Image Formation

CSE P576

Dr. Matthew Brown

Image Formation

- Light, Optics, Sensing
- The Digital Camera

Image Formation

[Szeliski]

Light and Colour

- Light is electromagnetic radiation in the $400-700 \mathrm{~nm}$ band
- This is the peak in the spectrum of sunlight passing through the atmosphere
- Newton's Prism experiment showed that white light is composed of all frequencies
- Black is the absence of light!

Spectral Power Distribution

- The spectral distribution of energy in a light ray determines it's colour

- Surfaces reflect light energy according to a spectral distribution as well
- The combination of incident spectra and reflectance spectra determine the light colour

Spectral Reflectance Example

Surface Reflectance

- Reflected intensity also depends on geometry: surface orientation, viewer position, shadows, etc.

It also depends on surface properties, e.g., diffuse or specular

Diffuse and Specular

- A pure mirror reflects light along a line symmetrical about the surface normal
- A pure diffuse surface scatters light equally in all directions

Pure Mirror Reflection

$$
\theta_{i}=\theta_{r}
$$

Lambertian Reflection
(Diffuse)

Specular surfaces directly refl ect over a small angle

Diffuse and Specular

- A sphere lit with ambient, +diffuse, +specular reflectance

Diffuse Reflection

- Light is reflected equally in all directions (Lambertian surface)
- But the amount of light reaching unit surface area depends on the angle between the light and the surface...

Specular Reflection

- Light reflected strongly around the mirror reflection direction
- Intensity depends on viewer position

Phong Illumination Model

- Includes ambient, diffuse and specular reflection

$$
I=k_{a} i_{a}+k_{d} i_{d} \cos \theta+k_{s} i_{s} \cos ^{\alpha} \phi
$$

Light Source

Reflectance in Vision

Reflectance in Vision

- More complex models than Phong are possible with reflected intensity at a given ray an arbitrary function of the surface geometry and lights, see Szeliski 2.2.2 (BRDFs)
- For Computer Vision, understanding reflection can help us to infer shape, e.g., shape from shading and photometric stereo, we will revisit this later in the course

[Hertzmann
Seitz 2003]

Optics

Camera Obscura = "dark room"

Clifton Observatory

A working camera obscura open to the public

Pinhole Camera

- All rays pass through a single point (the pinhole)

- Similar triangles
1.3

Focal Length

- For a fixed sensor size, focal length determines the field of view (fov)

Q: What is the field of view of a full frame (35mm) camera with 50 mm lens? 100 mm lens?
$1(1.4)$

Focal Length

28 mm

50 mm

35 mm

70 mm

Finite Aperture

- A real camera must have a finite aperture to get enough light, but this causes blur in the image

Solution: use a lens to focus light onto the image plane

Lens Basics

- A lens focuses rays from infinity at the focal length of the lens
- Points passing through the centre of the lens are not bent

- We can use these 2 properties to find the lens equation < (1.5)

Lens Basics

- Note that lenses focus all rays from a plane in the world

- Objects off the plane are blurred depending on distance

Effect of Aperture

Smaller aperture \Rightarrow smaller blur, larger depth of field

Depth of Field

- Photographers use large apertures to give small depth of field

Aperture size $=f / N, \Rightarrow$ large $N=$ small aperture

Shutter Speed

Real Lenses

- Multiple stages of positive and negative elements with differing refractive indices
- Deal with issues such as chromatic aberration (different colours bent by different amounts), vignetting (light fall off at image edge) and sharp imaging across the zoom range

Sensors

CMOS (or CCD)
Retina

Colour Perception

Digital Sensor

Colour Filter Array

- Analogue image is sampled by a CMOS (or CCD) sensor
- RGB colour filters arranged in a "Bayer" pattern
- Counts from this sensor are camera RAW
- For viewing we need an RGB value per pixel

Demosaicing

- Each colour channel has different information:

How can we fill in the missing information?

Demosaicing

- Simple interpolation causes colour errors

Bilinear interpolation

Bennet et al 2006 (local 2 colour prior)

- Many techniques use edge information from the densely sampled green channel, and some form of image prior
- It can also been tackled via a data-driven approach, e.g., [Gharbi et al. 2016]

The Digital Image

Image Raster

- e.g., arranged in memory with RGB pixels stored in rows:

- Many other possibilities, e.g., BGR, RGBA pixels, row/ column major ordering, and rows or columns aligned to power of 2 boundaries

Digital Camera Processing

- Main stages in a digital camera

[Szeliski 2.3]

White Balance

- Humans are good at adapting to global illumination conditions: you would still describe a white object as white whether under blue sky or candle light.
- However, when the picture is viewed later, the viewer is no longer correcting for the environment and the illuminant colour typically appears too strong.
- White balancing is the process of correcting for the illuminant
- A simple white balance algorithm is to assume the scene is grey on average "greyworld", state of the art methods use learning, e.g., Barron ICCV 2015

Gamma Correction

- Equal steps in luminance \neq equal in perceived brightness
 equal brightness steps $\quad 0.00 .10 .20 .30 .40 .5|0.6| 0.7|0.8| 0.9 \mid 1.0$
- Equal steps in perceived brightness are achieved by increasingly large steps in luminance (sensor counts)
- Human brightness perception (V) follows a power law:

$$
L=V^{\gamma}
$$

- Using raw sensor counts wastes bits as we can't differentiate the large values \rightarrow use gamma corrected encoding that allocates more bits to smaller values

Contrast Sensitivity

- Human visual system is most sensitive to mid-frequencies

Frequency \longrightarrow

Discrete Cosine Transform

- Basis functions used in JPEG

8×8 basis functions

Coefficient Quantisation

$$
F^{Q}[u, v]=\operatorname{Round}\left(\frac{F[u, v]}{Q[u, v]}\right)
$$

- DCT coefficients $F(u, v)$ are quantised according to a quantisation table
- High frequencies are less important (high factor)
- Quantisation table entries determine the "lossiness" of the compression

$Q[u, v]$							
16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

JPEG Compression

YCbCr

- Separates luminance (Y) from chrominance $(\mathrm{Cb}, \mathrm{Cr})=$ colour

$$
\begin{aligned}
Y^{\prime} & =16+65.5 R^{\prime}+128.6 G^{\prime}+25.0 B^{\prime} \\
C b & =128-37.8 R^{\prime}-74.2 G^{\prime}+112 B^{\prime} \\
C r & =128+112.0 R^{\prime}-93.8 G^{\prime}-18.2 B^{\prime}
\end{aligned}
$$

- Linear transform of RGB
- Primes = gamma correction

Red

Blue

Cb

Blurring CbCr

sigma $=1.0$

Blurring CbCr

sigma $=2.0$

Blurring CbCr

sigma $=4.0$

Blurring CbCr

sigma $=8.0$

Blurring CbCr

sigma $=16.0$

Blurring CbCr

sigma $=32.0$

Blurring Y

sigma $=1.0$

Blurring Y

sigma $=2.0$

Blurring Y

sigma $=4.0$

Blurring Y

sigma $=8.0$

Blurring Y

sigma $=16.0$

Subsampling CbCr vs Y

Chrominance I/8 scale

Luminance
I/8 scale

Compressibility of Chrominance

- $\mathrm{Cb}+\mathrm{Cr}$ are transmitted at $\mathrm{I} / 2$ size for JPEG

- Note that human vision uses a similar transform to this (opponent colours), also we have fewer cones than rods

Next Lecture

- Filtering and Pyramids
- Features and Matching

