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2-view Alignment + RANSAC
• 2-view alignment: linear equations
• Least squares and outliers
• Robust estimation via sampling
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Image Alignment

• Find corresponding (matching) points between the images
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u = Hx
2 points for Similarity
3 for Affine
4 for Homography



Image Alignment
• In practice we have many noisy correspondences + outliers 
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Linear Equations
• e.g., for an affine transform we have a linear system in the 

unknown parameters a:
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x1 y1 1 0 0 0
0 0 0 x1 y1 1
x2 y2 1 0 0 0
0 0 0 x2 y2 1
x3 y3 1 0 0 0
0 0 0 x3 y3 1
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• It is overconstrained (more equations than unknowns)
• and subject to outliers (some rows are completely wrong)

Let’s deal with these problems in a simpler context..



Robust Line Fitting
• Consider fitting a line to noisy points
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RANSAC Example
• RANSAC solution for Similarity Transform (2 points)
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RANSAC Example
• RANSAC solution for Similarity Transform (2 points)
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RANSAC Example
• RANSAC solution for Similarity Transform (2 points)
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4 inliers (red, yellow, orange, brown), 



RANSAC Example
• RANSAC solution for Similarity Transform (2 points)
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4 outliers (blue, light blue, purple, pink)



RANSAC Example
• RANSAC solution for Similarity Transform (2 points)
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4 inliers (red, yellow, orange, brown), 
4 outliers (blue, light blue, purple, pink)



RANSAC Example
• RANSAC solution for Similarity Transform (2 points)
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choose light blue, purplewarp imagecheck match distances
#inliers = 2



RANSAC Example
• RANSAC solution for Similarity Transform (2 points)
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check match distanceswarp image

RANSAC Example
• RANSAC solution for Similarity Transform (2 points)
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choose pink, blue

#inliers = 2



RANSAC Example
• RANSAC solution for Similarity Transform (2 points)
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check match distances

RANSAC Example
• RANSAC solution for Similarity Transform (2 points)
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choose red, orange

#inliers = 4

warp image



RANSAC Example
• RANSAC solution for Similarity Transform (2 points)
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RANSAC recap
1. Select minimal subset of points
2. Compute transformation T using minimal subset
3. Check consistency of all points with T, count #inliers
4. Repeat steps 1-3 to maximise #inliers
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Project 2

• Try out the RANSAC Implementation section in 
Project 2.
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2-view Rotation Estimation
• Find features + raw matches, use RANSAC to find Similarity
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2-view Rotation Estimation
• Remove outliers, can now solve for R using least squares
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2-view Rotation Estimation
• Final rotation estimation

 22



Rotation Estimation
• Least squares estimate of rotation from corresponding rays
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[ Arun et al 1987, “Kabsch Algorithm” 1976, Orthog. Procrustes ] 

6.2 Pose estimation 321

the 3⇥ 3 correlation matrix

C =
X

i

x̂0x̂T = U⌃V T . (6.32)

The rotation matrix is then obtained as R = UV T . (Verify this for yourself when x̂0 = Rx̂.)
Another technique is the absolute orientation algorithm (Horn 1987) for estimating the

unit quaternion corresponding to the rotation matrix R, which involves forming a 4⇥4 matrix
from the entries in C and then finding the eigenvector associated with its largest positive
eigenvalue.

Lorusso, Eggert, and Fisher (1995) experimentally compare these two techniques to two
additional techniques proposed in the literature, but find that the difference in accuracy is
negligible (well below the effects of measurement noise).

In situations where these closed-form algorithms are not applicable, e.g., when full 3D
covariances are being used or when the 3D alignment is part of some larger optimization, the
incremental rotation update introduced in Section 2.1.4 (2.35–2.36), which is parameterized
by an instantaneous rotation vector !, can be used (See Section 9.1.3 for an application to
image stitching.)

In some situations, e.g., when merging range data maps, the correspondence between
data points is not known a priori. In this case, iterative algorithms that start by matching
nearby points and then update the most likely correspondence can be used (Besl and McKay
1992; Zhang 1994; Szeliski and Lavallée 1996; Gold, Rangarajan, Lu et al. 1998; David,
DeMenthon, Duraiswami et al. 2004; Li and Hartley 2007; Enqvist, Josephson, and Kahl
2009). These techniques are discussed in more detail in Section 12.2.1.

6.2 Pose estimation
A particular instance of feature-based alignment, which occurs very often, is estimating an
object’s 3D pose from a set of 2D point projections. This pose estimation problem is also
known as extrinsic calibration, as opposed to the intrinsic calibration of internal camera pa-
rameters such as focal length, which we discuss in Section 6.3. The problem of recovering
pose from three correspondences, which is the minimal amount of information necessary,
is known as the perspective-3-point-problem (P3P), with extensions to larger numbers of
points collectively known as PnP (Haralick, Lee, Ottenberg et al. 1994; Quan and Lan 1999;
Moreno-Noguer, Lepetit, and Fua 2007).

In this section, we look at some of the techniques that have been developed to solve such
problems, starting with the direct linear transform (DLT), which recovers a 3⇥4 camera ma-
trix, followed by other “linear” algorithms, and then looking at statistically optimal iterative
algorithms.
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Next Lecture
• Epipolar Geometry
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