Filtering and Pyramids

CSE P576

Dr. Matthew Brown

Filtering and Pyramids

- Linear filtering (convolution, correlation)
- Blurring, sharpening, edge detection
- Gaussian and Laplacian Pyramids
- Multi-scale representations

Linear Operators

- How are photo filters implemented?

blur

sharpen

edge filter

Non-Linear Operators

- How are photo filters implemented?

edge preserve smooth

median

canny edges

Correlation Example

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

* \quad| 0.1 | 0.1 | 0.1 |
| :---: | :---: | :---: |
| 0.1 | 0.2 | 0.1 |
| 0.1 | 0.1 | 0.1 |

69	95	116	125	129	132
68	92	110	120	126	132
66	86	104	114	124	132
62	78	94	108	120	129
57	69	83	98	112	124
53	60	71	85	100	114

element wise
(dot) product

65	98	123
65	96	115
63	91	107

$0.1 * 65+0.1 * 98+0.1 * 123+$
$=\quad 0.1 * 65+0.2 * 96+0.1 * 115+$
$0.1 * 63+0.1 * 91+0.1 * 107$
$=0$

Correlation Example

- With colour images, perform the dot products over each band

Correlation

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

$I(x, y)$

* \quad| 0.1 | 0.1 | 0.1 |
| :---: | :---: | :---: |
| 0.1 | 0.2 | 0.1 |
| 0.1 | 0.1 | 0.1 |

$=$| 69 | 95 | 116 | 125 | 129 | 132 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 68 | 92 | 110 | 120 | 126 | 132 |
| 66 | 86 | 104 | 114 | 124 | 132 |
| 62 | 78 | 94 | 108 | 120 | 129 |
| 57 | 69 | 83 | 98 | 112 | 124 |
| 53 | 60 | 71 | 85 | 100 | 114 |

$I_{c r}(x, y)$
2.1

Correlation Example

- Centre-surround filter

59	81	82	104	139									-2	-3	-2	-3	-5	
52	77	93	112	133									-1	-3	-2	-3	-4	
69	96	100	110	124			0	2	3	2	0		-1	-2	0	1	1	
89	115	100	118	124			2	0	-4		2		-3	-4	0	1	1	
96	118	118	132	141		*	3	-4	-14	-4	3	=	-3	-4	0	0	0	...
75	105	112	136	154			2	0	-4	0	2		-1	-2	0	-1	-1	
63	99	130	147	145			0	2	3	2	0		1	-1	-1	-1	0	
59	114	140	151	142									1	-3	-3	-1	0	
58	132	145	149	142									1	-4	-3	-1	-1	
58	131	146	140	131									1	-4	-4	-2	0	

Correlation Example

- Edge effects

- To maintain the image size, we can pad the input by adding boundary pixels
- In this example the input has been zero padded

Padding

- What happens to pixels that overlap the boundary?

zero

blurred zero

wrap

normalized zero

clamp

blurred clamp

mirror

blurred mirror
"zero" and "clamp" (also called zero-order hold) are common in vision applications

Correlation and Convolution

- Correlation

$$
I(x, y) \operatorname{corr} k(x, y)=\int_{t} \int_{s} I(x+s, y+t) k(s, t) d s d t
$$

- Convolution

$$
I(x, y) * k(x, y)=\int_{t} \int_{s} I(x-s, y-t) k(s, t) d s d t
$$

62.2

For symmetric kernels, correlation == convolution

Point Spread Function

0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0									
0	0	1	0	0	0	0	0									
0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0									
0	0	0	0	0	1	0	0									
0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0	$*$	0	0	0	0	0	0	0	0
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---							
4	5	6														
7	8	9														
0	9	8	7	0	0	0	0									
0	6	5	4	0	0	0	0									
0	3	2	1	0	0	0	0									
0	0	0	0	9	8	7	0									
0	0	0	0	6	5	4	0									
0	0	0	0	3	2	1	0									
0	0	0	0	0	0	0	0									

Point Spread Function

1	1	1	2	3	0	0	0										
1	1	1	2	3	0	0	0										
1	1	1	2	3	0	0	0										
4	4	4	5	6	0	0	0										
7	7	7	8	9	0	0	0										
0	0	0	0	0	1	0	0										
0	0	0	0	0	0	0	0										
0	0	0	0	0	0	0	0	$*$	0	2	0	0	0	0	0	0	0
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---								
4	5	6															
7	8	9															
0	9	8	7	0	0	0	0										
0	6	5	4	0	0	0	0										
0	3	2	1	0	0	0	0										
0	0	0	0	9	8	7	0										
0	0	0	0	6	5	4	0										
0	0	0	0	3	2	1	0										
0	0	0	0	0	0	0	0										

- The point spread function is the correlation kernel rotated by 180° (= the convolution kernel)

Gaussian Blur

- Gaussian kernels are often used for smoothing

Gaussian Blur

- 2D Gaussian filter is a product of row and column filters

Edge Filtering

- Gradients can be computed using a finite difference approximation to the derivative, e.g., $g_{x}=I_{x+1}-I_{x}$

g_{x}

g_{y}

Centre Surround Filter

- Useful for extracting features at a certain scale

We can implement a sharpening filter by adding a multiple of this highfrequency band back to the image

Properties of Convolution

- Linear + associative, commutative
2.3

Separable Filtering

- 2D Gaussian blur by horizontal/vertical blur

horizontal

vertical

vertical

horizontal

Separable Filtering

- Several useful filters can be applied as independent row and column operations

$\frac{1}{K^{2}}$| 1 | 1 | \cdots | 1 |
| :---: | :---: | :---: | :---: |
| 1 | 1 | \cdots | 1 |
| \vdots | \vdots | 1 | \vdots |
| 1 | 1 | \cdots | 1 |

$\frac{1}{16}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

$\frac{1}{256}$| 1 | 4 | 6 | 4 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 4 | 16 | 24 | 16 | 4 |
| 6 | 24 | 36 | 24 | 6 |
| 4 | 16 | 24 | 16 | 4 |
| 1 | 4 | 6 | 4 | 1 |

$\frac{1}{8}$| -1 | 0 | 1 |
| :---: | :---: | :---: |
| -2 | 0 | 2 |
| -1 | 0 | 1 |

$\frac{1}{4}$| 1 | -2 | 1 |
| :---: | :---: | :---: |
| -2 | 4 | -2 |
| 1 | -2 | 1 |

$\frac{1}{K}$	1	1	\cdots

$$
\begin{array}{|l|l|l|}
\hline \frac{1}{4} & \hline 1 & 2 \\
\hline
\end{array}
$$

$$
\frac{1}{16} \begin{array}{|l|l|l|l|l|}
\hline 1 & 4 & 6 & 4 & 1 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|}
\hline & \frac{1}{2}-1 & 0 \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|}
\hline \frac{1}{2} & \hline & -2 \\
\hline
\end{array}
$$

$\begin{array}{ll}\text { (a) box, } K=5 & \text { (b) bilinear }\end{array}$
(c) "Gaussian"
(d) Sobel
(e) corner

Project I

PI

- You are now ready to try the Convolution and Image Filtering section in Project I
- convolve_1d : Implement ID convolution. Hint: pad the input with zeros to avoid border cases.
- convolve_gaussian : you can transpose a kernel to flip horizontal/vertical, but make sure it is a 2D numpy array - use np.expand_dims if not

Image Pyramids

Used in Graphics (Mip-map) and Vision (for multi-scale processing)

Resizing Images

- Naive method: form new image by selecting every nth pixel

What is wrong with this method?

Resizing Images

- Improved method: first blur the image (low pass filter)

With the correct filter, no information is lost (Nyquist)

Aliasing Example

- Sampling every 5th pixel, with and without low pass filtering

No filtering

Gaussian Blur $\sigma=3.0$

Resizing Images

every 10th pixel (aliased)

Iow pass filtered (correct sampling)

- Note that selecting every 10th pixel ignores the intervening information, whereas the low-pass filter (blur) smoothly combines it
- If we shifted the original image I pixel to the right, the aliased image would look completely different, but the the low pass filtered image would look almost the same

Sampling with Pyramids

Find the level where the sample spacing is between I and 2 pixels, apply extra fraction of inter-octave blur as needed

Pyramid Blending

Pyramid Blending

$$
I=\alpha F+(1-\alpha) B
$$

$$
10^{2}
$$

Pyramid Blending: blend lower frequency bands over larger spatial ranges

$$
10^{2}
$$

Pyramid Blending

- Smooth low frequencies, whilst preserving high frequency detail

(a)

(b)

[Burt Adelson I983]

Pyramid Blending

Alpha blend with sharp fall-off

Alpha blend with gradual fall-off

Pyramid Blend

Non-linear Filtering

- Example: Median filter

"shot" noise

gaussian blurred

median filtered

Morphology

- Non-linear binary image operations

original dilate

erode

majority

open

close

Threshold function in local structuring element
close(.) = erode(dilate(.)) etc., see Szeliski 3.3.2

Binary Operators

- More operators that apply to binary images

original image

dilate

distance transform

connected components

Next Lecture

- Feature Extraction and Matching

