Multiview Geometry and Bundle Adjustment

CSE P576 David M. Rosen

Recap

Previously:

- Image formation
- Feature extraction + matching
- Two-view (epipolar geometry)

Today:

- Add some geometry, statistics, optimization
- Turn it up to 11 N!

Motivating example: Photogrammetry

The science of measurement using cameras

Application: Remote Sensing

Mars Reconnaissance Orbiter

- Launched 12 Aug 2005
- Entered orbit 10 Mar 2006
- ~ 112 minute orbital period
 ⇒~ 12.8 orbits / (Earth) day
- Sensors:
 - High Resolution Imaging Science Experiment (HiRISE)
 - Context Camera
 - Mars Color Imager

Image credit: NASA/JPL

Video credit: NASA / JPL / AU / Doug Ellison

Application: 3D Reconstruction

Goal: Build a 3D model of a scene from a collection of images

[S. Agarwal et al., "Building Rome in a Day", Communications of the ACM, 2011]

Application: Robotics

Instituto Universitario de Investigación en Ingeniería de Aragón Universidad Zaragoza

ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras

Raúl Mur-Artal and Juan D. Tardós

raulmur@unizar.es

tardos@unizar.es

In this lecture

- **Photogrammetry:** The problem of measurement using imagery
- Maximum-likelihood estimation and bundle adjustment: Solving the photogrammetry problem
- Practicalities
 - Problem scale
 - Robust estimation
 - Representation of rotations

Photogrammetry: The Problem

• Given: A collection of images

• Estimate:

- 3D positions of imaged points
- Poses of the imaging cameras
- Intrinsic parameters of the imaging cameras

Photogrammetry: Generative model

Q: How are *variables of estimation*:

- 3D point positions p_i
- Camera poses $x_i = (t_i, R_i)$
- Camera intrinsics K_i

related to *images*?

where *f* is the *camera projection function* (from Lecture 1)

Photogrammetry: Estimation procedure

Main idea: Given a set of images

- 1. Extract features
- Match features (identify the set of 3D points)
- 3. Estimate parameters so that:

 $\tilde{u}_{ij} = f(x_i, K_i, p_j)$

for all point projections \tilde{u}_{ij}

The problem of measurement noise

We want to find x_i , K_i , p_j so that

 $\tilde{u}_{ij} = f(x_i, K_i, p_j)$

(i.e. our model matches the data) for all \tilde{u}_{ij} .

But: All real-world measurements have *errors* \Rightarrow What we *actually* measure is:

$$\tilde{u}_{ij} = f(x_i, K_i, p_j) + \varepsilon_{ij}$$

 \Rightarrow We cannot find parameters x_i, K_i, p_j that fit the measured projections \tilde{u}_{ij} exactly ...

Example: Linear regression

Maximum likelihood estimation

MLE is a method for *fitting parameters* θ to *noisy data* $\tilde{y} = (\tilde{y}_1, \dots, \tilde{y}_n)$, given a *sampling model* $y \sim p(\cdot | \theta)$.

Basic idea: Choose the θ that *best fits* the data \tilde{y} . **But:** How can we *measure* goodness of fit?

Likelihood function: $L(\theta) \triangleq p(\tilde{y}|\theta)$.

Measures *how likely* the data \tilde{y} is for each choice of θ .

MLE principle: "Best fit" \Leftrightarrow "Maximum likelihood" \Rightarrow Pick the θ that *maximizes the likelihood* of data \tilde{y} :

$$\hat{\theta} = \max_{\theta} L(\theta)$$

Example: Regression under Gaussian noise

Consider fitting a function $f(\cdot; \theta)$ to data $D = \{(x_i, y_i)\}_{i=1}^N$ under the model:

 $y_i = f(x_i; \theta) + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \Sigma_i)$

For each choice of θ , for each (x_i, y_i) :

$$\varepsilon_i = y_i - f(x_i; \theta)$$

The pdf for ε_i is:

$$p(\varepsilon_i) = \det(2\pi\Sigma_i)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}\varepsilon_i^T \Sigma_i^{-1} \varepsilon_i\right)$$

 \Rightarrow The likelihood of the *i*th data point (x_i, y_i) is:

$$p(x_i, y_i | \theta) = \det(2\pi\Sigma_i)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(y_i - f(x_i; \theta))^T \Sigma_i^{-1}(y_i - f(x_i; \theta))\right)$$

 \Rightarrow The likelihood for the *entire* dataset *D* is:

$$L(D|\theta) \propto \prod_{i=1}^{N} \exp\left(-\frac{1}{2}(y_i - f(x_i;\theta))^T \Sigma_i^{-1}(y_i - f(x_i;\theta))\right)$$

Example: Regression under Gaussian noise

Consider fitting a function $f(\cdot; \theta)$ to data $D = \{(x_i, y_i)\}_{i=1}^N$ under the model:

 $y_i = f(x_i; \theta) + \varepsilon_i, \qquad \varepsilon_i \sim N(0, \Sigma_i)$

 \Rightarrow The likelihood for the *entire* dataset *D* is:

$$L(D|\theta) \propto \prod_{i=1}^{N} \exp\left(-\frac{1}{2}(y_i - f(x_i;\theta))^T \Sigma_i^{-1}(y_i - f(x_i;\theta))\right)$$

Taking the logarithm:

$$\log L(D|\theta) = c - \frac{1}{2} \sum_{i=1}^{N} ||y_i - f(x_i; \theta)||_{\Sigma_i}^2$$

 \Rightarrow MLE under additive Gaussian noise is a *nonlinear least-squares problem*:

$$\widehat{\theta} = \min_{\theta} \sum_{i=1}^{N} \|y_i - f(x_i; \theta)\|_{\Sigma_i}^2$$

Exercise: Linear regression

Consider fitting a *linear* function to the data:

X	4.75	5.30	5.20	2.75	4.59	1.20	4.94	0.22	1.94	0.32	0.68	5.76
у	9.39	9.95	10.52	5.27	8.96	3.15	9.71	1.69	4.19	1.74	2.23	11.22

under the model:

$$\tilde{y}_i = ax_i + b + \varepsilon_i, \qquad \varepsilon_i \sim N(0, .35^2)$$

Exercise: Linear regression

Bundle adjustment

Recall: Given a set of point projections \tilde{u}_{ij} , we want to estimate:

- 3D point positions p_j
- camera poses x_i
- camera intrinsics K_i

Assuming the measurement model:

$$\tilde{u}_{ij} = f(x_i, K_i, p_j) + \varepsilon_{ij}, \quad \varepsilon_i \sim N(0, \Sigma_i)$$

Maximum-likelihood estimation is then:

$$\hat{x}_i, \hat{K}_i, \hat{p}_j = \min_{x_i, K_i, p_j} \sum_{i, j} \left\| \tilde{u}_{ij} - f(x_i, K_i, p_j) \right\|_{\Sigma_{ij}}^2$$

Photogrammetry and Bundle Adjustment

Given: A set of images

- 1. Extract features
- 2. Match features (identify 3D points)
- 3. Bundle adjust (minimize reprojection error):

$$\hat{x}_i, \hat{K}_i, \hat{p}_j = \min_{x_i, K_i, p_j} \sum_{i, j} \left\| \tilde{u}_{ij} - f(x_i, K_i, p_j) \right\|_{\Sigma_{ij}}^2$$

Special Case: Perspective-n-Point (PnP)

Given:

- Known point positions p_i
- Known camera intrinsics K

Estimate: Camera pose x = (R,t)

$$\hat{x} = \min_{x} \sum_{j=1}^{N} \left\| \tilde{u}_j - f(\boldsymbol{x}, \boldsymbol{K}, \boldsymbol{p}_j) \right\|_{\Sigma_j}^2$$

Image credit: OpenCV

Special Case: Camera calibration

Given:

• Known point positions p_j (on calibration object)

Estimate:

- Camera poses x_i
- Intrinsic parameters K

$$\widehat{x}_{i}, \widehat{K} = \min_{x_{i}, K} \sum_{i, j} \left\| \widetilde{u}_{ij} - f(\mathbf{x}_{i}, K, p_{j}) \right\|_{\Sigma_{ij}}^{2}$$

Image credit: OpenCV

Special Case: Stereovision

Given: A pair of cameras with:

- Known poses x_1 , x_2
- Known intrinsics K_1 , K_2

Estimate: 3D point positions p_i

Image credit: MIT Space Systems Laboratory

$$\hat{p}_{j} = \min_{p_{j}} \sum_{j} \left\| \tilde{u}_{1j} - f(x_{1}, K_{1}, p_{j}) \right\|_{\Sigma_{1j}}^{2} + \left\| \tilde{u}_{2j} - f(x_{2}, K_{2}, p_{j}) \right\|_{\Sigma_{2j}}^{2}$$

$$\Rightarrow \hat{p}_{j} = \min_{p_{j}} \left\| \tilde{u}_{1j} - f(x_{1}, K_{1}, p_{j}) \right\|_{\Sigma_{1j}}^{2} + \left\| \tilde{u}_{2j} - f(x_{2}, K_{2}, p_{j}) \right\|_{\Sigma_{2j}}^{2}$$

independently for all *j*

Practicality: Problem Scale

Piazza San Marco reconstruction:

- ~14,000 images
- ~4.5 million points

Assuming each point is observed 20x, what is the size of the BA problem?

Practicality: Problem Scale

Camera variables (0-skew, equal pixel scaling):

 $14,000 \cdot (6+3) = 126,000$

Point variables: $4,500,000 \cdot 3 = 13,500,000$

Point observations:

 $4,500,000 \cdot 20 \cdot 2 = 180,000,000$

Totals:

- 13,626,000-dimensional state vector
- 180,000,000-dimensional residual vector

 \Rightarrow This is a *huge* optimization problem!

Practicality: Feature mismatches

Recall: We construct the bundle adjustment problem:

$$\hat{x}_i, \hat{K}_i, \hat{p}_j = \min_{x_i, K_i, p_j} \sum_{i, j} \left\| \tilde{u}_{ij} - f(x_i, K_i, p_j) \right\|_{\Sigma_{ij}}^2$$

using *estimated* feature matches.

But: What happens if these are *mis-estimated*?

Example: Contaminated linear regression

Consider fitting the linear model:

$$\tilde{y}_i = ax_i + \varepsilon_i, \quad \varepsilon_i \sim N(0, .35^2)$$

to a *contaminated* data set

X	4.75	5.30	5.20	2.75	4.59	1.20	4.94	0.22	1.94	0.32	0.68	5.76	5.70
У	9.39	9.95	10.52	5.27	8.96	3.15	9.71	1.69	4.19	1.74	2.23	11.22	2.10

Exercise: Contaminated linear regression

The problem of outliers

Recall: We assumed *additive Gaussian image noise*:

$$\tilde{u}_{ij} = f(x_i, K_i, p_j) + \varepsilon_{ij}, \qquad \varepsilon_{ij} \sim N(0, \Sigma_{ij})$$

and obtained a *nonlinear least-squares* problem:

$$\hat{x}_{i}, \hat{K}_{i}, \hat{p}_{j} = \min_{x_{i}, K_{i}, p_{j}} \sum_{i, j} \left\| \tilde{u}_{ij} - f(x_{i}, K_{i}, p_{j}) \right\|_{\Sigma_{ij}}^{2}$$

NB: This loss weights extreme errors *very* heavily.

 \Rightarrow This estimator is *not robust*!

Robust loss functions

One solution: Replace quadratic loss with a function that *attenuates gross errors*

Tradeoff:

- More robust to *outliers*
- (Slightly) less *statistical* power

Example: Contaminated linear regression

Photogrammetry and Bundle Adjustment: Summary

Given: A set of images

- 1. Extract features
- 2. Match features (identify 3D points)
- Bundle adjust using a *robust loss function ρ*:

$$\hat{x}_{i}, \hat{K}_{i}, \hat{p}_{j} = \min_{x_{i}, K_{i}, p_{j}} \sum_{i, j} \rho\left(\left\|\tilde{u}_{ij} - f(x_{i}, K_{i}, p_{j})\right\|_{\Sigma_{ij}}\right)$$

Practicality: Representing rotations

So far, we've represented rotations using *rotation matrices*:

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}, \quad R^T R = I_3, \quad \det(R) = +1$$

- **Pro:** Trivial point operations
- **Con:** *Over-parameterized*

⇒ Not super convenient for optimization (requires *constraints*)

Euler's Rotation Theorem

Theorem: Every rotation of 3D space has a fixed axis *e*.

- \Rightarrow We can describe a rotation using:
- An *axis* (unit vector *e*)
- (Right-handed) rotation angle θ

This is the *axis-angle* parameterization of rotations.

Can also combine these into a single *axis-angle vector*:

 $\boldsymbol{\theta} = \boldsymbol{\theta} \boldsymbol{e}$

Rodrigues' Formula

How does a rotation parameterized as $\theta = \theta e$ act on points?

Rodrigues' formula: Given a vector v,

$$\boldsymbol{v}_{rot} = \boldsymbol{v} \, \cos \theta + \sin \theta \, (\boldsymbol{e} \times \boldsymbol{v}) + (1 - \cos \theta) (\boldsymbol{e} \cdot \boldsymbol{v}) \boldsymbol{e}$$

NB:

- **Any** 3D vector $\boldsymbol{\theta}$ determinates a valid rotation
- Rodrigues' formula is differentiable in ${m heta}$

 \Rightarrow Axis-angle is *much* more convenient for use in optimization!

Rodrigues' Formula

How does a rotation parameterized as $\theta = \theta e$ act on points?

Rodrigues' formula: Given a vector v,

$$\boldsymbol{v}_{rot} = \boldsymbol{v} \cos \theta + \sin \theta (\boldsymbol{e} \times \boldsymbol{v}) + (1 - \cos \theta) (\boldsymbol{e} \cdot \boldsymbol{v}) \boldsymbol{e}$$

Matrix form:

$$R(\theta) = I + (\sin \theta) E + (1 - \cos \theta) E^2,$$

where

$$E = \begin{bmatrix} 0 & -e_3 & e_2 \\ e_3 & 0 & -e_1 \\ -e_2 & e_1 & 0 \end{bmatrix}$$

Photogrammetry and Bundle Adjustment: Summary

Given: A set of images

- 1. Extract features
- 2. Match features (identify 3D points)
- Bundle adjust using a *robust loss* function ρ:

$$\hat{x}_{i}, \hat{K}_{i}, \hat{p}_{j} = \min_{x_{i}, K_{i}, p_{j}} \sum_{i, j} \rho\left(\left\|\tilde{u}_{ij} - f(x_{i}, K_{i}, p_{j})\right\|_{\Sigma_{ij}}\right)$$

