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Uncertainty

§ The real world is rife with uncertainty!
§ E.g., if I leave for SEA 60 minutes before my flight, will arrive in time?

§ Problems:
§ partial observability (road state, other drivers’ plans, etc.)
§ noisy sensors (radio traffic reports, Google maps)
§ immense complexity of modelling and predicting traffic, security line, etc.
§ lack of knowledge of world dynamics (will tire burst? need COVID test?)

§ Combine probability theory + utility theory -> decision theory
§ Maximize expected utility : a* = argmaxa ås P(s | a) U(s)



Inference in Ghostbusters

§ A ghost is in the grid 
somewhere

§ Sensor readings tell how 
close a square is to the 
ghost
§ On the ghost: red
§ 1 or 2 away: orange
§ 3 or 4 away: yellow
§ 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

§  Sensors are noisy, but we know P(Color(x,y) | DistanceFromGhost(x,y))



Basic laws of probability

§ Begin with a set W of possible worlds
§ E.g., 6 possible rolls of a die, {1, 2, 3, 4, 5, 6}

§ A probability model assigns a number P(w) to each world w
§ E.g., P(1) = P(2) = P(3) = P(5) = P(5) = P(6) = 1/6. 

§ These numbers must satisfy
§ 0 £ P(w) £ 1

§ åw ÎW P(w) = 1
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Basic laws contd.

§ An event is any subset of W
§ E.g., “roll < 4” is the set {1,2,3}
§ E.g., “roll is odd” is the set {1,3,5}

§ The probability of an event is the sum of probabilities over its worlds
§ P(A) = åw Î A P(w)
§ E.g., P(roll < 4) = P(1) + P(2) + P(3) = 1/2

§ De Finetti (1931):
§ anyone who bets according to probabilities that violate these laws can be 

forced to lose money on every set of bets
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Random Variables
§ A random variable (usually denoted by a capital letter) is some aspect 

of the world about which we (may) be uncertain
§ Formally a deterministic function of w

§ The range of a random variable is the set of possible values
§ Odd = Is the dice roll an odd number? ® {true, false} 

§ e.g. Odd(1)=true, Odd(6) = false
§ often write the event Odd=true as odd, Odd=false as ¬odd

§ T = Is it hot or cold? ® {hot, cold}
§ D = How long will it take to get to the airport? ® [0, ¥)
§ LGhost = Where is the ghost? ® {(0,0), (0,1), …}

§ The probability distribution of a random variable X gives the 
probability for each value x in its range (probability of the event X=x)
§ P(X=x) = å {w: X(w)=x} P(w)
§ P(x) for short (when unambiguous)
§ P(X) refers to the entire distribution (think of it as a vector or table)



Probability Distributions

§ Associate a probability with each value; sums to 1

§ Temperature:

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0

§ Weather: 

P(T) P(W) P(T,W)

§ Joint distribution

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00



Making possible worlds

§ In many cases we 
§ begin with random variables and their domains
§ construct possible worlds as assignments of values to all variables

§ E.g., two dice rolls Roll1 and Roll2
§ How many possible worlds?
§ What are their probabilities?

§ Size of distribution for n variables with range size d?
§ For all but the smallest distributions, cannot write out by hand!

dn



Probabilities of events

§ The Probability of an event is the sum of probabilities 
of its worlds, P(A) = åw Î A P(w)

§ So, given a joint distribution over all variables, can 
compute any event probability!
§ Probability that it’s hot AND sunny?

§ P(T=hot, W=sun)
§ = .45

§ Probability that it’s hot?
§ P(T=hot) = åw ÎW P(T= hot, W=w)
§ = P(T=hot, W=sun) + P(T=hot, W=rain) + P(T=hot, W=fog) + P(T=hot, 

W=meteor)
§ = .45 + .02 + .03 + .00 = .5

§ Probability that it’s hot OR not foggy?
§ P(T=hot ∨ ¬ W=fog) = P(T=hot) + P(¬ W=fog) - P(T=hot, ¬ W=fog)
§ = P(T=hot) + (1 - P(W=fog)) - P(T=hot, ¬ W=fog)
§ = .5 + (1 - .03 + .27) – (.45 + .02 + .00) = .5 + .7 - .47 = .73

P(T,W)

Joint distribution

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00



Quiz: Events

§ P(+x, +y) ?

§ P(+x) ?

§ P(-y OR +x) ?

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1



Quiz: Events

§ P(+x, +y) ?

= .2 

§ P(+x) ?

= .2 + .3  = .5

§ P(-y OR +x) ?

= P(-y) + P(+x) - P(-y, + x) = .3 + .1 + .2 + .3 - .3 = .6
= 1 - P(+y, -x) = 1 - .4 = .6

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1



Marginal Distributions

§ Marginal distributions are sub-tables which eliminate variables 
§ Marginalization (summing out): Collapse a dimension by adding

P(X=x) = å
y  

P(X=x, Y=y)

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

0.60
0.10
0.30
0.00

0.50 0.50

P(T)

P(W)



Quiz: Marginal Distributions

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

X P
+x
-x

Y P
+y
-y



Quiz: Marginal Distributions

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

X P
+x .5
-x .5

Y P
+y .6
-y .4



Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

Conditional Probabilities

§ A simple relation between joint and conditional probabilities
§ In fact, this is taken as the definition of a conditional probability

P(b)P(a)

P(a,b)

= P(W=s,T=c) + P(W=r,T=c) + P(W=f,T=c) + P(W=m,T=c) 
= 0.15 + 0.08 + 0.27 + 0.00= 0.50

P(T,W)

P(a | b) = P(a, b)
  P(b)

P(W=s | T=c) = P(W=s,T=c)
     P(T=c)

= 0.15/0.50 = 0.3



Quiz: Conditional Probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

§ P(+x | +y) ?

§ P(-x | +y) ?

§ P(-y | +x) ?



Quiz: Conditional Probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

§ P(+x | +y) ?

= .2 / (.2 + .4) = 1/3

§ P(-x | +y) ?

= .4 / (.2 + .4) = 2/3

§ P(-y | +x) ?

= .3 / (.3 + .2) = .6



Conditional Distributions

§ Distributions for one set of variables given another set

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

P(W | T=c)

0.30
0.16
0.54
0.00

P(W | T=h)

0.90
0.04
0.06
0.00

P(W | T)

0.30
0.16
0.54
0.00

0.90
0.04
0.06
0.00

hot cold hot cold

Notice how the values in the tables have been re-normalized!



§ Procedure:
§ Multiply each entry by a = 1/(sum over all entries)

Normalizing a distribution

Ensure entries sum to ONE

a = 1/0.50 = 2

Normalize

Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

P(W,T=c)

0.15
0.08
0.27
0.00

0.30
0.16
0.54
0.00

P(W,T)
P(W | T=c) = P(W,T=c)/P(T=c)
= a P(W,T=c)



The Product Rule

§ Sometimes we have conditional distributions but we want the joint

P(a | b) = P(a, b)
  P(b)

P(a | b) P(b) = P(a, b) 



The Product Rule: Example

P(W | T) P(T) = P(W, T) 

T P

hot 0.5

cold 0.5

P(T)

P(W | T)

0.30
0.16
0.54
0.00

0.90
0.04
0.06
0.00

hot cold Temperature
hot cold

W
ea

th
er

sun 0.45 0.15

rain 0.02 0.08

fog 0.03 0.27

meteor 0.00 0.00

P(W, T)



The Chain Rule

§ A joint distribution can be written as a product of conditional 
distributions by repeated application of the product rule:

P(x1, x2, x3) = P(x3 | x1, x2) P(x1, x2) 
= P(x3 | x1, x2) P(x2 | x1) P(x1)

P(x1, x2,…, xn) = Õi P(xi | x1,…, xi-1)



Bayes’ Rule



Bayes’ Rule

§ Write the product rule both ways:
P(a | b) P(b) = P(a, b) = P(b | a) P(a)  

§ Dividing left and right expressions, we get:

§ Why is this at all helpful?

§ Lets us build one conditional from its reverse
§ Often one conditional is tricky but the other one is simple
§ Describes an “update” step from prior P(a) to posterior P(a | b) 
§ Foundation of many systems we’ll see later

§ In the running for most important AI equation!

That’s my rule!

P(a | b) = P(b | a) P(a)
       P(b)



Inference with Bayes’ Rule

§ Example: Diagnostic probability from causal probability:

§ Example:
§ M: meningitis, S: stiff neck

§ Note: posterior probability of meningitis still very small: 0.008 (80x bigger – why?)
§ Note: you should still get stiff necks checked out!  Why?

Example
givens

P(cause | effect) = P(effect | cause) P(cause)
               P(effect)

P(s | m) = 0.8
P(m) = 0.0001
P(s) = 0.01

P(m | s) = P(s | m) P(m)
       P(s) = 

0.8 x 0.0001  .
0.01



§ Two variables X and Y are (absolutely) independent if
"x,y P(x, y) = P(x) P(y)

§ I.e., the joint distribution factors into a product of two 
simpler distributions

§ Equivalently, via the product rule P(x,y) = P(x|y)P(y),

P(x | y) = P(x)   or    P(y | x) = P(y)

§ Example: two dice rolls Roll1 and Roll2
§ P(Roll1=5, Roll2=3)     =  P(Roll1=5) P(Roll2=3) =  1/6 x 1/6  =  1/36
§ P(Roll2=3 | Roll1=5)   =   P(Roll2=3)

Independence

P(b)P(a)

P(a,b)



Example: Independence

§ n fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5

P(X1,X2,...,Xn) 

P(Xn) P(X1) P(X2) 

table size: 2n 
in general: dn 



Conditional Independence



Conditional Independence

§ Conditional independence is our most basic and robust form of 
knowledge about uncertain environments.

§ X is conditionally independent of Y given Z : 
"x,y,z P(x | y, z) =  P(x | z)

= P(x,y,z) / P(y, z) = P(x,z)/ P(z)

or, equivalently, if and only if
"x,y,z P(x, y | z) = P(x | z) P(y | z)

P(y)P(x)
P(z)



Probabilistic Inference

§ Probabilistic inference: compute a desired probability 
from a probability model
§ Typically for a query variable given evidence
§ E.g., P(airport on time | no accidents) = 0.90
§ These represent the agent’s beliefs given the evidence

§ Probabilities change with new evidence:
§ P(airport on time | no accidents, 5 a.m.) = 0.95
§ P(airport on time | no accidents, 5 a.m., raining) = 0.80
§ Observing new evidence causes beliefs to be updated



Inference by Enumeration
§ General case:

§ Evidence variables: E1, …, Ek = e1, …,ek
§ Query* variable: Q
§ Hidden variables: H1, …, Hr

X1, …, Xn 

All variables

* Works fine with 
multiple query 
variables, too§ We want:

 P(Q | e1, …,ek)

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H from model to 
get joint of Query and evidence

§ Step 3: Normalize

å
h1,…, hr

P(Q,h1,…, hr, e1,…,ek)P(Q,e1,…,ek) = 
X1, …, Xn 

P(Q | e1,…,ek) = a P(Q,e1,…,ek)

Probability model  P(X1, …, Xn) is given



Inference by Enumeration

§ P(W)?

Season Temp Weather P

summer hot sun 0.35

summer hot rain 0.01

summer hot fog 0.01

summer hot meteor 0.00

summer cold sun 0.10

summer cold rain 0.05

summer cold fog 0.09

summer cold meteor 0.00

winter hot sun 0.10

winter hot rain 0.01

winter hot fog 0.02

winter hot meteor 0.00

winter cold sun 0.15

winter cold rain 0.20

winter cold fog 0.18

winter cold meteor 0.00



Inference by Enumeration

§ P(W)?
§ =åS,TP(W,S,T)
§ = <P(W=sun), P(W=Rain), P(W=fog), P(W=meteor)>

Season Temp Weather P

summer hot sun 0.35

summer hot rain 0.01

summer hot fog 0.01

summer hot meteor 0.00

summer cold sun 0.10

summer cold rain 0.05

summer cold fog 0.09

summer cold meteor 0.00

winter hot sun 0.10

winter hot rain 0.01

winter hot fog 0.02

winter hot meteor 0.00

winter cold sun 0.15

winter cold rain 0.20

winter cold fog 0.18

winter cold meteor 0.00



Inference by Enumeration

§ P(W)?
§ =åS,TP(W,S,T)
§ = <P(W=sun), P(W=Rain), P(W=fog), P(W=meteor)>

§ P(W | winter)?
§ =å

T
P(W,T|S=winter)

§ =a å
T
P(W,T,S=winter)

Season Temp Weather P

summer hot sun 0.35

summer hot rain 0.01

summer hot fog 0.01

summer hot meteor 0.00

summer cold sun 0.10

summer cold rain 0.05

summer cold fog 0.09

summer cold meteor 0.00

winter hot sun 0.10

winter hot rain 0.01

winter hot fog 0.02

winter hot meteor 0.00

winter cold sun 0.15

winter cold rain 0.20

winter cold fog 0.18

winter cold meteor 0.00



Inference by Enumeration

§ P(W)?
§ =åS,TP(W,S,T)
§ = <P(W=sun), P(W=Rain), P(W=fog), P(W=meteor)>

§ P(W | winter)?
§ =å

T
P(W,T|S=winter)

§ =a å
T
P(W,T,S=winter)

§ P(W | winter, hot)?
§ = P(W|S=winter, T=hot)
§ =a P(W, S=winter, T=hot)

Season Temp Weather P

summer hot sun 0.35

summer hot rain 0.01

summer hot fog 0.01

summer hot meteor 0.00

summer cold sun 0.10

summer cold rain 0.05

summer cold fog 0.09

summer cold meteor 0.00

winter hot sun 0.10

winter hot rain 0.01

winter hot fog 0.02

winter hot meteor 0.00

winter cold sun 0.15

winter cold rain 0.20

winter cold fog 0.18

winter cold meteor 0.00



§ Obvious problems:

§ Worst-case time complexity O(dn) 

§ Space complexity O(dn) to store the joint distribution

§ O(dn) data points to estimate the entries in the joint distribution

Inference by Enumeration


