CSEP 573: Artificial Intelligence

Informed Search

slides adapted from
Stuart Russel, Dan Klein, Pieter Abbeel from ai.berkeley.edu
And Hanna Hajishirzi, Jared Moore, Dan Weld

Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states

= Search algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

Video of Demo Maze with Deep/Shallow Water --- BFS or UCS? (part 2)

‘® 0O Search Strategies Demo

Y

Uniform Cost Issues

= Remember: UCS explores increasing cost
contours

" The good: UCS is complete and optimall!

" The bad:

= Explores options in every “direction”
®= No information about goal location

= We'll fix that in this lecture!

What we would like to have happen

Guide search towards the goal instead of all over the place

Sta rGoaI Stc‘:@ Goal

Informed Uninformed

Up next: Informed Search

= Uninformed Search " |[nformed Search
= DFS = Heuristics
= BFS = Greedy Search
= UCS = A* Search

" Graph Search

noPe. [\ GoAl!

Search Heuristics

= A heuristicis:

A function that estimates how close a state is to a goal

Designed for a particular search problem
Pathing?

Examples: Manhattan distance, Euclidean distance for pathing

Heuristi — Tron J

Example: route-finding in Romania

] Oradea
Neamt
[|
Zerind 87
75 151 -
Iasi
Ara c i
- 92
Sibiu 99 Fagaras
118 L Vaslui
80
Timi Rimnicu Vilcea
imisoara O
142
o e 211
111 I Lugoj Pitesti
[|
70 98
. 35 Hirsova
[| Mehadia 101 < Urziceni
)
86
75 138 Bucharest
Drobeta [120
O 90

Craiova - Giurgiu Eforie

Example: Heuristic Function

Arad

[] Vaslui

Timisoara

142

" Pitesti

98
] Hirsova

86

] Mehadia Urziceni

75
Bucharest

Dobreta [

A Eforie
[] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi
Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

ﬁ traight—line distance \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

J

h(x)

Greedy Search

Greedy Search

Expand the node that seems closest...
Arad

Sibiu

329

380 193

366

253 0

Is it optimal?
No. Resulting path to Bucharest is not the shortest!

Greedy Search

Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal
for each state

A common case:
= Best-first takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS

python pacman.py --layout smallMaze --pacman=GreedyAgent
python pacman.py --layout smallMaze --pacman=SearchAgent -a fn=dfs

Video of Demo Contours Greedy (Empty)

® O O Search Strategies Demo

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)
Greedy orders by goal proximity, or forward cost h(n)

A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

A”: the core idea

Expand a node n most likely to be on the optimal path
Expand a node n s.t. the cost of the best solution through n is optimal

Expand a node n with lowest value of g(n) + h™(n)
" g(n) is the cost from root to n
= h"(n)is the optimal cost from n to the closest goal

We seldom know h™(n) but might have a heuristic approximation h(n)
A" = tree search with priority queue ordered by g(n) + h(n)

When should A* terminate?

= Should we stop when we enqueue a goal?

h=2

h=1

= No: only stop when we dequeue a goal

S->B->G 505
S->A->G 404

Is A* Optimal?

g, h,f

C o Wiy By |

& 77

S->A 167
S->G 505

What went wrong?
= Actual bad goal cost < estimated good goal cost
= \We need estimates to be less than actual costs!

Admissible Heuristics

Heuristi = Tron

ldea: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics Admissible (optimistic) heuristics
break optimality by trapping slow down bad plans but
good plans on the frontier never outweigh true costs

Admissible Heuristics

= A heuristic /1 is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

= Example:

" Finding good, cheap admissible heuristics is the key to success

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
St Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

Video of Demo Contours (Empty) -- UCS

® O O Search Strategies Demo

Video of Demo Contours (Empty) -- Greedy

® OO Search Strategies Demo

Video of Demo Contours (Empty) — A*

‘'® 00 Search Strategies Demo

Which Algorithm?

Summary

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

A*: Summary

A*: Summary

= A* uses both backward costs and (estimates of) forward costs
= A* js optimal with admissible (optimistic) heuristics

" Heuristic design is key: often use relaxed problems

—
VRvces @% <
- S — — Bt — ——

Video of Demo Empty Water Shallow/Deep
— Guess Algorithm

T e

Creating Heuristics

YOu GOT

HEURISTILC
UFGRADE!

Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

= |nadmissible heuristics are often useful too

Example: 8 Puzzle

3
2

1@“

~7.

1) 2 |4 7|1 y |
5 & | 45 3 4
8 3 1 S8l 6 6 | 7

P2
>
®

Start State Actions Goal State
What are the states?
How many states? Admissible
What are the actions? heuristics?

What are the step costs?

8 Puzzle |

" Heuristic: Number of tiles misplaced
= Why is it admissible?
" h(start) =8

Start State Goal State

Average nodes expanded when
the optimal path has...

...4 steps |..8 steps |...12 steps

UCS

112 6,300 3.6 x 10°

A*TILES

13 39 227

Statistics from Andrew Moore

What if we had an easier 8-puzzle where
any tile could slide any direction at any

time, ignoring other tiles?

Total Manhattan distance

Why is it admissible?

h(start)= 3+1+2+..=18

8 Puzzle

Start State Goal State

Average nodes expanded when
the optimal path has...

...4 steps |...8 steps |...12 steps

A*TILES

13 39 227

A*MANHATTAN

12 25 73

8 Puzzle Il

= How about using the actual cost as a heuristic?
= Would it be admissible?

= Would we save on nodes expanded?
= What’s wrong with it? @ rt

= With A*: a trade-off between quality of estimate and work per node

" As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all ¢ in (the symmetric group) S,. We show that f(n)=(5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n+3.

Example: Pancake Problem

State space graph with costs as weights

—

— 4

I

N
‘
W

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

Combining heuristics

= Dominance: hy 2 h, if
vn hy(n) = h,(n)
= Roughly speaking, larger value is better as long as both are admissible

* The zero heuristic is pretty bad (what does A* do with h=07?)
= The exact heuristic is pretty good, but usually too expensive!

= What if we have two heuristics, neither dominates the other?
= Form a new heuristic by taking the max of both:
h(n) = max(hy(n), hy(n))
= Max of admissible heuristics is admissible and dominates both!

= Example: number of knight’s moves to get from Ato B
= h1=(Manhattan distance)/3 (rounded up to correct parity)
= h2 = (Euclidean distance)/V5 (rounded up to correct parity)
= h3 =(max x ory shift)/2 (rounded up to correct parity)

Optimality of A* Tree Search

Proof:

Optimality of A* Tree Search: Blocking

Imagine B is on the frontier

Some ancestor n of A is on the frontier,
too (maybe A itself!)

Claim: n will be expanded before B
1. f(n)isless than or equal to f(A)
2. f(A)isless than f(B)

3. nisexpanded before B

All ancestors of A are expanded before B
A is expanded before B
A* tree search is optimal

Optimality of A* Tree Search: Blocking

Proof:
= |magine B is on the frontier

= Some ancestor n of A is on the frontier,

~—=

too (maybe A itself!)
= Claim: n will be expanded before B
1. f(n)isless than or equal to f(A)

N\

-——

fin) = g(n) + h(n)
fln) < g(A)
g(A) = flA)

Definition of f-cost
Admissibility of h
h =0 at a goal

/

Optimality of A* Tree Search: Blocking

Proof:
= |magine B is on the frontier
= Some ancestor n of A is on the frontier,

too (maybe A itself!) .
= Claim: n will be expanded before B A T
1. f(n)isless than or equal to f(A)

2. f(A)isless than f(B)
x N

g(A) < g(B) Suboptimality of B

f(A) < f(B) h =0 at a goal
\ J

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the frontier

Some ancestor n of A is on the frontier,

too (maybe A itself!)

Claim: n will be expanded before B
1. f(n)isless than or equal to f(A)

2. f(A)isless than f(B)

3. nisexpanded before B
All ancestors of A are expan
A is expanded before B
A* tree search is optimal

ML fin) < f(A) < f(B) J

UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
Sta Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

What do each of these functions measure?

" h(n)

" h*(n)

= g(n)

= g*(n)

= f(n) (from A*)

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy (h) Uniform Cost (g) A* (g+h)

Optimality of A* Graph Search

This part is a bit technical...

Tree Search: Extra Work!

= Failure to detect repeated states can cause exponentially more work.

/ State Graph \ / Search Tree \

s N
() P
B @0 ..,-f"” .

Graph Search

" |dea: never expand a state twice

= How to implement:

" Tree search + set of expanded states (“closed set”)
= Expand the search tree node-by-node, but...

= Before expanding a node, check to make sure its state has never
been expanded before

= If not new, skip it, if new add to closed set

" |mportant: store the closed set as a set, not a list

= Can graph search wreck completeness? Why/why not?

= How about optimality?

A* Graph Search Gone Wrong?

State space graph
h=4

Search tree

S (0+2)
/\

A (1+4) B(1+1)
| |
C (2+1) C (3+1)
! |
G (5+0) G (6+0)

Simple check against expanded set blocks C
Fancy check allows new C if cheaper than old
but requires recalculating C’s descendants

Consistency of Heuristics

" Main idea: estimated heuristic costs < actual costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < h*(A)
= Consistency: heuristic “arc” cost < actual cost for each arc
h(A) —h(C) < c(A,C)
or h(A) < c(A,C) + h(C) (triangle inequality)
= Consequences of consistency:

= The fvalue along a path never decreases:

h(A) £c(A,C) + h(C) =>g(A) + h(A) <g(A) + c(A,C) + h(C)

= A* graph search is optimal

Admissibility and Consistency Constraints

h(A)<=4 h(C)<=3 h(A)<=4 h(A) - ¢(A,C) <= h(C)

u 1 a ° 1 e

Admissible? Consistent?

h(A) - ¢(A,C) <= h(C)
3.16-1<=3

h=3.16

h=4 h=1

Admissible? Consistent?

h(A) - ¢(A,C) <= h(C)

3-1<=3
h=0 h=0 h=3 h=3
(D—(c (D—(c

Admissible? Consistent?

h(A) - ¢(A,C) <= h(C)
3-1<=1

h=3 h=1

Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

= Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

= Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

= Result: A* graph search is optimal

Optimality

Tree search:
= A*is optimal if heuristic is admissible

Graph search:

= A* optimal if heuristic is consistent
Consistency implies admissibility

Most natural admissible heuristics tend to be
consistent, especially if from relaxed problems

= For admissible but inconsistent heuristics see C’,
https://www.aaai.org/Papers/AAAI/2007/AAAI07-192.pdf -

