Announcements

- Project 1 Due NOW
- · Project 2 out today
 - Help session at end of class

Projective geometry

Readings

- Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992, (read 23.1 23.5, 23.10)
 - available online: http://www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf

Projective geometry—what's it good for?

Uses of projective geometry

- Drawing
- Measurements
- · Mathematics for projection
- · Undistorting images
- Focus of expansion
- Camera pose estimation, match move
- Object recognition

Applications of projective geometry

Reconstructions by Criminisi et al.

Measurements on planes

Homographies

Perspective projection of a plane

- · Lots of names for this:
 - homography, texture-map, colineation, planar projective map
- Modeled as a 2D warp using homogeneous coordinates

To apply a homography H

- Compute **p'** = **Hp** (regular matrix multiply)
- Convert p' from homogeneous to image coordinates
 - divide by w (third) coordinate

Examples

$$\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$(1 dontry \times farm)$$

Image rectification

To unwarp (rectify) an image

- solve for homography **H** given **p** and **p**'
- solve equations of the form: wp' = Hp
- linear in unknowns: w and coefficients of H
- H is defined up to an arbitrary scale factor
- how many points are necessary to solve for **H**?

work out on board

$$\begin{bmatrix}
x' \\
y'
\end{bmatrix} \stackrel{\sim}{=} \begin{bmatrix} ab & c \\
d & f \\
g & h & l
\end{bmatrix}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} y' (g \times 1 b \times 1c) = a \times 1 b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} y' (g \times 1 b \times 1c) = a \times 1 b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1 b \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1 b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1b \times 1c}{g \times 1c} \stackrel{\rightarrow}{=} a \times 1b \times 1c}$$

$$x' = \frac{a \times 1b \times 1c}$$

Solving for homographies

$$\begin{bmatrix} x_i' \\ y_i' \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$x_i' = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}$$

$$y_i' = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}$$

$$x_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{00}x_i + h_{01}y_i + h_{02}$$

$$y_i'(h_{20}x_i + h_{21}y_i + h_{22}) = h_{10}x_i + h_{11}y_i + h_{12}$$

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x_i'x_i & -x_i'y_i & -x_i' \\ 0 & 0 & 0 & x_i & y_i & 1 & -y_i'x_i & -y_i'y_i & -y_i' \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solving for homographies

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1'x_1 & -x_1'y_1 & -x_1' \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y_1'x_1 & -y_1'y_1 & -y_1' \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & 1 & 0 & 0 & 0 & -x_n'x_n & -x_n'y_n & -x_n' \\ 0 & 0 & 0 & x_n & y_n & 1 & -y_n'x_n & -y_n'y_n & -y_n' \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

Defines a least squares problem: minimize $||Ah - 0||^2$

- Since **h** is only defined up to scale, solve for unit vector **ĥ**
- Solution: $\hat{\mathbf{h}}$ = eigenvector of $\mathbf{A}^T\mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

The projective plane

Why do we need homogeneous coordinates?

• represent points at infinity, homographies, perspective projection, multi-view relationships

What is the geometric intuition?

• a point in the image is a ray in projective space

- Each point (x,y) on the plane is represented by a ray (sx,sy,s)
- all points on the ray are equivalent: $(x, y, 1) \cong (sx, sy, s)$

Projective lines

What does a line in the image correspond to in projective space?

- A line is a *plane* of rays through origin
- all rays (x,y,z) satisfying: ax + by + cz = 0

in vector notation:
$$0 = \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

A line is also represented as a homogeneous 3-vector I

Point and line duality

- A line I is a homogeneous 3-vector = [a b c]
- It is ⊥ to every point (ray) p on the line: I p=0

What is the line I spanned by rays p_1 and p_2 ?

- I is \perp to p_1 and $p_2 \Rightarrow I = p_1 \times p_2$ 2
- I is the plane normal

What is the intersection of two lines I_1 and I_2 ?

• $p \text{ is } \perp \text{ to } I_1 \text{ and } I_2 \implies p = I_1 \times I_2$

Points and lines are dual in projective space

 given any formula, can switch the meanings of points and lines to get another formula

Ideal points and lines

Ideal point ("point at infinity")

- $p \cong (x, y, 0)$ parallel to image plane
- · It has infinite image coordinates

Ideal line

- $I \cong (a, b, 0)$ parallel to image plane
 - Corresponds to a line in the image (finite coordinates)
 - goes through image origin (principle point)

Homographies of points and lines

Computed by 3x3 matrix multiplication

- To transform a point: **p'** = **Hp**
- To transform a line: $(lp=0) \Rightarrow l'p'=0$ $-0 = lp = lH^{-1}Hp = lH^{-1}p' \Rightarrow l' = lH^{-1}$
 - . lines are transformed by postmultiplication of H-1

3D projective geometry

These concepts generalize naturally to 3D

- · Homogeneous coordinates
 - Projective 3D points have four coords: $\mathbf{P} = (X,Y,Z,W)$
- Duality
 - A plane N is also represented by a 4-vector
 - Points and planes are dual in 3D: N P=0
- · Projective transformations
 - Represented by 4x4 matrices T: P' = TP, N' = N T-1

Vanishing points

Vanishing point

projection of a point at infinity

3D to 2D: "perspective" projection

What IS preserved?

CONICS

Vanishing points

Properties

- Any two parallel lines have the same vanishing point v
- The ray from C through v is parallel to the lines
- An image may have more than one vanishing point
 - in fact every pixel is a potential vanishing point

Vanishing lines

Multiple Vanishing Points

- · Any set of parallel lines on the plane define a vanishing point
- The union of all of vanishing points from lines on the same plane is the *vanishing line*
 - For the ground plane, this is called the *horizon*

Vanishing lines

Multiple Vanishing Points

· Different planes define different vanishing lines

Computing vanishing points

Computing vanishing points

Properties $\mathbf{v} = \mathbf{\Pi} \mathbf{P}_{\infty}$ (\prod is camera projection matrix)

- P_{∞} is a point at *infinity*, \mathbf{v} is its projection
- They depend only on line direction
- Parallel lines P₀ + tD, P₁ + tD intersect at P_∞

Computing the horizon

Properties

- I is intersection of horizontal plane through C with image plane
- Compute I from two sets of parallel lines on ground plane
- All points at same height as C project to I
 - points higher than C project above I
- Provides way of comparing height of objects in the scene

Fun with vanishing points

Perspective cues

Perspective cues

Perspective cues

Are these guys the same height?

Comparing heights

Measuring height

Computing vanishing points (from lines)

Intersect p₁q₁ with p₂q₂

Least squares version
$$\times (p_{\mathbf{z}} \times q_{1}) \times (p_{\mathbf{z}} \times q_{2})$$

- · Better to use more than two lines and compute the "closest" point of intersection
- See notes by **Bob Collins** for one good way of doing this:
- http://www-2.cs.cmu.edu/~ph/869/www/notes/vanishing.txt

Measuring height without a ruler

Compute Z from image measurements

• Need more than vanishing points to do this

The cross ratio

A Projective Invariant

• Something that does not change under projective transformations (including perspective projection)

The cross-ratio of 4 collinear points

$$\frac{\|\mathbf{P}_{3} - \mathbf{P}_{1}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}\|}{\|\mathbf{P}_{3} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{1}\|} \qquad \mathbf{P}_{i} = \begin{bmatrix} X_{i} \\ Y_{i} \\ Z_{i} \\ 1 \end{bmatrix}$$

$$\mathbf{P}_i = \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

Can permute the point ordering

$$\frac{\|\mathbf{P}_{1} - \mathbf{P}_{3}\| \|\mathbf{P}_{4} - \mathbf{P}_{2}}{\|\mathbf{P}_{1} - \mathbf{P}_{2}\| \|\mathbf{P}_{4} - \mathbf{P}_{3}}$$

4! = 24 different orders (but only 6 distinct values)

This is the fundamental invariant of projective geometry

Measuring height

Computing (X,Y,Z) coordinates

Camera calibration

Goal: estimate the camera parameters

• Version 1: solve for projection matrix

- Version 2: solve for camera parameters separately
 - intrinsics (focal length, principle point, pixel size)
 - extrinsics (rotation angles, translation)
 - radial distortion

Vanishing points and projection matrix

- $\boldsymbol{\pi}_1 = \boldsymbol{\Pi}[1 \ 0 \ 0 \ 0]^T = \mathbf{v}_{\mathsf{x}}$ (X vanishing point)
- similarly, $\pi_2 = \mathbf{v}_Y$, $\pi_3 = \mathbf{v}_Z$
- $oldsymbol{\pi}_4 = oldsymbol{\Pi}[0 \ 0 \ 0 \ 1]^T$ = projection of world origin

$$\mathbf{\Pi} = [\mathbf{v}_X \ \mathbf{v}_Y \ \mathbf{v}_Z \ o]^T$$

Not So Fast! We only know v's and o up to a scale factor

$$\mathbf{\Pi} = [a\mathbf{v}_X \ b\mathbf{v}_Y \ c\mathbf{v}_Z \ do]^T$$

 Need more info to solve for these scale parameters (we won't cover this today)

Calibration using a reference object

Place a known object in the scene

- identify correspondence between image and scene
- · compute mapping from scene to image

Issues

- · must know geometry very accurately
- must know 3D->2D correspondence

Estimating the projection matrix

Place a known object in the scene

- identify correspondence between image and scene
- compute mapping from scene to image

$$\left[\begin{array}{c} u_i \\ v_i \\ 1 \end{array} \right] \cong \left[\begin{array}{cccc} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{array} \right] \left[\begin{array}{c} X_i \\ Y_i \\ Z_i \\ 1 \end{array} \right]$$

Chromaglyphs

Courtesy of Bruce Culbertson, HP Labs http://www.hpl.hp.com/personal/Bruce_Culbertson/ibr98/chromagl.htm

Direct linear calibration

$$\begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} m_{00} & m_{01} & m_{02} & m_{03} \\ m_{10} & m_{11} & m_{12} & m_{13} \\ m_{20} & m_{21} & m_{22} & m_{23} \end{bmatrix} \begin{bmatrix} X_i \\ Y_i \\ Z_i \\ 1 \end{bmatrix}$$

$$\begin{array}{ll} u_i & = & \frac{m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}} \\ \\ v_i & = & \frac{m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}}{m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}} \end{array}$$

$$u_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{00}X_i + m_{01}Y_i + m_{02}Z_i + m_{03}$$

$$v_i(m_{20}X_i + m_{21}Y_i + m_{22}Z_i + m_{23}) = m_{10}X_i + m_{11}Y_i + m_{12}Z_i + m_{13}$$

Direct linear calibration

$$\begin{bmatrix} X_1 & Y_1 & Z_1 & 1 & 0 & 0 & 0 & 0 & -u_1X_1 & -u_1Y_1 & -u_1Z_1 & -u_1 \\ 0 & 0 & 0 & 0 & X_1 & Y_1 & Z_1 & 1 & -v_1X_1 & -v_1Y_1 & -v_1Z_1 & -v_1 \\ \vdots & \vdots \\ X_n & Y_n & Z_n & 1 & 0 & 0 & 0 & 0 & -u_nX_n & -u_nY_n & -u_nZ_n & -u_n \\ 0 & 0 & 0 & 0 & X_n & Y_n & Z_n & 1 & -v_nX_n & -v_nY_n & -v_nZ_n & -v_n \end{bmatrix} \begin{bmatrix} m_{00} \\ m_{01} \\ m_{02} \\ m_{03} \\ m_{11} \\ m_{12} \\ m_{13} \\ m_{20} \\ m_{21} \\ m_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

Can solve for m_{ii} by linear least squares

· use eigenvector trick that we used for homographies

Alternative: multi-plane calibration

Images courtesy Jean-Yves Bouguet, Intel Corp.

Advantage

- Only requires a plane
- Don't have to know positions/orientations
- Good code available online!
- OpenCV library: http://opencv.org/
- Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
- GML Toolkit http://graphics.cs.msu.ru/en/node/909

Direct linear calibration

Advantage:

· Very simple to formulate and solve

Disadvantages:

- · Doesn't tell you the camera parameters
- · Doesn't model radial distortion
- Hard to impose constraints (e.g., known focal length)
- Doesn't minimize the right error function

For these reasons, nonlinear methods are preferred

- Define error function E between projected 3D points and image positions
- E is nonlinear function of intrinsics, extrinsics, radial distortion
- Minimize E using nonlinear optimization techniques
- e.g., variants of Newton's method (e.g., Levenberg Marquart)