
Lecture 5.
Dense Reconstruction and Tracking

with Real-Time Applications

Part 2: Geometric Reconstruction
Dr Richard Newcombe and Dr Steven Lovegrove

Slide content developed from:

[Newcombe, “Dense Visual SLAM”, 2015]  [Lovegrove, “Parametric Dense Parametric SLAM”] 

and [Szeliski, Seitz, Zitnick UW CSE576 CV lectures]



Geometric Reconstruction
Dense reconstruction of scene geometry



Stereo and Constrained Correspondence

Basic Principle:  Triangulation
• Gives reconstruction as intersection of two rays

Requires 

– camera pose (calibration)

– point correspondence (e.g. feature extraction and matching)



Dense Scene Geometry Generative Model

I2 (x,y) = I1( π( T12 K-1 D2 (x,y) [x,y] ) )

I2, D2
I1



Special Case for a Rectified Stereo Image Pair

I1 I2Depth Image (D2)



Disparity for Rectified Stereo Pairs

I1 I2Disparity Image (d2)

Rectified Stereo generative model with Brightness Constancy:

I2(x,y) = I1 (x + d2(x,y), y)



Stereo Correspondence as energy minimization

I1(x, y) I2(x, y) 

y = 141

C(x, y, d); the disparity space image (DSI)x

d

Pixel Error:
e(x, y, d) =  I1 (x + d , y) – I2 (x,y)

Cost (with quadratic penalty):
C(x, y, d) = ( I1 (x + d , y) – I2 (x,y))2



Stereo as energy minimization

y = 141

x

d

Simple pixel / window matching: choose the minimum of each 
column in the DSI independently:



Aggregation window, error and cost functions

Ground truth SAD W=11SAD W=3 SAD W=25

Effect of window size (W) for aggregating the photometric cost: 



Similarity Measure Formula

Sum of Absolute Differences (SAD)

Sum of Squared Differences (SSD)

Zero-mean SAD

Locally scaled SAD

Normalized Cross Correlation (NCC)

Aggregation window, error and cost functions

The design of the cost function, including window size for aggregation, image error 
function and penalty can improve quality of correspondence:



More Advanced Aggregation Functions

Adaptive Support-Weight Approach for 
Correspondence Search

[Yoon and Kweon, 2006]

Ground truth SAD, W=11



Plane Sweep for Multiple view aggregation

• How to Integrate more information from Multiple Views?

[Newcombe, 2013]



Plane Sweep for Multiple view aggregation

• Compute the photo-metric 
data-term between a reference 
frame and all available frames

• Integrate photo-metric costs 
into a single (3D) voxel volume

• Use a Plane Induced 
Homography to efficiently 
transfer pixels:

𝑢′
𝑣′
1

= 𝜋 𝐾 𝑅 −
𝑡 ⋅ 𝑛T

𝑑

′

𝐾T
𝑢
𝑣
1

[Extracted from “DTAM: Dense Tracking and Mapping in Real-Time. Newcombe, Lovegrove, Davison, 2011]



Switch to live coding demo of Plane Sweep

● And take a break!



Effect of Stereo Baseline

Recap Stereo Steps
• Calibrate cameras

• Compute disparity (d)

• Estimate depth (z)

For Rectified Stereo:

Baseline (b)

Scene Depth (z)

Focal Length (f)



Choosing the Baseline

What’s the optimal baseline?
• Too small:  large depth error

• Too large:  difficult search 
problem 

Large Baseline Small Baseline

Error in Z :



Effect of Baseline on  Estimation

[Okutomi 1993]



Effect of Baseline on Estimation

1/z

Matching 
Score

Small Baseline

1/z

Matching 
Score

Large Baseline



[Okutomi 1993]



Variable Baseline/Resolution Stereo

[Gallup et al]



Multiple Baseline Stereo

Basic Approach
• Choose a reference view
• Use your favorite stereo algorithm BUT

• replace two-view SSD with SSD over all baselines

• Optimally chose a set of images to maintain a constant compute or error 
metric

Limitations
• Which is the best reference view?
• Visibility: how to select which frames have scene co-visibility?

[Kang, Szeliski, Chai, CVPR’01]



Image Modelling and Denoising
Estimating scene geometry with constraints



Denoising Data

Can we recover D given the noisy version?



How to reduce the noise in the Depth Images?

Independent 
Gaussian 

Noise



Smoothing – e.g. apply image filtering?

• Where are the sharp edges from the buildings?
• Mean filtering doesn’t take into expected image structures

Mean Filtered version of (b)



Gradients of Expected Depth Image

Mean Filtered 

version of Noisy 

Depth Image

Depth Image



Priors: What do the images look like in gradient space?

Generalized Gaussian 
Distribution:

Histogram of –Log for the 
Image gradient dI/dx for 
visible light

Histogram of –Log for the 
Image gradient dD/dx for 
Depth Image of the scene

• We can use statistics of image derivatives in expected data
• E.G what is the distribution of image gradients in a passive or depth image?



The probability of the depth image?

Data Term Likelihood assuming Independent Gaussian Noise:

Smoothness Prior w/ Gaussian Dist. Over 1st Order Image Gradients: 



The probability of the depth image?

Recap Bayesian Inference given a distribution Likelihood and Prior: 

Searching for the maximum a posteriori estimate Depth Image: 

arg max

arg max

arg max



Depth Denoising by Energy Minimization

Transform to Energy, E(D), minimization problem using –Log:

Energy, E(D): 

Solve this minimization problem using:
 Gradient Descent, Quasi Newton Methods or Discrete Optimization techniques 

Where λ combines factors relating to the variances ν2 , σ2
.

[Newcombe, 2013]



Comparison of Image Priors in Denoising
2 1



Correspondence as Global Energy Minimization
• This denoising approach can be directly applied to correspondence (e.g. depth):

{ {

Match Cost (Data Term) Smoothness Cost 
(Priors over solution 
space)Want each pixel to find a good 

match in the other image
Bias the search towards 

realistic solutions

• Many matching costs and Priors see [ Scharstein & R. Szeliski ] [D. Scharstein, 
Middlebury Stereo Evaluation, www.middlebury.edu/stereo] :

• Can be computationally expensive
• There are reasonable alternatives to Full Global Optimization, see [Hirshmüller CVPR05]

http://www.middlebury.edu/stereo


Scene Reconstruction
From Image space depth to complete geometric models



Problem: How to Combine Depth Images 
into a Complete Model?

[Extracted from KinectFusion. Newcombe et al, 2011]



Reconstructed 

Surfaces

Merging depth maps

Depth map 1 Depth map 2 Combination (Union)

• Naïve combination (union) produces artifacts

• Better solution:  find “average” surface
•  Surface that minimizes sum (of squared) distances to the depth maps

[From Curless & Levoy, 1996]



Least squares surface solution

E( f )  di

2

i1

N

 (x, f ) dx
[Slide from Seitz, UW CSEP576]



Representing Geometry Implicitly

Signed Distance Functions



Example: Truncated Signed Distance Function 
(TSDF)

[Newcombe, 2015]



Representing Scenes with TSDF

[KinectFusion, Newcombe et al, 2011]



A Single Ray Observation in TSDF



Ray Observations in TSDF

True Scene 
DepthSDF Value

0

1

2

3

-3

-2

-1
Distance 
along ray



Fusing Noisy Ray Observations in TSDF

True Scene 
DepthSDF Value

0

1

2

3

-3

-2

-1
Distance 
along ray

Noisy Depth 
Measurements

Average of the 
Noisy 

Measurements

Estimated 
Scene Depth



VRIP [Curless & Levoy 1996]

depth map 1 depth map 2 combination

signed

distance

function

isosurface

extraction

http://graphics.stanford.edu/papers/volrange/


Michael Goesele

16 images (ring)47 images (ring)

Merging Depth Maps: Temple Model

317 images

(hemisphere)
input image ground truth model

Goesele, Curless, Seitz, 2006

http://www.gris.informatik.tu-darmstadt.de/~mgoesele/download/Goesele-2006-MSR.pdf


Global Photometric Volume Optimization
• Instead of fusing noisy depth maps into a volume

• Compute the photo-metric data-term for co-visible pairs of frames

• Integrate the photo-metric costs into a single (3D) voxel volume

• Define the total cost function with a surface regularization term 

• Minimize the Global cost of the ‘surface’ that passes through the 
volume



Application: Multi-view stereo from Internet Collections

[Goesele, Snavely, Curless, Hoppe, Seitz, ICCV 2007] 

http://grail.cs.washington.edu/projects/mvscpc/


Voxel Coloring Algorithms [Seitz & Dyer]

• The space of possible 
Volumetric Scene 
Reconstructions

• These Approaches 
obtain voxel Coloring 
that ‘generate’ the 
observed images

Discretized 

Scene Volume

N3 voxels

C   colors

All Scenes (CN3
)

Photo-
Consistent

Scenes

True
Scene

[Slide from Steve Seitz]



Example: Reconstruction from Silhouettes (C=2)

Binary Images

• Back-project each 
silhouette

• Intersect back-
projected volumes

• How can we get Shape 
Silhouettes?

[Slide from Steve Seitz]



Volume intersection

Reconstruction Contains the True Scene
• But is generally not the same 

• In the limit (all views) get visual hull

[Slide from Steve Seitz]



Voxel algorithm for volume intersection

Color voxel black if on silhouette in every image

• for M images, N3 voxels

• Don’t have to search 2N3 possible scenes!

• Useful for reconstructions from Green Screen

O(  ?  ),

[Slide from Steve Seitz]



Properties of Volume Intersection

Pros
• Easy to implement, fast
• Accelerated via octrees [Szeliski 1993]

Cons
• No concavities
• Reconstruction is not photo-consistent
• Requires identification of silhouettes

More General Cases (Color images, general cameras):
• Voxel Coloring [Seitz and Dyer]
• Space Carving [Kutulakos and Seitz]



Applications of Direct Methods:
Real-Time Mapping and Tracking
Using Passive and RGB-D sensors



KinectFusion: Dense Surface Tracking and Mapping in Real-Time

• Uses an RGB-D Sensor

• First Dense SLAM System

• Interleaves:
1. TSDF Fusion (Map)

2. Projective ICP (Track)

• Efficient to implement on 
GPU Compute Architecture

• Memory for Scene is O(N^3)

Newcombe, Izadi et al



Real-Time 3D Reconstruction at Scale using Voxel Hashing

[Niesner, Zollhofer, Izadi, Stamminger]

• Extends KinectFusion
methods to work over very 
large volumes

• Very Efficient  <O(N^3) 
Memory! 



ElasticFusion: Dense SLAM Without A Pose Graph 

• Uses Surfel scene 
representation

• RGB-D dense tracking

• Enables Loop Closure with 
a Deformation Graph

[Whelan et al]



DSO: Direct Sparse Odometry

[Engel, Koltun, Cremers]

• Passive Mono Camera

• Full Direct Formulation:
• Jointly optimizes scene 

geometry & Camera Motion

• Generative model for 
accounting for Image 
Brightness changes

• Works across many more 
indoor/Outdoor Scenes



DART: Dense Articulated Real-Time Tracking

[Schmidt et al]

• Uses RGB-D Sensor

• Tracking only systems

• Tracks any Piece-wise rigid 
Articulated Object Model

• Applications in Hand, 
Human, Robot and Object 
Tracking



Live RGB-D Image Real-time Non-Rigid 
Reconstruction

DynamicFusion: Reconstruction 
and Tracking of Non-rigid Scenes in Real-time 

[Newcombe, Fox, Seitz]

• Uses RGB-D Sensor

• Generalizes KinectFusion

• Non-rigid Scene Motion 
Representation



Live Depth Video
Volumetric 

Motion Estimation
Non-Rigid 

Reconstruction

Volumetric 

Surface Fusion

DynamicFusion: Reconstruction 
and Tracking of Non-rigid Scenes in Real-time 

[Newcombe, Fox, Seitz]


