Announcements

Photo shoot next Wednesday in class!

Motion Estimation

http://www.sandlotscience.com/Distortions/Breathing Square.htm

http://www.sandlotscience.com/Ambiguous/Barberpole Illusion.htm

Today’s Readings
e Szeliski Chapters 7.1, 7.2, 7.4
¢ Newton's method Wikpedia page

Copyright A.Kitaoka 2003

Why estimate motion?

Lots of uses
« Track object behavior
¢ Correct for camera jitter (stabilization)
¢ Align images (mosaics)
« 3D shape reconstruction
¢ Special effects
¢ Video slow motion
¢ Video super-resolution




Motion estimation

Optical flow

Input: sequence of images
Output: point correspondence

Feature tracking
« we've seen this already (e.g., SIFT)
¢ can modify this to be more efficient

Pixel tracking: “Optical Flow”
« today’s lecture

Problem definition: optical flow

Optical flow constraints (grayscale images)

./ [} °

Y °
o—> z o R
H(z,y) I(z,y)

How to estimate pixel motion from image H to image 1?
« Solve pixel correspondence problem

— given a pixel in H, look for|nearby|pixels of the]same color|in |

Key assumptions

e color constancy: a pointin H looks the same in |
— for grayscale images, this is brightness constancy

e small motion: points do not move very far

This is called the optical flow problem
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Let’s look at these constraints more closely
« brightness constancy: Q: what'’s the equation?

Hixy) ~TGao,y4v) =0
¢ small motion: (u and v are less than 1 pixel)
— suppose we take the Taylor series expansion of I:

I(z+u, y+v) = I(=x, y)—l—%u—kg—év F-higher order terms
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Optical flow equation

Combining these two equations
O=I(z+uy+v)—H(zy)
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Optical flow equation

Combining these two equations
0=1I(z~+uy+v)— H(zy) shorthand: I, = 9L
~ I(z,y) + Lyu+ Iyv — H(z,y)
~ (I(z,y) = H(z,y)) + Leu + Lyv
~ I+ Ipu+ Iy
~ I+ VI [u o]

In the limit as u and v go to zero, this becomes exact

0=1,4VI-[%F 3]

Optical flow equation

O0=1+VI:[u v]

Q: how many unk£owns and equations per pixel?
A

—

Intuitively, what does this constraint mean?
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¢ The component of the flow in the gradient direction is determined
» The component of the flow parallel to an edge is unknown

This explains the Barber Pole illusion
http://www.sandlotscience.com/Ambiguous/Barberpole Illusion.htm

Aperture problem




Aperture problem Solving the aperture problem

Basic idea: assume motion field is smooth

Horn & Schunk: add smoothness term
[ [ @+ V1w o320Vl 4 90]?) do dy

Lucas & Kanade: assume locally constant motion
« pretend the pixel's neighbors have the same (u,v)

Many other methods exist. Here’s an overview:

¢ S. Baker, M. Black, J. P. Lewis, S. Roth, D. Scharstein, and R. Szeliski. A database
and evaluation methodology for optical flow. In Proc. ICCV, 2007

e http://vision.middlebury.edu/flow/

Solving the aperture problem Lucas-Kanade flow
How to get more equations for a pixel? Prob: we have more equations than unknowns
« Basic idea: impose additional constraints A d=b minimize ||Ad _ b||2
— most common is to assume that the flow field is smooth locally 25x2 2x1 25x1

— one method: pretend the pixel's neighbors have the same (u,v)
» If we use a 5x5 window, that gives us 25 equations per pixel!

0 = Li(p;) + VI(p;y) - [u v]

Solution: solve least squares problem
¢ minimum least squares solution given by solution (in d) of:

(AT A) d = ATh

2x2 2x1 2x1

I:(p1) Iy(p1) I;(p1)
L(p2) Iy(p2) |[u] _ | Lp2) Shle Shly | [u] _ _[ Sk
: ; v : Yolely Y lyly || v > Iyl
I:(p25) Iy(p2s) I;(p2s5) AT A AT
A d b
25x2 2x1 25x1 e The summations are over all pixels in the K x K window

e This technique was first proposed by Lucas & Kanade (1981)
— described in Szesliski text (today’s reading)




Conditions for solvability

« Optimal (u, v) satisfies Lucas-Kanade equation
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When is This Solvable?
« ATA should be invertible
» ATA should not be too small due to noise
— eigenvalues }, and X, of ATA should not be too small
« ATA should be well-conditioned
— A/ A, should not be too large (A, = larger eigenvalue)

Does this look familiar?
* ATA is the Harris matrix

Observation

This is a two image problem BUT
« Can measure sensitivity by just looking at one of the images!

¢ This tells us which pixels are easy to track, which are hard
— very useful for feature tracking...

Errors in Lucas-Kanade

What are the potential causes of errors in this procedure?
« Suppose ATA is easily invertible
¢ Suppose there is not much noise in the image

When our assumptions are violated

» Brightness constancy is not satisfied

¢ The motion is not small

< A point does not move like its neighbors

— window size is too large
—what is the ideal window size?

Improving accuracy

Recall our small motion assumption
0=1I(z+uy+v)— H(z,y)
~ I(z,y) + Iyu+ Iyv — H(x,y)
This is not exact
« To do better, we need to add higher order terms back in:
= I(:L‘, y) + Ixu + va —+ higher order terms — H(:L', y)
This is a polynomial root finding problem




Root Finding

N Ne s ik

Improving accuracy

Recall our small motion assumption
O0=I(z+uy+v)— H(zy)
~ I(z,y) + Lyu+ Iyv — H(z, y)
This is not exact
» To do better, we need to add higher order terms back in:
= I(:L‘, y) + v+ IyU —+ higher order terms — H(:L', y)
This is a polynomial root finding problem

e Can solve using Newton’s method
— Also known as Newton-Raphson method
— Today'’s reading (first four pages)

»  http://www.library.cornell.edu/nr/bookcpdf/c9-4.pdf

« Approach so far does one iteration of Newton’s method
— Better results are obtained via more iterations

lterative Refinement

Iterative Lucas-Kanade Algorithm
1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp H towards | using the estimated flow field
- use image warping techniques
3. Repeat until convergence

Reuvisiting the small motion assumption

Is this motion small enough?
Probably not—it's much larger than one pixel (2" order terms dominate)

* How might we solve this problem?




Reduce the resolution!

Coarse-to-fine optical flow estimation

u=1.25 pixels

u=2.5 pixels -

u=10 pixels’,:"'

Gaussian pyramid of image H Gaussian pyramid of image |

- run iterative L-K -

lwarp & upsample'

- —— run |terat|ve L-K +—

Gaussian pyramid of image H Gaussian pyramid of image |

Robust methods

L-K minimizes a sum-of-squares error metric
« least squares techniques overly sensitive to outliers

Error metrics

quadratic
pla) = 22

truncated quadratic lorentzian

pﬂk()_{‘x: Ifll{é:

a  otherwise

pale) = log (14 5(5)°)




Robust optical flow

Robust Horn & Schunk

[ [ o491 [w oD+ X20(|Vul 2+ 90]?) do dy
Robust Lucas-Kanade

S pI+ VI -[u v])

(z,y)eW

firstimage quadratic flow lorentzian flow detected outliers

Reference

Black, M. J. and Anandan, P., A framework for the robust estimation of optical flow, Fourth
International Conf. on Computer Vision (ICCV), 1993, pp. 231-236
http://www.cs.washington.edu/education/courses/576/03sp/readings/black93.pdf

Flow quality evaluation
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Flow quality evaluation

Middlebury flow page
 http://vision.middlebury.edu/flow/
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Ground Truth

Color encoding
of flow vectors




Flow quality evaluation

Middlebury flow page
» http://vision.middlebury.edu/flow/
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Lucas-Kanade flow

Ground Truth

Flow quality evaluation

Middlebury flow page
» http://vision.middlebury.edu/flow/
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Best-in-class alg (as of 2/26/12)

Ground Truth




