Microsoft[®] Research

Motion Estimation (I)

Ce Liu celiu@microsoft.com Microsoft Research New England

We live in a moving world

• Perceiving, understanding and predicting motion is an important part of our daily lives

Motion estimation: a core problem of computer vision

Related topics:

- Image correspondence, image registration, image matching, image alignment, ...
- Applications
 - Video enhancement: stabilization, denoising, super resolution
 - 3D reconstruction: structure from motion (SFM)
 - Video segmentation
 - Tracking/recognition
 - Advanced video editing

Contents (today)

- Motion perception
- Motion representation
- Parametric motion: Lucas-Kanade
- Dense optical flow: Horn-Schunck
- Robust estimation
- Applications (1)

Readings

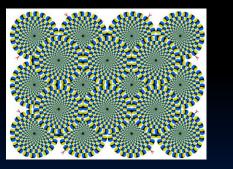
- Rick's book: Chapter 8
- Ce Liu's PhD thesis (Appendix A & B)
- S. Baker and I. Matthews. Lucas-Kanade 20 years on: a unifying framework. IJCV 2004
- Horn-Schunck (wikipedia)
- A. Bruhn, J. Weickert, C. Schnorr. Lucas/Kanade meets Horn/Schunk: combining local and global optical flow methods. IJCV 2005

Contents

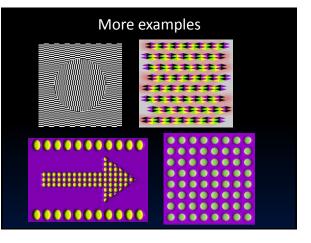
Motion perception

- Motion representation
- Parametric motion: Lucas-Kanad
- Dense optical flow: Horn-Schunck
- Robust estimation
- Applications (1)

Seeing motion from a static picture?

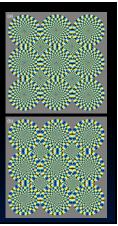


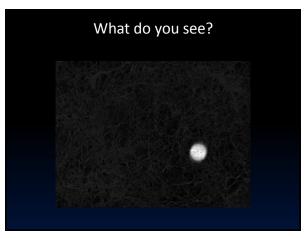
http://www.ritsumei.ac.jp/~akitaoka/index-e.html

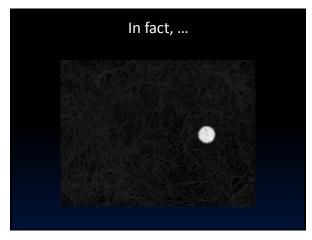


How is this possible?

- The true mechanism is to be revealed
- FMRI data suggest that illusion is related to some component of eye movements
- We don't expect computer vision to "see" motion from these stimuli, yet







The cause of motion

- Three factors in imaging process
 - Light
 - Object
 - Camera
- Varying either of them causes motion
 - Static camera, moving objects (surveillance)
 - Moving camera, static scene (3D capture)
 - Moving camera, moving scene (sports, movie)
 - Static camera, moving objects, moving light (time lapse)

6

Motion scenarios (priors)

Static camera, moving scene, moving light

Moving camera, moving scene

We still don't touch these areas

Motion analysis: human vs. computer

- Challenges of motion estimation
 - Geometry: shapeless objects
 - Reflectance: transparency, shadow, reflection
 - Lighting: fast moving light sources
 - Sensor: motion blur, noise
- Key: motion representation
 - Ideally, solve the inverse rendering problem for a video sequence Intractable!
 - Practically, we make strong assumptions
 - Geometry: rigid or slow deforming objects
 - Reflectance: opaque, Lambertian surface
 - Lighting: fixed or slow changing
 - · Sensor: no motion blur, low-noise

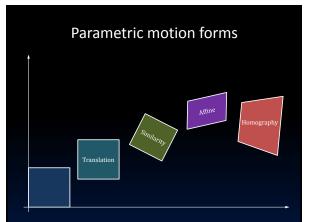
Contents

- Motion representation

Parametric motion

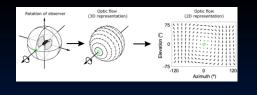
- Mapping: $(x_1, y_1) \rightarrow (x_2, y_2)$
 - $-(x_1, y_1)$: point in frame 1
 - (x_2, y_2) : corresponding point in frame 2
- Global parametric motion: $(x_2, y_2) = f(x_1, y_1; \theta)$
- Forms of parametric motion
 - Translation: $\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 + a \\ y_1 + b \end{bmatrix}$
 - Similarity: $\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = s \begin{bmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{bmatrix} \begin{bmatrix} x_1 + a \\ y_1 + b \end{bmatrix}$

 - Affine: $\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} ax_1 + by_1 + c \\ ax_1 + ey_1 + f \end{bmatrix}$ Homography: $\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \frac{1}{x} \begin{bmatrix} ax_1 + by_1 + c \\ dx_1 + ey_1 + f \end{bmatrix}$, $z = gx_1 + hy_1 + i$



Optical flow field

- Parametric motion is limited and cannot describe the motion of arbitrary videos
- Optical flow field: assign a flow vector (u(x, y), v(x, y)) to each pixel (x, y)
- · Projection from 3D world to 2D



Optical flow field visualization

- · Too messy to plot flow vector for every pixel
- Map flow vectors to color
 - Magnitude: saturation
 - Orientation: hue

Input two frames

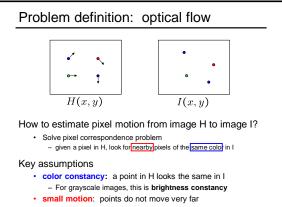
[Baker et al. 2007]

Matching criterion

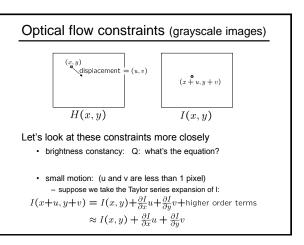
- Brightness constancy assumption $I_1(x, y) = I_2(x + u, y + v) + n$ $n \sim N(0, \sigma^2)$
- Noise n
- Matching criteria
 - What's invariant between two images?Brightness, gradients, phase, other features...
 - Distance metric (L2, robust functions)
 - $E(u,v) = \sum_{x,y} (I_1(x,y) I_2(x+u,y+v))^2$
 - Correlation, normalized cross correlation (NCC)

Contents

- Motion perception
- Motion representation
- Parametric motion: Lucas-Kanade
- Dense optical flow: Horn-Schunck
- Robust estimation
- Applications (1)



This is called the optical flow problem



Optical flow equation

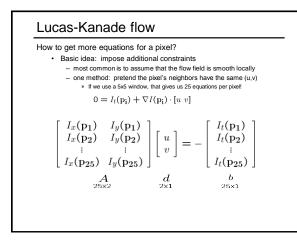
Combining these two equations

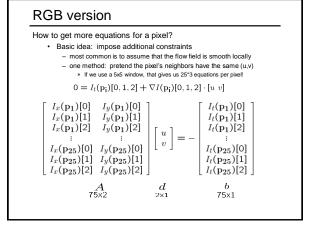
shorthand: $I_x = \frac{\partial I}{\partial x}$

Optical flow equation

Combining these two equations $0 = I(x + u, y + v) - H(x, y) \qquad \text{shorthand:} \quad I_x = \frac{\partial I}{\partial x}$ $\approx I(x, y) + I_x u + I_y v - H(x, y)$ $\approx (I(x, y) - H(x, y)) + I_x u + I_y v$ $\approx I_t + I_x u + I_y v$ $\approx I_t + \nabla I \cdot [u \ v]$ In the limit as u and v go to zero, this becomes exact

 $0 = I_t + \nabla I \cdot \left[\frac{\partial x}{\partial t} \quad \frac{\partial y}{\partial t}\right]$

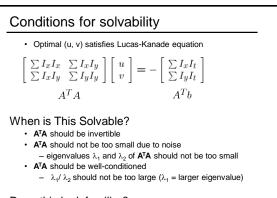




Lucas-Kanade flow

The summations are over all pixels in the K x K window

This technique was first proposed by Lucas & Kanade (1981)



Does this look familiar?

• ATA is the Harris matrix

Observation

This is a two image problem BUT

- · Can measure sensitivity by just looking at one of the images!
- This tells us which pixels are easy to track, which are hard
 very useful for feature tracking...

Errors in Lucas-Kanade

What are the potential causes of errors in this procedure?

- Suppose ATA is easily invertible
- · Suppose there is not much noise in the image

When our assumptions are violated

- · Brightness constancy is not satisfied
- The motion is not small
- · A point does not move like its neighbors
 - window size is too large
 - what is the ideal window size?

Improving accuracy

Recall our small motion assumption

0 = I(x + u, y + v) - H(x, y)

$$\approx I(x,y) + I_x u + I_y v - H(x,y)$$

This is not exact

To do better, we need to add higher order terms back in:

 $= I(x,y) + I_x u + I_y v + higher order terms - H(x,y)$

This is a polynomial root finding problem

- Can solve using Newton's method
 - Also known as Newton-Raphson method on board
 For more on Newton-Raphson, see (first four pages)
 http://www.ulb.org/webRoot/Books/Numerical_Recipes/bookcpdl/c9-4.pdf

1D case

Lucas-Kanade method does one iteration of Newton's method
 – Better results are obtained via more iterations

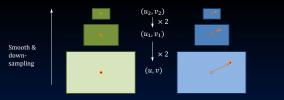
Iterative Refinement

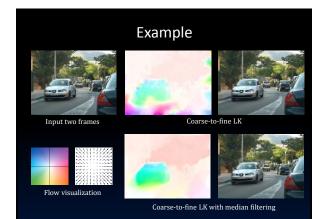
Iterative Lucas-Kanade Algorithm

- 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
- 2. Warp H towards I using the estimated flow field - use image warping techniques
- 3. Repeat until convergence

Coarse-to-fine refinement

- Lucas-Kanade is a greedy algorithm that converges to local minimum
- Initialization is crucial: if initialized with zero, then the underlying motion must be small
- If underlying transform is significant, then coarse-to-fine is a must





Contents

- Motion perception
- Motion representation
- Parametric motion: Lucas-Kanade
- Dense optical flow: Horn-Schunck
- Robust estimation
- Applications (1)

Motion ambiguities

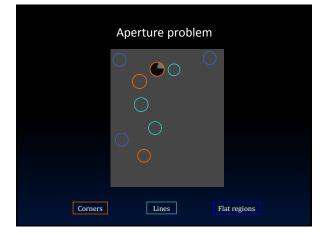
• When will the Lucas-Kanade algorithm fail?

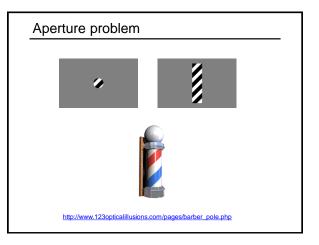
$$\begin{bmatrix} du \\ dv \end{bmatrix} = -\begin{bmatrix} \mathbf{I}_x^T \mathbf{I}_x & \mathbf{I}_x^T \mathbf{I}_y \\ \mathbf{I}_x^T \mathbf{I}_y & \mathbf{I}_y^T \mathbf{I}_y \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{I}_x^T \mathbf{I}_t \\ \mathbf{I}_y^T \mathbf{I}_x \end{bmatrix}$$

• The inverse may not exist!!!

• How?

- All the derivatives are zero: *flat regions*
- X- and y-derivatives are linearly correlated: *lines*



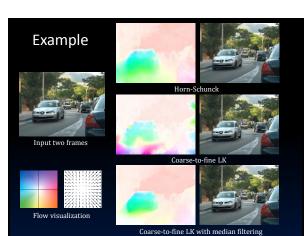


Dense optical flow with spatial regularity

- · Local motion is inherently ambiguous
 - Corners: definite, no ambiguity (but can be misleading)
 - Lines: definite along the normal, ambiguous along the tangent
 - Flat regions: totally ambiguous
- Solution: imposing spatial smoothness to the flow field
 Adjacent pixels should move together as much as possible
- Horn & Schunck equation

 $(u,v) = \arg\min \iint \left(I_x u + I_y v + I_t \right)^2 + \alpha (|\nabla u|^2 + |\nabla v|^2) dx dy$

- $|\nabla u|^2 = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 = u_x^2 + u_y^2$
- α: smoothness coefficient



Continuous Markov Random Fields

- Horn-Schunck started 30 years of research on continuous Markov random fields
 - Optical flow estimation
 - Image reconstruction, e.g. denoising, super resolution
 - Shape from shading, inverse rendering problems
 - Natural image priors
- Why continuous?
 - Image signals are differentiable
 - More complicated spatial relationships
- Fast solvers
 - Multi-grid
 - Preconditioned conjugate gradient
 - FFT + annealing

Contents

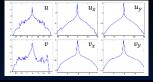
- Motion perception
- · Motion representation
- · Parametric motion: Lucas-Kanade
- Dense optical flow: Horn-Schunck
- Robust estimation
- Applications (1)

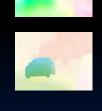
Spatial regularity

 Horn-Schunck is a Gaussian Markov random field (GMRF)

 $\iint \left(I_x u + I_y v + I_t \right)^2 + \alpha (|\nabla u|^2 + |\nabla v|^2) dx dy$

- Spatial over-smoothness is caused by the quadratic smoothness term
- Nevertheless, real optical flow fields are sparse!

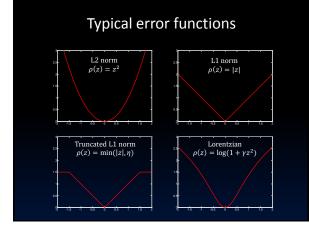




Data term

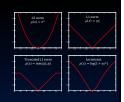
- Horn-Schunck is a Gaussian Markov random field (GMRF) $\iint (I_x u + I_y v + I_t)^2 + \alpha (|\nabla u|^2 + |\nabla v|^2) dx dy$
- Quadratic data term implies Gaussian white noise
- Nevertheless, the difference between two corresponded
 - pixels is caused by
 - Noise (majority)
 - Occlusion
 - Compression errorLighting change
 - Lighting change

• The error function needs to account for these factors



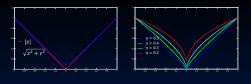
Robust statistics

- Traditional L2 norm: only noise, no outlier
- Example: estimate the average of 0.95, 1.04, 0.91, 1.02, 1.10, 20.01
- Estimate with minimum error $z^* = \arg \min \sum_i \rho(z - z_i)$
 - L2 norm: $z^* = 4.172$
 - L1 norm: $z^* = 1.038$
 - Truncated L1: $z^* = 1.0296$
 - Lorentzian: $z^* = 1.0147$



The family of robust power functions

- Can we directly use L1 norm ψ(z) = |z|?
 Derivative is not continuous
- Alternative forms
 - L1 norm: $\psi(z^2) = \sqrt{z^2 + \varepsilon^2}$
 - Sub L1: $\psi(z^2;\eta)=(z^2+\varepsilon^2)^\eta,\eta<0.5$



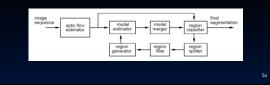


Layer representation

- Optical flow field is able to model complicated motion
- Different angle: a video sequence can be a composite of several moving layers
- Layers have been widely used
 - Adobe Photoshop
 - Adobe After Effect
- Compositing is straightforward, but inference is hard

Wang & Adelson, 1994

- Strategy
 - Obtaining dense optical flow field
 - Divide a frame into non-overlapping regions and fit affine motion for each region
 - Cluster affine motions by k-means clustering
 - Region assignment by hypothesis testing
 - Region splitter: disconnected regions are separated

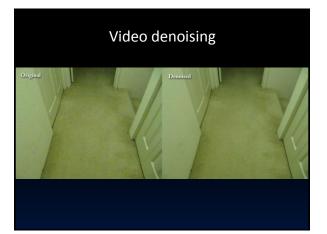


<section-header><section-header>

Contents

- Motion perception
- Motion representation
- Parametric motion: Lucas-Kanade
- Dense optical flow: Horn-Schunck
- Robust estimation
- Applications (1)

Video stabilization



Video super resolution

Low-Res

Summary

- Lucas-Kanade
 - Parametric motion
 - Dense flow field (with median filtering)
- Horn-Schunck
 - Gaussian Markov random field
 - Euler-Lagrange
- Robust flow estimation
 - Robust function
 - Account for outliers in the data term
 - Encourage piecewise smoothness