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Uncertainty and Time

§ Often, we want to reason about a sequence of observations
§ Speech recognition

§ Robot localization
§ User attention

§ Medical monitoring

§ Generalize MDPs by adding sensing noise (and removing 
actions)



Video of Demo Pacman – Sonar



Markov Models (aka Markov chain/process)

§ Value of X at a given time is called the state (usually discrete, finite)

§ The transition model P(Xt | Xt-1) specifies how the state evolves over time 
§ Stationarity assumption: transition probabilities are the same at all times
§ Markov assumption: “future is independent of the past given the present”

§ Xt+1 is independent of X0,…, Xt-1 given Xt
§ This is a first-order Markov model (a kth-order model allows dependencies on k earlier steps)

§ Joint distribution P(X0,…, XT) = P(X0) Õt P(Xt | Xt-1)

X1X0 X2 X3

P(X0) P(Xt | Xt-1)



Example: Random walk in one dimension

§ State: location on the unbounded integer line
§ Initial probability: starts at 0
§ Transition model: P(Xt = k| Xt-1= k±1) = 0.5 
§ Applications: particle motion in crystals, stock prices, gambling, genetics, etc.
§ Questions: 

§ How far does it get as a function of t?
§ Expected distance is O(√t)

§ Does it get back to 0 or can it go off for ever and not come back?
§ In 1D and 2D, returns w.p. 1; in 3D, returns w.p. 0.34053733
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Example: Web browsing

§ State: URL visited at step t
§ Transition model:

§ With probability p, choose an outgoing link at random
§ With probability (1-p), choose an arbitrary new page

§ Question: What is the stationary distribution over pages?
§ I.e., if the process runs forever, what fraction of time does it spend in 

any given page?

§ Application: Google page rank
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Example: Weather

§ States {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

§ Initial distribution P(X0) 

§ Transition model P(Xt | Xt-1)

P(X0)

sun rain

0.5 0.5



Weather prediction

§ Time 0: <0.5,0.5>

§ What is the weather like at time 1?
§ P(X1) = åx0

P(X1,X0=x0)
= åx0

P(X0=x0) P(X1| X0=x0)
= 0.5<0.9,0.1> + 0.5<0.3,0.7> = <0.6,0.4>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



Weather prediction, contd.

§ Time 1: <0.6,0.4>

§ What is the weather like at time 2?
§ P(X2) = åx1

P(X2,X1=x1)
= åx1

P(X1=x1) P(X2| X1=x1)
= 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



Weather prediction, contd.

§ Time 2: <0.66,0.34>

§ What is the weather like at time 3?
§ P(X3) = åx2

P(X3,X2=x2)
= åx2

P(X2=x2) P(X3| X2=x2)
= 0.66<0.9,0.1> + 0.34<0.3,0.7> = <0.696,0.304>

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7



Forward algorithm (simple form)

§ What is the state at time t?
§ P(Xt) = åxt-1

P(Xt,Xt-1=xt-1)
= åxt-1

P(Xt-1=xt-1) P(Xt| Xt-1=xt-1)

§ Iterate this update starting at t=0

Probability from 
previous iteration

Transition model



And the same thing in linear algebra

§ What is the weather like at time 2?
  P(X2) = 0.6<0.9,0.1> + 0.4<0.3,0.7> = <0.66,0.34>

§ In matrix-vector form:

  P(X2) = (         ) (    ) = (      )

§ I.e., multiply by TT, transpose of transition matrix

Xt-1 P(Xt|Xt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

0.9 0.3
0.1 0.7

0.6
0.4

0.66
0.34



Stationary Distributions

§ The limiting distribution is called the stationary distribution P¥
of the chain

§ It satisfies P¥ = P¥+1 = TT P¥
§ Solving for P¥ in the example:

( ) (  ) = (  )
0.9p + 0.3(1-p) = p
p = 0.75
Stationary distribution is <0.75,0.25> regardless of starting distribution

0.9 0.3
0.1 0.7

p
1-p

p
1-p



Stationary Distributions

§ Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

P1(sun) = P (sun|sun)P1(sun) + P (sun|rain)P1(rain)

P1(rain) = P (rain|sun)P1(sun) + P (rain|rain)P1(rain)

P1(sun) = 0.9P1(sun) + 0.3P1(rain)

P1(rain) = 0.1P1(sun) + 0.7P1(rain)

P1(sun) = 3P1(rain)

P1(rain) = 1/3P1(sun)

P1(sun) + P1(rain) = 1

P1(sun) = 3/4

P1(rain) = 1/4Also:



Hidden Markov Models



Hidden Markov Models

§ Usually the true state is not observed directly

§ Hidden Markov models (HMMs)
§ Underlying Markov chain over states X
§ You observe evidence E at each time step
§ Xt is a single discrete variable; Et may be continuous 

and may consist of several variables

X5X1X0 X2 X3

E1 E2 E3 E5



Example: Weather HMM

Umbrellat-1 Umbrellat Umbrellat+1

Weathert-1 Weathert Weathert+1

§ An HMM is defined by:
§ Initial distribution:   P(X0)
§ Transition model:    P(Xt| Xt-1)
§ Sensor model:          P(Et| Xt)

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1



HMM as probability model

§ Joint distribution for Markov model:

P(X0,…, XT) = P(X0)Õt=1:T P(Xt | Xt-1)
§ Joint distribution for hidden Markov model:

P(X0,X1, E1 ,…, XT,ET) = P(X0)Õt=1:T P(Xt | Xt-1) P(Et | Xt) 
§ Future states are independent of the past given the present
§ Current evidence is independent of everything else given the current state
§ Question: Are evidence variables independent of each other?

X5X1X0 X2 X3

E1 E2 E3 E5

Useful notation: 

Xa:b = Xa , Xa+1, …, Xb



Real HMM Examples

§ Speech recognition HMMs:
§ Observations are acoustic signals (continuous valued)
§ States are specific positions in specific words (so, tens of thousands)

§ Machine translation HMMs:
§ Observations are words (tens of thousands)
§ States are translation options

§ Robot tracking:
§ Observations are range readings (continuous)
§ States are positions on a map (continuous)

§ Molecular biology:
§ Observations are nucleotides ACGT
§ States are coding/non-coding/start/stop/splice-site etc.



Inference tasks

§ Filtering: P(Xt|e1:t)
§ belief state—input to the decision process of a rational agent 

§ Prediction: P(Xt+k|e1:t) for k > 0 
§ evaluation of possible action sequences; like filtering without the evidence 

§ Smoothing: P(Xk|e1:t) for 0 ≤ k < t
§ better estimate of past states, essential for learning 

§ Most likely explanation: arg maxx1:t
P(x1:t | e1:t) 

§ speech recognition, decoding with a noisy channel 



Filtering / Monitoring

§ Filtering, or monitoring, or state estimation, is the task of 
maintaining the distribution f1:t = P(Xt|e1:t) over time

§ We start with f0 in an initial setting, usually uniform

§ Filtering is a fundamental task in engineering and science

§ The Kalman filter (continuous variables, linear dynamics, 
Gaussian noise) was invented in 1960 and used for trajectory 
estimation in the Apollo program; core ideas used by Gauss for 
planetary observations



Example: Robot Localization

t=0
Sensor model: four bits for wall/no-wall in each direction, never more than 1 mistake

Transition model: action may fail with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, 

but less likely (required 1 mistake)

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Filtering algorithm

§ Aim: devise a recursive filtering algorithm of the form
§ P(Xt+1|e1:t+1) = g(et+1, P(Xt|e1:t) )

§ P(Xt+1|e1:t+1) = P(Xt+1|e1:t, et+1)
= åxt

P(xt , Xt+1 |e1:t, et+1) 
= åxt

α P(xt , Xt+1,et+1 |e1:t,) 
=  åxt

α P(et+1|Xt+1) P(xt | e1:t) P(Xt+1| xt, e1:t)
= α P(et+1|Xt+1) åxt

P(xt | e1:t) P(Xt+1| xt)

Marginal Probability

Normalization Trick / 
Bayes Rule

Definition of HMM

Simple factoring 
of a constant



Filtering algorithm

§ P(Xt+1|e1:t+1) = α P(et+1|Xt+1) åxt
P(xt | e1:t) P(Xt+1| xt)

§ f1:t+1 = FORWARD(f1:t , et+1)
§ Cost per time step: O(|X|2) where |X| is the number of states
§ Time and space costs are constant, independent of t
§ O(|X|2) is infeasible for models with many state variables

§ Will introduce approximate filtering algorithms soon

PredictUpdateNormalize



Summary: Filtering

§ Filtering is the inference process of finding a distribution over XT given e1 through eT : 
P( XT | e1:t )

§ We first compute P( X1 | e1 ):
§ For each t from 2 to T, we have P( Xt-1 | e1:t-1 ) 
§ Elapse time: compute P( Xt | e1:t-1 )

§ Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t )



Example: Weather HMM

Umbrella1 Umbrella2

Weather0 Weather1 Weather2

f(sun) = 0.5
f(rain)  = 0.5

P(s1|w0) = .6 = .5*.9+.5*.3 
P(r1|w0) = .4 = 5*.1+.5*.7

f(sun) = 0.25 = .2*.6/(.2*.6 + .9*.4) 
f(rain) = 0.75 = .9*.4/(.2*.6 + .9*.4) 

P(s2|w1) = 0.45 = .25*.9 + .75 *.3 
P(r2|w1)  = 0.55 = .25*.1 + . 75*.7 

f(sun) = 0.154 = .2*.45/(.2*.45 + .9*.55)
f(rain) = 0.846 = .9*.55/(.2*.45+ .9*.55) 

Wt-1 P(Wt|Wt-1)

sun rain

sun 0.9 0.1

rain 0.3 0.7

Wt P(Ut|Wt)

true false

sun 0.2 0.8

rain 0.9 0.1

P(W0)

sun rain

0.5 0.5

predict
predictupdate update

P(Xt+1|e1:t+1) = α P(et+1|Xt+1) åxt
 P(xt | e1:t) P(Xt+1| xt)



Video of Demo Pacman – Sonar



Most Likely Explanation



Inference tasks

§ Filtering: P(Xt|e1:t)
§ belief state—input to the decision process of a rational agent 

§ Prediction: P(Xt+k|e1:t) for k > 0 
§ evaluation of possible action sequences; like filtering without the evidence 

§ Smoothing: P(Xk|e1:t) for 0 ≤ k < t
§ better estimate of past states, essential for learning 

§ Most likely explanation: arg maxx1:t
P(x1:t | e1:t) 

§ speech recognition, decoding with a noisy channel 



Most likely explanation = most probable path*

§ State trellis: graph of states and transitions over time

§ Each arc represents some transition xt-1 ® xt
§ Each arc has weight P(xt | xt-1) P(et | xt) (arcs to initial states have weight P(x0) )
§ The product of weights on a path is proportional to that state sequence’s probability 
§ Forward algorithm computes sums of paths, Viterbi algorithm computes best paths

arg maxx1:t P(x1:t | e1:t)
= arg maxx1:t α P(x1:t , e1:t)
= arg maxx1:t P(x1:t , e1:t) 

= arg maxx1:t P(x0) Õt P(xt | xt-1) P(et | xt) 
sun

rain

sun

rain

sun

rain

sun

rain

X0                   X1                 …                      XT



Forward / Viterbi algorithms*

Forward Algorithm (sum)
For each state at time t, keep track of 
the total probability of all paths to it

sun

rain

sun

rain

sun

rain

sun

rain

X0                   X1                 …                      XT

Viterbi Algorithm (max)
For each state at time t, keep track of     
the maximum probability of any path to it

f1:t+1 = FORWARD(f1:t , et+1)
    = α P(et+1|Xt+1) åxt

 P(Xt+1| xt) f1:t 
m1:t+1 = VITERBI(m1:t , et+1)
    = P(et+1|Xt+1) maxxt

 P(Xt+1| xt) m1:t 



Particle Filtering



We need a new algorithm!

§ When |X| is grows, exact inference becomes infeasible
§ O(|X|2) cost per time step
§ (e.g., 3 ghosts in a 10x20 world, continuous domains)

X1X0 X2 X3

E1 E2 E3



Particle Filtering

0.01 0.1

0.01 0.03

0.03

0.2

0.02 0.2 0.4

§ Represent belief state by a set of samples
§ Samples are called particles
§ Time per step is linear in the number of samples
§ But: number needed may be large

§ This is how robot localization works in practice

0 0.1

0 0

0

0.2

0 0.2 0.5



Representation: Particles
§ Our representation of P(X) is now a list of N << |X| particles
§ P(x) approximated by number of particles with value x

§ So, many x may have P(x) = 0 ! 
§ More particles => more accuracy (cf. frequency histograms)
§ Usually we want a low-dimensional marginal

§ E.g., “Where is ghost 1?” rather than “Are ghosts 1,2,3 in [2,6], [5,6], and [8,11]?” Particles:
    (1,2)
    (2,3)
    (2,3)
    (3,2)
    (3,2)
    (3,3)
    (3,3)   
    (3,3)
    (3,3)
    (3,3)



Particle Filtering: Prediction step

§ Particle j in state xt
(j) samples a new state directly 

from the transition model:
§ xt+1

(j) ~  P(Xt+1 | xt(j))

§ Here, most samples move clockwise, but some move in 
another direction or stay in place

§ For example:
xt+1(j) ~  P(Xt+1 | xt(green)) = <P((3,3) | (3,3)), P((2,3) | (3,3)), P((3,2) | (3,3))>
         = < 1/3, 1/3, 1/3>

(What if the transition model is almost deterministic?)

Particles:
    (1,2)
    (2,3)
    (2,3)
    (3,2)
    (3,2)
    (3,3)
    (3,3)   
    (3,3)
    (3,3)
    (3,3)

Particles:
    (1,3)
    (2,2)
    (2,3)
    (2,3)
    (3,1)
    (3,2)
    (3,2)
    (3,2)
    (3,3)   
    (3,3)



§ After observing et+1 :

§ As in likelihood weighting, weight each 
sample based on the evidence
§ w(j) = P(et+1| xt+1

(j))

§ Normalize the weights: particles that fit 
the  data better get higher weights, 
others get lower weights

§ For example, say et+1 = (3,2)
§ w(green) = P((3,2)| (3,2)) = .9
§ w(blue)   = P((3,2)| (2,3)) = .2

Particle Filtering: Update step

Particles:
     (1,3)  w=.1
     (2,2)  w=.4
     (2,3)  w=.2
     (2,3)  w=.2
     (3,1)  w=.4
     (3,2)  w=.9
     (3,2)  w=.9
     (3,2)  w=.9
     (3,3)  w=.4
     (3,3)  w=.4

Particles:
    (1,2)
    (2,3)
    (2,3)
    (3,2)
    (3,2)
    (3,3)
    (3,3)   
    (3,3)
    (3,3)
    (3,3)



Particle Filtering: Resample

§ Rather than tracking weighted samples, we 
resample

§ N times, we choose from our weighted sample 
distribution 
§ xt+1(j) ~  N(Xt+1| e1:t) / N = 𝛼 W(Xt+1| e1:t)
§ (i.e., draw with replacement)

§ Now the update is complete for this time step, 
continue with the next one (with weights reset 
to 1)

Particles:
     (1,3)  w=.1
     (2,2)  w=.4
     (2,3)  w=.2
     (2,3)  w=.2
     (3,1)  w=.4
     (3,2)  w=.9
     (3,2)  w=.9
     (3,2)  w=.9
     (3,3)  w=.4
     (3,3)  w=.4
        

(New) Particles:
(2,2)
(2,3)
(3,1)
(3,1)
(3,2)
(3,2)   
(3,2)
(3,2)
(3,2)
(3,3)

1*.1*𝛼 2*.2 *𝛼

0 1*.4 *𝛼

2*.4 *𝛼

3*.9 *𝛼

0 0 1*.4 *𝛼

.02 .08

0 .08

.17

.56

0 0 .08

routine weighted-sample:
   return random() in 𝛼 W(Xt+1| e1:t)        



Summary: Particle Filtering
§ Particles: track samples of states rather than an explicit distribution

Particles:
    (1,2)
    (2,3)
    (2,3)
    (3,2)
    (3,2)
    (3,3)
    (3,3)   
    (3,3)
    (3,3)
    (3,3)

Prediction Update/Weight Resample

Particles:
    (1,3)
    (2,2)
    (2,3)
    (2,3)
    (3,1)
    (3,2)
    (3,2)
    (3,2)
    (3,3)   
    (3,3)

Particles:
     (1,3)  w=.1
     (2,2)  w=.4
     (2,3)  w=.2
     (2,3)  w=.2
     (3,1)  w=.4
     (3,2)  w=.9
     (3,2)  w=.9
     (3,2)  w=.9
     (3,3)  w=.4
     (3,3)  w=.4

(New) Particles:
(2,2)
(2,3)
(3,1)
(3,1)
(3,2)
(3,2)   
(3,2)
(3,2)
(3,2)
(3,3)



Robot Localization

§ In robot localization:
§ We know the map, but not the robot’s position
§ Observations may be vectors of range finder readings
§ State space and readings are typically continuous so we 

cannot usually represent or compute an exact posterior
§ Particle filtering is a main technique



Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]



Robot Mapping

§ SLAM: Simultaneous Localization And Mapping
§ Robot does not know map or location
§ State xt

(j) consists of position+orientation, map!
§ (Each map usually inferred exactly given sampled 

position+orientation sequence)

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mapping1-new.avi]



Particle Filter SLAM – Video

[Demo: PARTICLES-SLAM-fastslam.avi]



Dynamic Bayes’ Nets



Dynamic Bayes Nets (DBNs)
§ We want to track multiple variables over time, using 

multiple sources of evidence

§ Idea: Repeat a fixed Bayes net structure at each time

§ Variables at time t can have parents at time t-1

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t =1 t =2

G3
a

E3
a E3

b

G3
b

t =3



DBNs and HMMs

§ Every HMM is a single-variable DBN
§ Every discrete DBN is an HMM 

§ HMM state is Cartesian product of DBN state variables

§ Sparse dependencies => exponentially fewer parameters in DBN
§ E.g., 20 state variables, 3 parents each; 

DBN has 20 x 23 = 160 parameters, HMM has 220 x 220 =~ 1012 parameters

Xt+1Xt

Yt+1Yt

Zt+1Zt

XYZt+1XYZt



Exact Inference in DBNs

§ Variable elimination applies to dynamic Bayes nets
§ Offline: “unroll” the network for T time steps, then eliminate variables to find P(XT|e1:T)

§ Online: eliminate all variables from the previous time step; store factors for current time only
§ Problem: largest factor contains all variables for current time (plus a few more)

t =1 t =2 t =3

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

G3
a

E3
a E3

b

G3
bG3
b





Application: ICU monitoring

§ State: variables describing physiological state of patient
§ Evidence: values obtained from monitoring devices
§ Transition model: physiological dynamics, sensor dynamics
§ Query variables: pathophysiological conditions (a.k.a. bad things)

68



Toy DBN: heart rate monitoring
parameter  
variable

state  
variable

sensor  
variable

sensor  state 
variable





ICU data: 22 variables, 1min avg.
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