!)
§ Claim: n will be expanded before B

1. f(n) is less than or equal to f(A)
2. f(A) is less than f(B)
3. n is expanded before B

§ All ancestors of A are expanded before B
§ A is expanded before B
§ A* tree search is optimal

…

A
B

n

f(n) £ f(A) < f(B)

UCS vs A* Contours

§ Uniform-cost expands equally in all
“directions”

§ A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

Start Goal

Start Goal

What do each of these functions measure?

§ h(n)

§ h*(n)

§ g(n)

§ g*(n)

§ f(n) (from A*)

Comparison

Greedy (h) Uniform Cost (g) A* (g+h)

Optimality of A* Graph Search

This part is a bit technical…

Tree Search: Extra Work!

§ Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Graph Search

§ Idea: never expand a state twice

§ How to implement:
§ Tree search + set of expanded states (“closed set”)
§ Expand the search tree node-by-node, but…
§ Before expanding a node, check to make sure its state has never

been expanded before
§ If not new, skip it, if new add to closed set

§ Important: store the closed set as a set, not a list

§ Can graph search wreck completeness? Why/why not?

§ How about optimality?

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

Simple check against expanded set blocks C
Fancy check allows new C if cheaper than old
but requires recalculating C’s descendants

Consistency of Heuristics

§ Main idea: estimated heuristic costs ≤ actual costs

§ Admissibility: heuristic cost ≤ actual cost to goal

h(A) ≤ h*(A)

§ Consistency: heuristic “arc” cost ≤ actual cost for each arc

h(A) – h(C) ≤ c(A,C)

or h(A) ≤ c(A,C) + h(C) (triangle inequality)

§ Consequences of consistency:

§ The f value along a path never decreases:

h(A) ≤ c(A,C) + h(C) => g(A) + h(A) ≤ g(A) + c(A,C) + h(C)

§ A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=3

Admissibility and Consistency Constraints

A

G

1

C

3

h(A)<=4 h(C)<=3

A
1

C

3

h(A)<=4 h(A) - c(A,C) <= h(C)

G

Admissible? Consistent?

A

G

1

C

3

h=4 h=1

A
1

C

3

h=3.16 h=3

G

h(A) - c(A,C) <= h(C)
3.16 – 1 <= 3

Admissible? Consistent?

A

G

1

C

3

h=0 h=0

A
1

C

3

h=3 h=3

G

h(A) - c(A,C) <= h(C)
3 – 1 <= 3

Admissible? Consistent?

A

G

1

C

3

h=4 h=4

A
1

C

3

h=3 h=1

G

h(A) - c(A,C) <= h(C)
3 – 1 <= 1

Optimality of A* Graph Search

§ Sketch: consider what A* does with a
consistent heuristic:

§ Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

§ Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

§ Result: A* graph search is optimal

…

f £ 3

f £ 2

f £ 1

Optimality

§ Tree search:
§ A* is optimal if heuristic is admissible

§ Graph search:
§ A* optimal if heuristic is consistent

§ Consistency implies admissibility

§ Most natural admissible heuristics tend to be
consistent, especially if from relaxed problems
§ For admissible but inconsistent heuristics see

https://www.aaai.org/Papers/AAAI/2007/AAAI07-192.pdf

