Edge Detection

From Sandlot Science

Today's reading

- Cipolla & Gee on edge detection (available online)
- Szelisi 3.4.1-3.4.2

Announcements

Mailing list on catalyst

• you should have received a message

Office hours by appointment

Project 1 out today (due in two weeks)

- posted on course web page

New late day policy: 3 free late days

- use any time over the quarter
- e.g., if you use them all in project 1, you would need to turn it in by Saturday at 6:30.

Edge detection

Convert a 2D image into a set of curves

- · Extracts salient features of the scene
- More compact than pixels

Origin of Edges

Edges are caused by a variety of factors

Edge detection

How can you tell that a pixel is on an edge?

snoop demo

Images as functions...

Edges look like steep cliffs

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid increase in intensity

The gradient direction is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

• how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The discrete gradient

How can we differentiate a digital image F[x,y]?

The discrete gradient

How can we differentiate a digital image F[x,y]?

- Option 1: reconstruct a continuous image, then take gradient
- Option 2: take discrete derivative ("finite difference")

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a cross-correlation?

filter demo

The Sobel operator

Better approximations of the derivatives exist

• The Sobel operators below are very commonly used

- The standard defn. of the Sobel operator omits the 1/8 term
- doesn't make a difference for edge detection
- the 1/8 term is needed to get the right gradient value, however

Effects of noise

Consider a single row or column of the image

• Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

Where is the edge? Look for peaks in $\frac{\partial}{\partial x}(h\star f)$

Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

This saves us one operation:

How can we find (local) maxima of a function?

Laplacian of Gaussian

Where is the edge? Zero-crossings of bottom graph

2D edge detection filters

 ∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

filter demo

Edge detection by subtraction

original

Edge detection by subtraction

smoothed (5x5 Gaussian)

Edge detection by subtraction

Why does this work?

(scaled by 4, offset +128) filter demo

Gaussian - image filter

The Canny edge detector

original image (Lena)

The Canny edge detector

norm of the gradient

The Canny edge detector

thresholding

The Canny edge detector

thinning (non-maximum suppression)

Non-maximum suppression

Check if pixel is local maximum along gradient direction

• requires checking interpolated pixels p and r

Effect of σ (Gaussian kernel spread/size)

The choice of σ depends on desired behavior

- large σ detects large scale edges
- $\operatorname{small} \sigma$ detects fine features

The effect of scale on edge detection

