
Planar Geometry
CSE P576

Dr. Matthew Brown

Image Alignment

• Aim: warp our images together using a 2D transformation

 2

Image Alignment

• Aim: warp our images together using a 2D transformation

 3

Image Alignment

• Find corresponding (matching) points between the images

 4

Image Alignment

• Compute the transformation to align the points

 5

Image Alignment

• We can also use this transformation to reject outliers

 6

!

?

Image Alignment

• We can also use this transformation to reject outliers

 7

✘

✘

Planar Geometry
• 2D Linear + Projective transformations

- Euclidean, Similarity, Affine, Homography

• Linear + Projective Cameras
- Viewing a plane, rotating about a point

 8[Szeliski 2.1]

2D Transformations
• We will look at a family that can be represented by 3x3

matrices

 9

36 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

y

x

similarity

Euclidean affine

projective

translation

Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0 = x + t or

x0 =
h

I t
i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0 =

"
I t

0

T 1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T 1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0 = Rx + t or

x0 =
h

R t
i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT = I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0 = sRx + t where s is an arbitrary scale factor. It can also be written as

x0 =
h

sR t
i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2 + b2 = 1. The similarity transform preserves angles
between lines.

This group represents perspective projections
of planar surfaces in the world

Affine Transformations
• Transformed points are a linear function of the input points

 10

• This can be written as a single matrix multiplication

3.1


x

0

y

0

�
=


a11 a12

a21 a22

� 
x

y

�
+


a13

a23

�

Linear Transformations

• Consider the action of the unit square under

 11

x

y

1

10 2 3 4

2

3

2

4
3 1 0
1 2 0
0 0 1

3

5

3.2

Linear Transform Examples

 12

Translation, rotation, scale, shear (parallel lines preserved)

These transforms are not affine (parallel lines not preserved)

Linear Transformations
• Consider a single point correspondence

 13

x2

4
x

0
1

y

0
1

1

3

5 =

2

4
a11 a12 a13

a21 a22 a23

0 0 1

3

5

2

4
x1

y1

1

3

5

y

p

p0

x

0

y0

How many points are needed to solve for a?

Computing Affine Transforms
• Lets compute an affine transform from correspondences:

 14

2

4
x

0
1

y

0
1

1

3

5 =

2

4
a11 a12 a13

a21 a22 a23

0 0 1

3

5

2

4
x1

y1

1

3

5

• Re-arrange unknowns into a vector

3.3

Computing Affine Transforms
• Linear system in the unknown parameters a

 15

2

6666664

x1 y1 1 0 0 0
0 0 0 x1 y1 1
x2 y2 1 0 0 0
0 0 0 x2 y2 1
x3 y3 1 0 0 0
0 0 0 x3 y3 1

3

7777775

2

6666664

a11

a12

a13

a21

a22

a23

3

7777775
=

2

6666664

x

0
1

y

0
1

x

0
2

y

0
2

x

0
3

y

0
3

3

7777775

• Of the form

Ma = y

Solve for a using Gaussian Elimination

Computing Affine Transforms

• We can now map any other points between the two images

 16

2

4
x

0
1

y

0
1

1

3

5 =

2

4
a11 a12 a13

a21 a22 a23

0 0 1

3

5

2

4
x1

y1

1

3

5

p

p0

Computing Affine Transforms

• Or resample one image in the coordinate system of the other

 17

This allows us to “stitch”
the two images

Linear Transformations
• Other linear transforms are special cases of affine

 18

3.4
2

4
a11 a12 a13
a21 a22 a23
0 0 1

3

5

Face Alignment

 19

Face Alignment

 20

Face Alignment

 21

2D Transformations

 22

38 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transformation Matrix # DoF Preserves Icon

translation
h

I t
i

2⇥3
2 orientation

rigid (Euclidean)
h

R t
i

2⇥3
3 lengths ⇢⇢

⇢⇢
SS
SS

similarity
h

sR t
i

2⇥3
4 angles ⇢

⇢
S
S

affine
h

A
i

2⇥3
6 parallelism ⇥⇥ ⇥⇥

projective
h

˜H
i

3⇥3
8 straight lines `̀

Table 2.1 Hierarchy of 2D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 2⇥3 matrices are extended with a third [0T 1] row to form
a full 3⇥ 3 matrix for homogeneous coordinate transformations.

Blinn (1998) describes (in Chapters 9 and 10) the ins and outs of notating and manipulating
co-vectors.

While the above transformations are the ones we use most extensively, a number of addi-
tional transformations are sometimes used.

Stretch/squash. This transformation changes the aspect ratio of an image,

x0 = sxx + tx

y0 = syy + ty,

and is a restricted form of an affine transformation. Unfortunately, it does not nest cleanly
with the groups listed in Table 2.1.

Planar surface flow. This eight-parameter transformation (Horn 1986; Bergen, Anandan,
Hanna et al. 1992; Girod, Greiner, and Niemann 2000),

x0 = a0 + a1x + a2y + a6x
2 + a7xy

y0 = a3 + a4x + a5y + a7x
2 + a6xy,

arises when a planar surface undergoes a small 3D motion. It can thus be thought of as a
small motion approximation to a full homography. Its main attraction is that it is linear in the
motion parameters, ak, which are often the quantities being estimated.

Projective Transformation
• General 3x3 matrix transformation (note need scale factor)

 23

s

2

4
x

0
1

y

0
1

1

3

5 =

2

4
a11 a12 a13

a21 a22 a23

a31 a32 a33

3

5

2

4
x1

y1

1

3

5

3.5

Project 2

• Try out the Image Warping Test section in Project 2,
particularly similarity, affine and projective transforms. You can
also try warping with the inverse transform, e.g., using
P=np.linalg.inv(P)

 24

P2

Linear vs Projective Transforms

 25

Parallelism preserved if depth variation in scene << depth of scene

Projective Camera
• Pinhole camera in homogeneous coordinates:

 26

s

2

4
u
v
1

3

5 =

2

4
f 0 0
0 f 0
0 0 1

3

5

2

4
Xc

Yc

Zc

3

5

• Add a rigid body transformation from world to camera

s

2

4
u
v
1

3

5 =

2

4
f 0 0
0 f 0
0 0 1

3

5

2

4
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

3

5

2

664

X
Y
Z
1

3

775

Projective Camera
• Pinhole camera equation:

 27

s

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

3

5

2

664

X
Y
Z
1

3

775

• Multiply out to get a general 3x4 matrix

This is called a projective camera

s

2

4
u
v
1

3

5 =

2

4
f 0 0
0 f 0
0 0 1

3

5

2

4
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

3

5

2

664

X
Y
Z
1

3

775

2D Planar Transforms
• Consider a pair of cameras viewing a plane

 28

X

Y

Z

(u2, v2)(u1, v1)

3.6

Linear Camera
• Drop the perspective division

 29

s

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

3

5

2

664

X
Y
Z
1

3

775

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1

3

5

2

664

X
Y
Z
1

3

775

Linear/Affine camera

 30

Linear/Affine Projective
2

4
p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1

3

5

2

4
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

3

5

2

4
h11 h12 h13

h21 h22 h23

h31 h32 h33

3

5

2

4
a11 a12 a13
a21 a22 a23
0 0 1

3

5

viewing plane

(Homography)

 31

 32

Rotation
• Set t = 0 in perspective camera equation

 33

s

2

4
u
v
1

3

5 =

2

4
f 0 0
0 f 0
0 0 1

3

5

2

4
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

3

5

2

664

X
Y
Z
1

3

775

3.7

 34

Next Lecture
• RANSAC

 35

