

Consequence:
Groupings by Invisible Completions

D

And the famous...

Image histograms

How many "orange" pixels are in this image?

- This type of question answered by looking at the histogram
- A histogram counts the number of occurrences of each color
- Given an image

$$
F[x, y] \rightarrow R G B
$$

- The histogram is defined to be

$$
H_{F}[c]=|\{(x, y) \mid F[x, y]=c\}|
$$

- What is the dimension of the histogram of an NxN RGB image?

What do histograms look like?

Histogram-based segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color

How Many Modes Are There?

- Easy to see, hard to compute

Histogram-based segmentation

Goal

- Break the image into K regions (segments)
- Solve this by reducing the number of colors to K and mapping each pixel to the closest color

Here's what it looks like if we use two colors

K-means

Clustering

How to choose the representative colors?

- This is a clustering problem!

Objective

- Each point should be as close as possible to a cluster center - Minimize sum squared distance of each point to closest center

$$
\sum_{\text {clusters } i} \sum_{\text {points } p \text { in cluster } i}\left\|p-c_{i}\right\|^{2}
$$

Break it down into subproblems

Suppose I tell you the cluster centers c_{i}

- Q: how to determine which points to associate with each c_{i} ?
- A: for each point p, choose closest c_{i}

Suppose I tell you the points in each cluster

- Q: how to determine the cluster centers?
- A: choose c_{i} to be the mean of all points in the cluster

K-means clustering
K-means clustering algorithm

1. Randomly initialize the cluster centers, $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{K}}$
2. Given cluster centers, determine points in each cluster - For each point p , find the closest c_{i}. Put p into cluster i
3. Given points in each cluster, solve for c_{i}

- Set c_{i} to be the mean of points in cluster i

4. If c_{i} have changed, repeat Step 2

Java demo: http://www.elet.polimi.itupload/matteucc/Clustering/tutorial h hm/AppletkM.himl

Properties

- Will always converge to some solution
- Can be a "local minimum"
- does not always find the global minimum of objective function:

$$
\sum_{\text {clusters } i} \sum_{\text {points } \mathrm{p} \text { in cluster } i}\left\|p-c_{i}\right\|^{2}
$$

Probabilistic clustering

Basic questions

- what's the probability that a point \mathbf{x} is in cluster m ?
- what's the shape of each cluster?

K-means doesn't answer these questions

Probabilistic clustering (basic idea)

- Treat each cluster as a Gaussian density function

Expectation Maximization (EM)

A probabilistic variant of K -means:

- E step: "soft assignment" of points to clusters - estimate probability that a point is in a cluster
- M step: update cluster parameters
- mean and variance info (covariance matrix)
- maximizes the likelihood of the points given the clusters

Applications of EM

Turns out this is useful for all sorts of problems

- any clustering problem
- model estimation with missing/hidden data
- finding outliers
- segmentation problems
- segmentation based on color
- segmentation based on motion
- foreground/background separation
- ...

Mean-shift

Clustering spatially

What if you want to include spatial relationships?

Cluster in 5 dimensions instead of 3 :

$$
\left[\begin{array}{l}
r \\
g \\
b \\
x \\
y
\end{array}\right]
$$

Fast method

Fast and dirty

What if you just want to group similar neighboring pixels?

1	1	1	1	1	1	1
1	9	1	1	1	13	1
1	9	1	1	1	13	1
22	23	24	25	26	27	28
29	30	31	32	33	34	35
36	37	38	39	40	41	42

Step 1:

	B
B	$\begin{array}{l}A=\min (S), \text { where } S \\ \text { is the set of similar }\end{array}$
C	An

Fast and dirty

What if you just want to group similar neighboring pixels?

Step 2:

Reassign clusters based on merge tree
(20).

Dilation operator: $G=H \bigoplus F$													
Assume: binary image	0	0	0	0	0	0	0	0	0	0			
	0	0	0	0	0	0	0	0	0	0			
	0	0	0	1	1	1	1	1	0	0			
	0	0	0	1	1	1	1	1	0	0	1	1	1
	0	0	0	1	1	1	1	1	0	0	1	1	1
	0	0	0	1	0	1	1	1	0	0	1	1	1
	0	0	0	1	1	1	1	1	0	0	$H[u, v]$		
	0	0	0	0	0	0	0	0	0	0			
	0	0	1	0	0	0	0	0	0	0			
	0	0	0	0	0	0	0	0	0	0			
$F[x, y]$													
Dilation: does H "overlap" F around $[\mathrm{x}, \mathrm{y}]$? - $\mathrm{G}[\mathrm{x}, \mathrm{y}]=\underset{ }{1} \begin{aligned} & \text { if } \mathrm{H}[\mathrm{u}, \mathrm{v}] \text { and } \mathrm{F}[\mathrm{x}+\mathrm{u}-1, \mathrm{y}+\mathrm{v}-1] \text { are both } 1 \text { somewhere } \\ & 0 \text { otherwise }\end{aligned}$ - Written $G=H \oplus F$													

Dilation: does H "overlap" F around $[\mathrm{x}, \mathrm{y}]$?

- $\mathrm{G}[\mathrm{x}, \mathrm{y}]=1$ if $\mathrm{H}[\mathrm{u}, \mathrm{v}]$ and $\mathrm{F}[\mathrm{x}+\mathrm{u}-1, \mathrm{y}+\mathrm{v}-1]$ are both 1 somewhere
- Written $G=H \oplus F$

Erosion operator: $G=H \ominus F$

$F[x, y]$
Erosion: is H "contained in" F around $[x, y]$

- $G[x, y]=1$ if $F[x+u-1, y+v-1]$ is 1 everywhere that $H[u, v]$ is 1 0 otherwise
- Written $G=H \ominus F$

Erosion operator

Nested dilations and erosions

What does this operation do?
$G=H \ominus(H \oplus F)$

- this is called a closing operation

Nested dilations and erosions

What does this operation do?

$$
G=H \ominus(H \oplus F)
$$

- this is called a closing operation

Is this the same thing as the following?

$$
G=H \oplus(H \ominus F)
$$

Nested dilations and erosions

What does this operation do?

$$
G=H \oplus(H \ominus F)
$$

- this is called an opening operation
- http://www.dai.ed.ac.uk/HIPR2/open.htm

You can clean up binary pictures by applying combinations of dilations and erosions
Dilations, erosions, opening, and closing operations are known as morphological operations

- see http://www.dai.ed.ac.uk/HIPR2/morops.htm
Fully-connected graph
• node for every pixel
• link between every pair of pixels, $\mathbf{p , q}$
• cost c_{pq} for each link
- c_{pq} measures similarity of pixels

Graph-based segmentation?

Similarity can be measured in many ways:

- Color
- Position
- Texture
- Motion
- Depth
- Etc.

Segmentation by Normalized Cuts

Break Graph into Segments

- Delete links that cross between segments
- Easiest to break links that have low cost (not similar)
- similar pixels should be in the same segments
- dissimilar pixels should be in different segments

Cuts in a graph

Link Cut

- set of links whose removal makes a graph disconnected
- cost of a cut:

$$
\operatorname{cut}(A, B)=\sum_{p \in A, q \in B} c_{p, q}
$$

Find minimum cut

- gives you a segmentation
- fast algorithms exist for doing this

But min cut is not always the best cut...

Cuts in a graph

Normalized Cut

- a cut penalizes large segments
- fix by normalizing for size of segments

$$
N \operatorname{cut}(A, B)=\frac{\operatorname{cut}(A, B)}{\operatorname{volume}(A)}+\frac{\operatorname{cut}(A, B)}{\operatorname{volume}(B)}
$$

- volume $(A)=$ sum of costs of all edges that touch A

Interpretation as a Dynamical System

Treat the links as springs and shake the system

- elasticity proportional to cost
- vibration "modes" correspond to segments
- can compute these by solving an eigenvector problem

Which is best?

Both mean-shift and normalized cuts are popular.
Normalized cuts can handle complex similarly measures.
Both do a better job than K-means at segmenting areas of smoothly varying intensities.

