Computational Photography

CSE P 576 Larry Zitnick (<u>larryz@microsoft.com</u>)

What is computational photography?

Def: The generation of an photograph requiring the use of a computer that enhances or extends the capabilities of photography.

Typically, multiple images are used to create a final "photograph."

How can these images vary?

Panoramas

We already covered this...

Composite How do Photoshop's cloning and healing brushes work? What is the difference? $f_{abs}^{Cloning} \longrightarrow f_{abs}^{Cloning}$ $f_{abs}^{Cloning} \longrightarrow f_{abs}^{Cloning}$ HealingHealing

Poisson blending

Limitations:

- Can't do contrast reversal (gray on black -> gray on white) Colored backgrounds "bleed through" Images need to be very well aligned Textures may not perfectly agree .
- .
- .

Perez et al, SIGGRAPH 2003

Selecting regions

Use Photoshop's "magic wand."

Background Subtraction

Harder than you think ...

Jodoin et al., 2008

<section-header><section-header><text><image><image>

Movies

How do they perform matting in movies?

Blue Screen matting

Most common form of matting in TV studios & movies

Petros Vlahos invented blue screen matting in the 50s. His Ultimatte[®] is still the most popular equipment. He won an Oscar for lifetime achievement.

A form of background subtraction:

- Need a known background
- Foreground not equal to background

 no blue ties!
- Why blue?
- Why uniform?

Improving resolution: super resolution

What if you don't have a zoom lens or a mega-pixel sensor?

Super-resolution

Basic idea:

- · define a destination (dst) image of desired resolution
- assume mapping from dst to each input image is known

 usually a combination of a 2D motion/warp and an average (point-spread function)
 - can be expressed as a set of linear constraints
 - sometimes the mapping is solved for as well
- add some form of regularization (e.g., "smoothness assumption")
 - can also be expressed using linear constraints
 - but L1, other nonlinear methods work better

Limits of super-resolution [Baker & Kanade, 2002]

Performance degrades significantly beyond 4x or so Doesn't matter how many new images you add

space of possible (ambiguous) solutions explodes quickly Major cause

• quantizing pixels to 8-bit gray values

Possible solutions:

- nonlinear techniques (e.g., L1)
- better priors (e.g., using domain knowledge)
 - Baker & Kanade "Hallucination", 2002
 - Freeman et al. "Example-based super-resolution"

Noise

Many possible techniques:

Bilateral filter and median filter are very common.

Blur color more than intensity. Why?

There are more advanced techniques...

Non-local means

Look for similar patches in the image...

A. Buades, B. Coll, J.M. Morel"A non local algorithm for image denoising" IEEE Computer Vision and Pattern Recognition 2005, Vol 2, pp:60-65, 2005.

Seeing Mt. Rainier

What if we want to take a picture of Mt. Rainier from Seattle?

Deblurring

Deconvolution

Solve the following:

$$\underset{I}{\operatorname{argmax}} P(I|B) = \underset{I}{\operatorname{argmin}} [L(B|I) + L(I)]$$
Burkernel
Data term: $L(B|I) = ||\vec{B} - A(d)\vec{I}||^2 / \sigma^2$

Sparse gradient prior: $L(I) = \lambda ||\nabla I||^{0.8}$

Image stabilization

Image stabilization can be done using a floating lens.

Vibration is detected using gyroscopic sensors and compensated for.

Mainly on high-end lenses. \$\$\$

How can we get rid of depth of field de-focusing?

Motion blur removal

Instead of coding the aperture, code the...

	•	$\overline{\bigcirc}$)			
		-				
-						
-						•
-						
-		-	-	-	•	

Focus

Suppose we want to produce images where the desired object is *guaranteed* to be in focus?

Or suppose we want everything to be in focus?

Light field camera [Ng et al., 2005]

http://lytro.com/gallery/

Camera Calibration Geometric • How pixel coordinates relate to directions in the world Photometric • How pixel values relate to radiance amounts in the world

Shutter Speed

Ranges: Canon D30: 30 to 1/4,000 sec. Sony VX2000: ¼ to 1/10,000 sec.

Pros:

Directly varies the exposure Usually accurate and repeatable

Issues:

Noise in long exposures

Shutter Speed

- Note: shutter times usually obey a power series each "stop" is a factor of 2
- 1/4, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec

Usually really is:

1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

Global Operator Results

Reinhart Operator

Darkest 0.1% scaled to display device

Local tone mapping

Slides courtesy of Sylvain Paris

Dodge and burn

Is this dodging or burning?

Ernst Haas

Ernst Haas

Peter Funch

Many more possibilities

Seeing through/behind objects

- Using a camera array ("synthetic aperture")
- Levoy et al., SIGGRAPH 2004

Removing interreflections

• Nayar et al., SIGGRAPH 2006

Family portraits where everyone's smiling

• Photomontage (Agarwala at al., SIGGRAPH 2004)

...

More on computational photography

SIGGRAPH course notes and video

- Other courses
 - MIT course
 - <u>CMU course</u>
 - Stanford course
 Columbia course
- Wikipedia page

Symposium on Computational Photography ICCP 2009 (conference)