Announcements

Photo shoot next Wednesday in class!

Motion Estimation

http://www.sandlotscience.com/Distortions/Breathing_Square.htm

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm

Today's Readings

- Szeliski Chapters 7.1, 7.2, 7.4
- Newton's method Wikpedia page

Copyright A.Kitaoka 2003

Why estimate motion?

Lots of uses

- · Track object behavior
- Correct for camera jitter (stabilization)
- Align images (mosaics)
- 3D shape reconstruction
- · Special effects
- Video slow motion
- Video super-resolution

Motion estimation

Input: sequence of images

Output: point correspondence

Feature tracking

- we've seen this already (e.g., SIFT)
- · can modify this to be more efficient

Pixel tracking: "Optical Flow"

today's lecture

Optical flow

Problem definition: optical flow

How to estimate pixel motion from image H to image I?

Solve pixel correspondence problem
 given a pixel in H, look for nearby pixels of the same color in I

Key assumptions

- color constancy: a point in H looks the same in I

 for grayscale images, this is brightness constancy
- small motion: points do not move very far

This is called the **optical flow** problem

Optical flow constraints (grayscale images)

Let's look at these constraints more closely

• brightness constancy: Q: what's the equation?

- small motion: (u and v are less than 1 pixel)
 - suppose we take the Taylor series expansion of I:

$$I(x+u,y+v) = I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$$

$$\approx I(x,y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$

Optical flow equation

Combining these two equations

$$0 = I(x + u, y + v) - H(x, y)$$

$$\approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v - f(x, y)$$

$$= I(x, y) - H(x, y) + (\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}) \cdot (u, v)$$

$$= I(x, y) - H(x, y) + (\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y}) \cdot (u, v)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v) - H(x, y)$$

$$= I(x + u, y + v)$$

Optical flow equation

Combining these two equations

$$0 = I(x + u, y + v) - H(x, y)$$

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$

$$\approx I_t + I_x u + I_y v$$

$$\approx I_t + \nabla I \cdot [u \ v]$$
shorthand: $I_x = \frac{\partial I}{\partial x}$

$$I_x = \frac{\partial I}{\partial x}$$

In the limit as u and v go to zero, this becomes exact

$$0 = I_t + \nabla I \cdot \left[\frac{\partial x}{\partial t} \, \frac{\partial y}{\partial t} \right]$$

Optical flow equation

$$0 = I_t + \nabla I \cdot [u \ v]$$

Q: how many unknowns and equations per pixel?

Intuitively, what does this constraint mean?

- The component of the flow in the gradient direction is determined
- The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion

http://www.sandlotscience.com/Ambiguous/Barberpole_Illusion.htm

Aperture problem

Aperture problem

Solving the aperture problem

Basic idea: assume motion field is smooth

Horn & Schunk: add smoothness term

$$\int \int (I_t + \nabla I \cdot [u \ v])^2 + \lambda^2 (\|\nabla u\|^2 + \|\nabla v\|^2) \ dx \ dy$$

Lucas & Kanade: assume locally constant motion

• pretend the pixel's neighbors have the same (u,v)

Many other methods exist. Here's an overview:

- S. Baker, M. Black, J. P. Lewis, S. Roth, D. Scharstein, and R. Szeliski. A database and evaluation methodology for optical flow. In Proc. ICCV, 2007
- http://vision.middlebury.edu/flow/

Solving the aperture problem

How to get more equations for a pixel?

- · Basic idea: impose additional constraints
 - most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - » If we use a 5x5 window, that gives us 25 equations per pixel!

$$0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$$

$$\begin{bmatrix} I_{x}(\mathbf{p_{1}}) & I_{y}(\mathbf{p_{1}}) \\ I_{x}(\mathbf{p_{2}}) & I_{y}(\mathbf{p_{2}}) \\ \vdots & & \vdots \\ I_{x}(\mathbf{p_{25}}) & I_{y}(\mathbf{p_{25}}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} I_{t}(\mathbf{p_{1}}) \\ I_{t}(\mathbf{p_{2}}) \\ \vdots \\ I_{t}(\mathbf{p_{25}}) \end{bmatrix}$$

$$A \qquad d \qquad b$$

$$25 \times 2 \qquad 2 \times 1 \qquad 25 \times 1$$

Lucas-Kanade flow

Prob: we have more equations than unknowns

$$\begin{array}{ccc}
A & d = b \\
25 \times 2 & 2 \times 1 & 25 \times 1
\end{array}$$
 minimize $||Ad - b||^2$

Solution: solve least squares problem

• minimum least squares solution given by solution (in d) of:

$$(A^T A) d = A^T b$$

$$2 \times 2 \times 1 \quad 2 \times 1$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A \qquad A^T b$$

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lucas & Kanade (1981)
- described in Szesliski text (today's reading)

Conditions for solvability

• Optimal (u, v) satisfies Lucas-Kanade equation

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = - \begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$

$$A^T A \qquad A^T b$$

When is This Solvable?

- A^TA should be invertible
- ATA should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of **A^TA** should not be too small
- A^TA should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

Does this look familiar?

• ATA is the Harris matrix

Errors in Lucas-Kanade

What are the potential causes of errors in this procedure?

- Suppose A^TA is easily invertible
- Suppose there is not much noise in the image

When our assumptions are violated

- Brightness constancy is **not** satisfied
- The motion is **not** small
- A point does **not** move like its neighbors
 - window size is too large
 - what is the ideal window size?

Observation

This is a two image problem BUT

- Can measure sensitivity by just looking at one of the images!
- · This tells us which pixels are easy to track, which are hard
 - very useful for feature tracking...

Improving accuracy

Recall our small motion assumption

$$0 = I(x + u, y + v) - H(x, y)$$
$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

This is not exact

• To do better, we need to add higher order terms back in:

$$= I(x, y) + I_x u + I_y v + \text{higher order terms} - H(x, y)$$

This is a polynomial root finding problem

Root Finding

Improving accuracy

Recall our small motion assumption

$$0 = I(x + u, y + v) - H(x, y)$$
$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$

This is not exact

• To do better, we need to add higher order terms back in:

$$= I(x,y) + I_x u + I_y v + \text{higher order terms} - H(x,y)$$

This is a polynomial root finding problem

- Can solve using Newton's method
 - Also known as Newton-Raphson method
 - Today's reading (first four pages)
- » http://www.library.cornell.edu/nr/bookcpdf/c9-4.pdf
- · Approach so far does one iteration of Newton's method
 - Better results are obtained via more iterations

Iterative Refinement

Iterative Lucas-Kanade Algorithm

- 1. Estimate velocity at each pixel by solving Lucas-Kanade equations
- 2. Warp H towards I using the estimated flow field
 - use image warping techniques
- 3. Repeat until convergence

Revisiting the small motion assumption

Is this motion small enough?

- Probably not—it's much larger than one pixel (2nd order terms dominate)
- · How might we solve this problem?

Reduce the resolution!

Coarse-to-fine optical flow estimation

Coarse-to-fine optical flow estimation

Robust methods

L-K minimizes a sum-of-squares error metric

· least squares techniques overly sensitive to outliers

Error metrics

$$\rho_{\sigma}(x) = \log\left(1 + \frac{1}{2}\left(\frac{x}{\sigma}\right)^{2}\right)$$

Robust optical flow

Robust Horn & Schunk

$$\int \int \rho(I_t + \nabla I \cdot [u\ v]) + \lambda^2 \rho(\|\nabla u\|^2 + \|\nabla v\|^2)\ dx\ dy$$

Robust Lucas-Kanade

$$\sum_{(x,y)\in W} \rho(I_t + \nabla I \cdot [u \ v])$$

first image

quadratic flow

lorentzian flow

detected outliers

Reference

 Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, Fourth International Conf. on Computer Vision (ICCV), 1993, pp. 231-236 http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf

Flow quality evaluation

Flow quality evaluation

Flow quality evaluation

Middlebury flow page

http://vision.middlebury.edu/flow/

Ground Truth

Flow quality evaluation

Middlebury flow page

• http://vision.middlebury.edu/flow/

Color encoding of flow vectors

Flow quality evaluation

Middlebury flow page

• http://vision.middlebury.edu/flow/

Best-in-class alg (as of 2/26/12)

Color encoding of flow vectors