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Image Alignment

• Aim: warp our images together using a 2D transformation

 2



Image Alignment

• Aim: warp our images together using a 2D transformation
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Image Alignment

• Find corresponding (matching) points between the images
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Image Alignment

• Compute the transformation to align the points
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Image Alignment

• We can also use this transformation to reject outliers
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Image Alignment

• We can also use this transformation to reject outliers
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Planar Geometry
• 2D Linear + Projective transformations

- Euclidean, Similarity, Affine, Homography

• Linear + Projective Cameras
- Viewing a plane, rotating about a point
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2D Transformations
• We will look at a family that can be represented by 3x3 

matrices
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Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0 = x + t or

x0 =
h

I t
i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0 =

"
I t

0

T 1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T 1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0 = Rx + t or

x0 =
h

R t
i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT = I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0 = sRx + t where s is an arbitrary scale factor. It can also be written as

x0 =
h

sR t
i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2 + b2 = 1. The similarity transform preserves angles
between lines.

This group represents perspective projections 
of planar surfaces in the world



Affine Transformations
• Transformed points are a linear function of the input points
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• This can be written as a single matrix multiplication
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Linear Transformations

• Consider the action of the unit square under 
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Linear Transform Examples
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Translation, rotation, scale, shear (parallel lines preserved)

These transforms are not affine (parallel lines not preserved)



Linear Transformations
• Consider a single point correspondence
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Computing Affine Transforms
• Lets compute an affine transform from correspondences:
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Computing Affine Transforms
• Linear system in the unknown parameters a
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• Of the form

Ma = y

Solve for a using Gaussian Elimination



Computing Affine Transforms

• We can now map any other points between the two images
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Computing Affine Transforms

• Or resample one image in the coordinate system of the other
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This allows us to “stitch” 
the two images



Linear Transformations
• Other linear transforms are special cases of affine

 18

3.4
2

4
a11 a12 a13
a21 a22 a23
0 0 1

3

5



Face Alignment
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Face Alignment
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Face Alignment
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2D Transformations
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Transformation Matrix # DoF Preserves Icon

translation
h

I t
i

2⇥3
2 orientation

rigid (Euclidean)
h

R t
i

2⇥3
3 lengths ⇢⇢

⇢⇢
SS
SS

similarity
h

sR t
i

2⇥3
4 angles ⇢

⇢
S
S

affine
h

A
i

2⇥3
6 parallelism ⇥⇥ ⇥⇥

projective
h

˜H
i

3⇥3
8 straight lines `̀

  

Table 2.1 Hierarchy of 2D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 2⇥3 matrices are extended with a third [0T 1] row to form
a full 3⇥ 3 matrix for homogeneous coordinate transformations.

Blinn (1998) describes (in Chapters 9 and 10) the ins and outs of notating and manipulating
co-vectors.

While the above transformations are the ones we use most extensively, a number of addi-
tional transformations are sometimes used.

Stretch/squash. This transformation changes the aspect ratio of an image,

x0 = sxx + tx

y0 = syy + ty,

and is a restricted form of an affine transformation. Unfortunately, it does not nest cleanly
with the groups listed in Table 2.1.

Planar surface flow. This eight-parameter transformation (Horn 1986; Bergen, Anandan,
Hanna et al. 1992; Girod, Greiner, and Niemann 2000),

x0 = a0 + a1x + a2y + a6x
2 + a7xy

y0 = a3 + a4x + a5y + a7x
2 + a6xy,

arises when a planar surface undergoes a small 3D motion. It can thus be thought of as a
small motion approximation to a full homography. Its main attraction is that it is linear in the
motion parameters, ak, which are often the quantities being estimated.



Projective Transformation
• General 3x3 matrix transformation (note need scale factor)
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Project 2

• Try out the Image Warping Test section in Project 2, 
particularly similarity, affine and projective transforms. You can 
also try warping with the inverse transform, e.g., using 
P=np.linalg.inv(P)
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Linear vs Projective Transforms
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Parallelism preserved if depth variation in scene << depth of scene



Projective Camera
• Pinhole camera in homogeneous coordinates:
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Projective Camera
• Pinhole camera equation:
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• Multiply out to get a general 3x4 matrix

This is called a projective camera
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2D Planar Transforms
• Consider a pair of cameras viewing a plane
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Linear Camera
• Drop the perspective division
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Linear/Affine camera
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Rotation
• Set t = 0 in perspective camera equation
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Next Lecture
• RANSAC
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