

Google

Aston University Google

http://carlos-hernandez.org/cvpr2010/index.html

3d model "Digital copy" of real object Allows us to Inspect details of object - Measure properties - Reproduce in different material Many applications - Cultural heritage preservation - Computer games and movies - City modelling - E-commerce

- 3d object recognition/scene analysis

Applications: artImage: Applications: artImage: Applications: Applications: artImage: Applications: Applications:

Scanning technologies

• Structured light

3d shape from photographs

Photograph based 3d reconstruction is:

- ✓ practical
- 🗸 fast
- ✓ non-intrusive
- Iow cost
- \checkmark Easily deployable outdoors
- × "low" accuracy
- × Results depend on material properties

Image acquisition

- Studio conditions controlled environment
- Uncontrolled environment
 hand-held
 unknown illumination
- Internet
 Unknown content

 Video small motion between frames huge amount of data

Studio image acquisition

Outdoor image acquisition

2d track

3d points

Multi-view stereo algorithms

- Comparison and evaluation:

 A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, S. Seitz et al., CVPR 2006, vol. 1, pages 519-526.
- Quick history of algorithms:
 Artificial Intelligence, 44(1-2):41-87, 1990.
 - A multiple-baseline stereo, M. Okutomi and T. Kanade, TPAMI, 15(4):353-363, 1993.
 - Object-centered surface reconstruction: Combining multi-image stereo and shading P. Fua, Y. Leclerc, International Journal of Computer Vision, vol. 16:35-56, 1995.
 - A portable three-dimensional digitizer,
 Y. Matsumoto et al., Int. Conf. on Recent Advances in 3D Imaging and Modeling, 197-205, 1997.
 - Photorealistic Scene Reconstruction by Voxel Coloring, S. M. Seitz and C. R. Dyer, CVPR., 1067-1073, 1997.
 - Variational principles, surface evolution, PDE's, level set methods and the stereo problem, O. Faugeras and R. Keriven, IEEE Trans. on Image Processing, 7(3):336-344, 1998.

Multi-view stereo algorithms

- Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, S. Seitz et al., CVPR 2006, vol. 1, pages 519-526.
 - http://vision.middlebury.edu/mview/
- · Recently many new algorithms
- Very good accuracy & completeness
- Almost all deal with small number of images (~100) main exception [Pollefeys08]
- · Offline algorithms, no feedback

Best flexible algorithms		
	Region growing	Depth-map fusion
summary	Starts from a cloud of 3d points, and grows small flat patches maximizing photo-consistency	Fuses a set of depth-maps computed using occlusion-robust photo- consistency
pros	Provides best overall results due to a plane-based photo- consistency	Elegant pipeline Plug-n-play blocks Easily parallelizable
cons	Many tunable parameters, i.e., difficult to tune to get the optimal results	Photo-consistency metric is simple and not optimal. The metric suffers when images are not well textured or low resolution

1

Г

Bird's-eye view: depth-map fusion 1. Compute depth hypotheses 2. Volumetrically fuse depth-maps 3. Extract 3d surface

Bird's-eye view: region growing 1. Fitting step A local surface patch is fitted, iterating visibility 2. Filter step Visibility is explicitly enforced 3. Expand step Successful patches are used to initialise active boundary

Patch-based MVS and its Applications

- Why patches (oriented points)? [10 mins]
- Algorithmic details [30 mins]
- Applications [20 mins]

Patches vs. multiple depthmaps (could be my biased-view...)

- Patches → Single global 3D model Depthmaps → Multiple redundant 3D models
- Patches → Clean 3D points Depthmaps → Noisy without merging
- Patches → Hard to make it fast (complex algo) Depthmaps → Easy to make it fast

<image><complex-block><complex-block><complex-block>

- Preliminaries
- Algorithm

Verify a patch

• Textures may match by accident

Verify a patch

- · Textures may match by accident
- Photo-consistency must be reasonably high

Verify a patch

- Textures may match by accident
- Photo-consistency must be reasonably high
- Verification process
 - Keep only high photo-consistency images in V(p)

Verify a patch

- · Textures may match by accident
- Photo-consistency must be reasonably high
- Verification process
 - Keep only high photo-consistency images in V(p)- Accept if $|V(p)| \ge 3$

Algorithm overview

#1. Feature detection

- #2. Initial feature matching
- #3. Patch expansion and filtering

Feature detection

- Extract local maxima of
 Harris corner detector (corners)
 - Difference of Gaussian (blobs)

Patch-based MVS [Furukawa and Ponce 07]

- #1. Feature detection
- #2. Initial feature matching
- #3. Patch expansion and filtering

Skull - 24 images 2000x2000 [pixels]

Face - 4 images 1400x2200 [pixels]

(Courtesy of Industrial Light & Magic)

5/9/2011

