

CSE P 576 Larry Zitnick (<u>larryz@microsoft.com</u>)

Questions

- Why a dot pattern?
- Why a laser?
- Why only one IR camera?
- Is the dot pattern random?
- Why is heat a problem?
- How is it calibrated?
- Why isn't depth computed everywhere?
- Would it work outside?

Pose recognition

- Research in pose recognition has been on going for 20+ years.
- Many assumptions: multiple cameras, manual initialization, controlled/simple backgrounds

Tracking People by Learning Their Appearance, Deva Ramanan, David A. Forsyth, and Andrew Zisserman, PAMI 2007

Kinect

• Why does depth help?

Algorithm design

Shotton et al. proposed two main steps:

- 1. Find body parts
- 2. Compute joint positions.

Real-Time Human Pose Recognition in Parts from Single Depth Images Jamie Shotton Andrew Fitzgibbon Mat Cook Toby Sharp Mark Finocchio Richard Moore Alex Kipman Andrew Blake, CVPR 2011

Finding body parts

- What should we use for a feature?
- What should we use for a classifier?

3. Recurse until a certain accuracy is reached or depth is obtained.

Implementation details

- 3 trees (depth 20) (why so few?)
- 300k unique training images per tree.
- 2000 candidate features, and 50 thresholds
- One day on 1000 core cluster.
- Why RDF and not AdaBoost, SVMs, etc.?

Video

 <u>http://research.microsoft.com/pubs/145347/</u> <u>CVPR%202011%20-%20Final%20Video.mp4</u>

Story about the making of Kinect:

http://www.wired.co.uk/magazine/archive/2010/11/features/the-game-changer