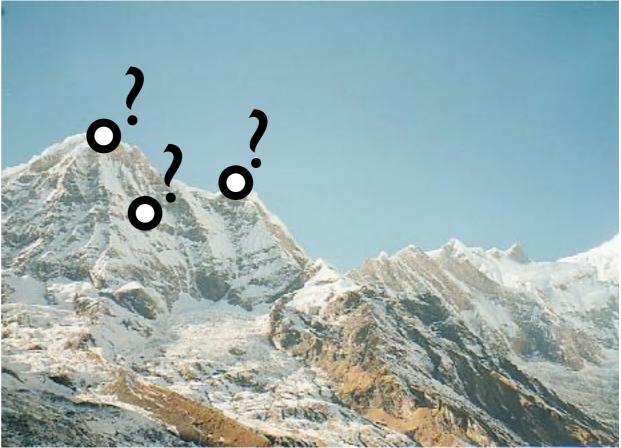
Features and Matching

CSE P576

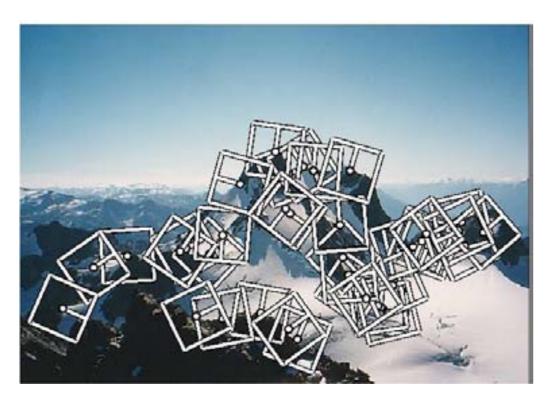
Dr. Matthew Brown

Correspondence Problem

- A basic problem in Computer Vision is to establish matches (correspondences) between images
- This has many applications: rigid/non-rigid tracking, object recognition, image registration, structure from motion, stereo...



Feature Detectors



Corners/Blobs

Edges

Regions

Straight Lines

Feature Descriptors

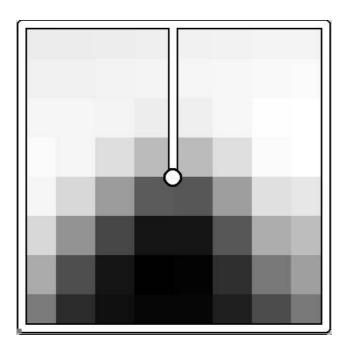
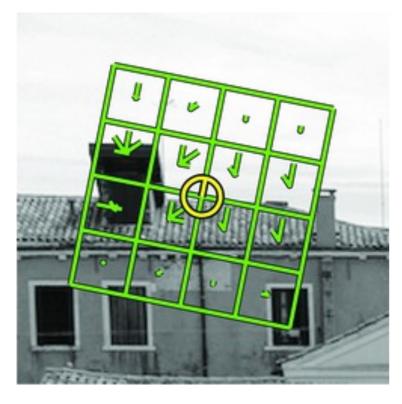
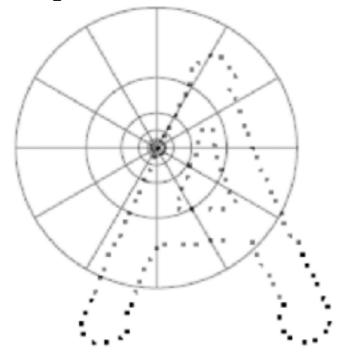


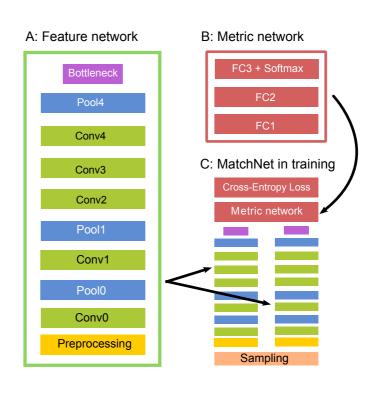
Image Patch



SIFT



Shape Context



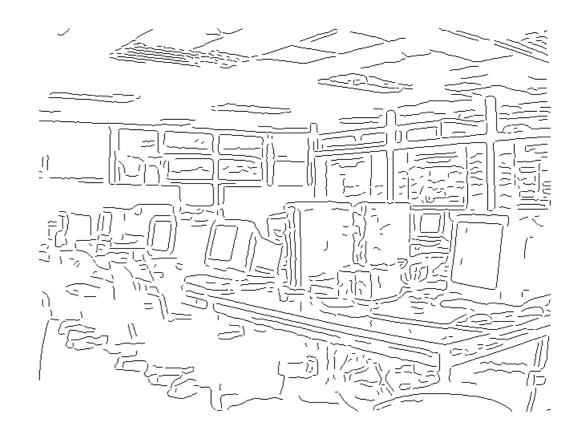
Learned Descriptors

Features and Matching

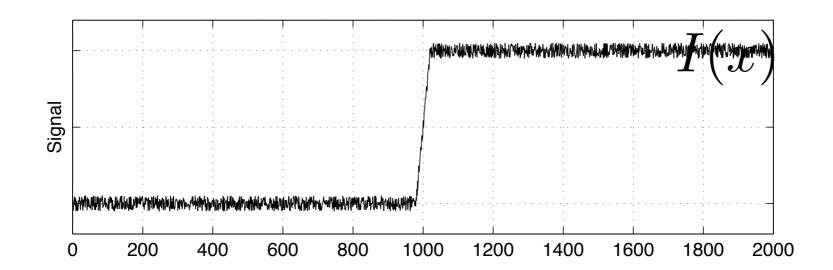
- Feature detectors
 - Canny edges, Harris corners, DoG, MSERs
- Feature descriptors
 - Image patches, invariance, SIFT, learned features

Edge Detection

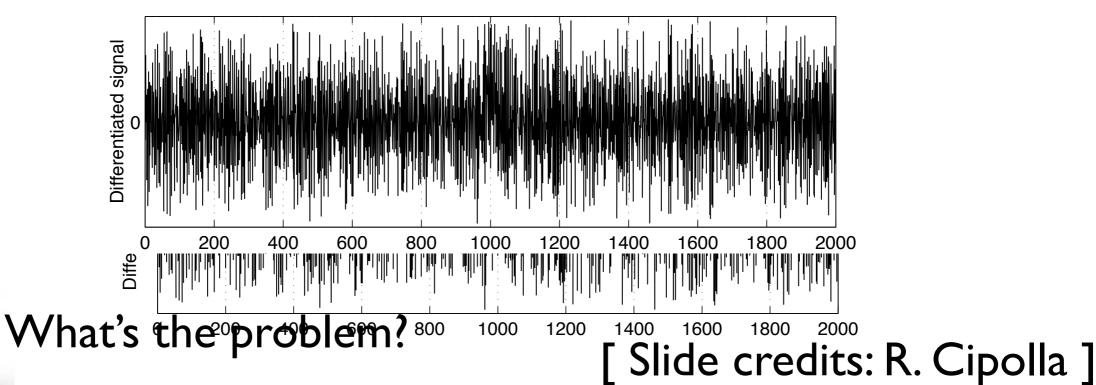
• One of the first algorithms in Computer Vision



Cor

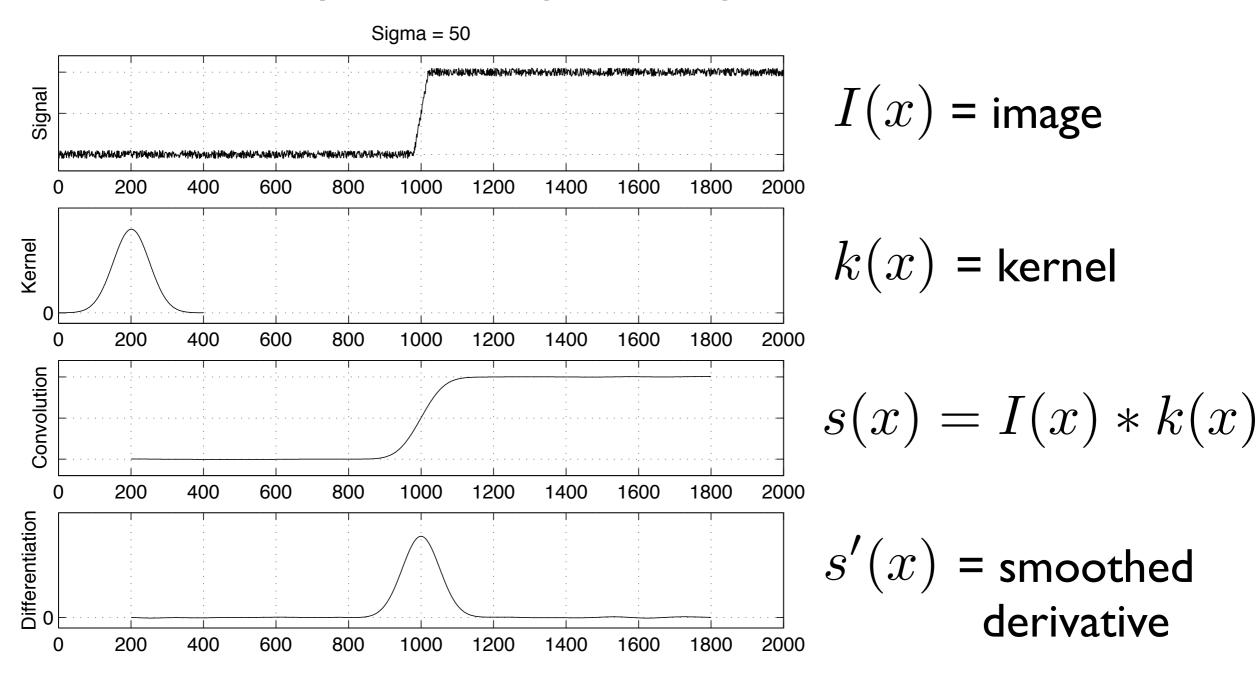


ullet Naive approach: look for maxima/minima in I'(x)



Edge Detection

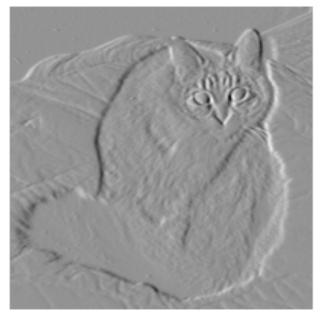
Solution: start by smoothing the image to remove noise

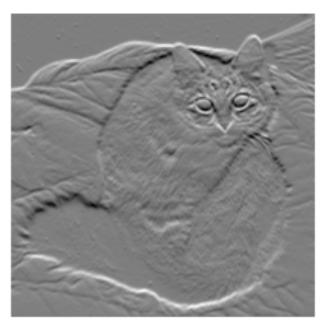


Edges are found by thresholding the smoothed derivative

A Committee on the continue of the continue of

• Molegnerathdinance eventual engage grandicular sitch [-| |]





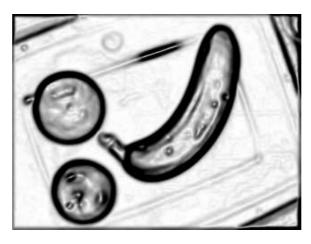
 g_x

 g_y

2D gradient:
$$\nabla I = \begin{bmatrix} g_x \\ g_y \end{bmatrix}$$

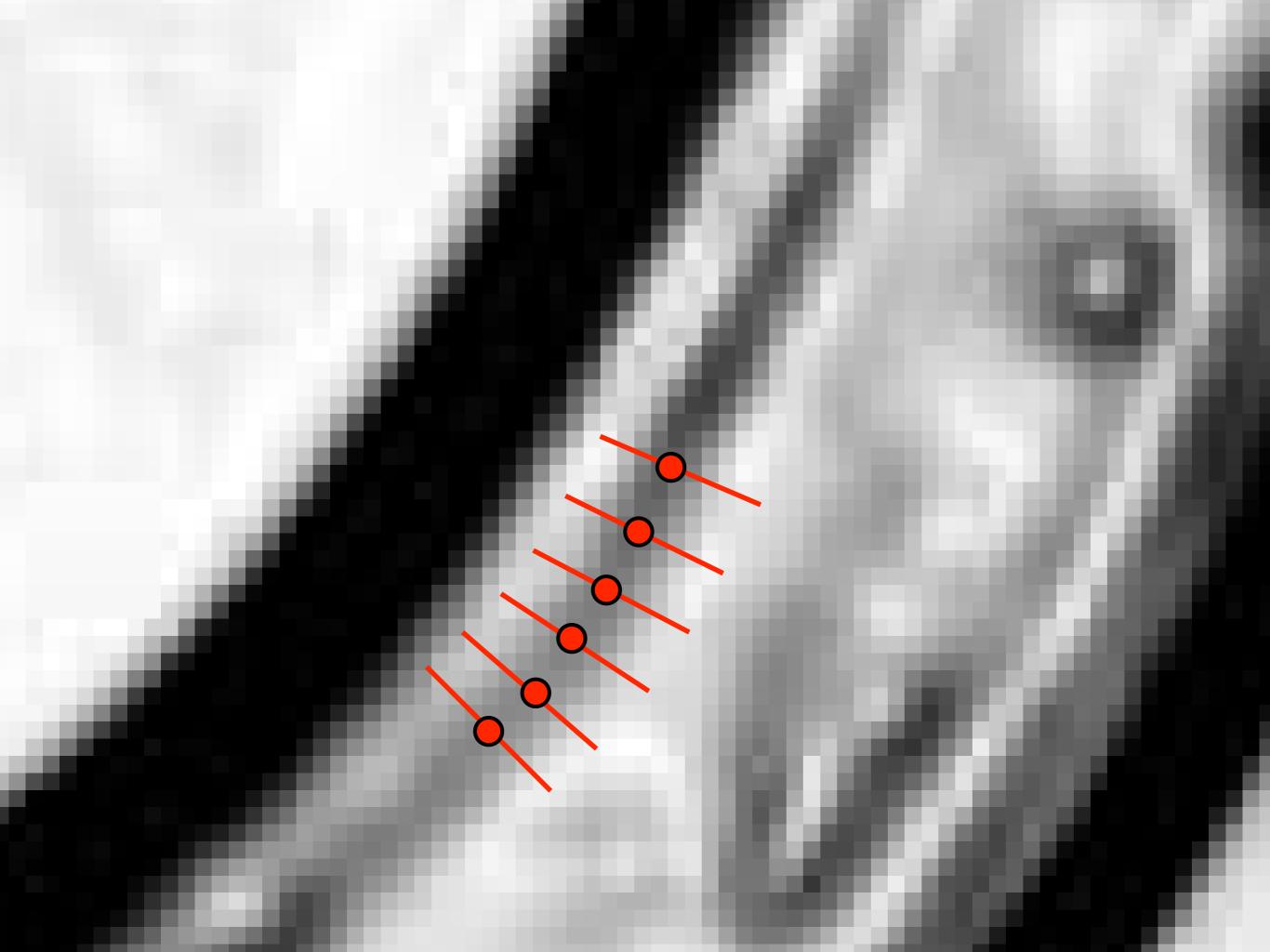
2D Edge Detection

ullet Look at the magnitude of the smoothed gradient |
abla I|



$$|\nabla I| = \sqrt{g_x^2 + g_y^2}$$

Non-maximal suppression (keep only points where |\nabla I|
 is a maximum in directions $\pm \nabla I$)



2D Edge L

- Threshold the gradient magnitude with two thresholds: Thigh and Tlow
- Edges start at edge locations with gradient magnitude > Thigh
- Continue tracing edge until gradient magnitude falls below T_{low}

Non-MS

Thresholded

Edges + Segmentation

Segmentation is subjective [Martin, Fowlkes, Tal, Malik 2001]

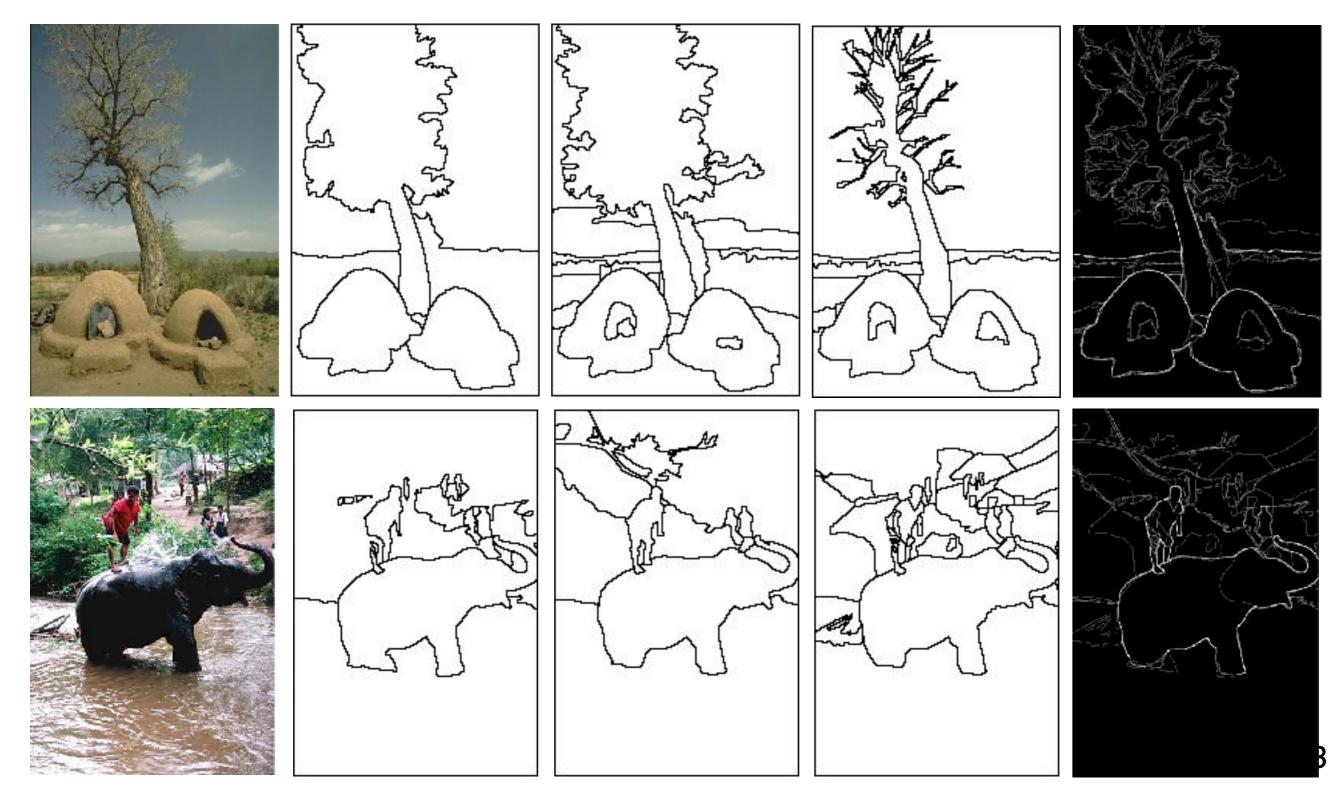


Image Structure

What kind of structures are present in the image locally?

OD Structure: not useful for matching

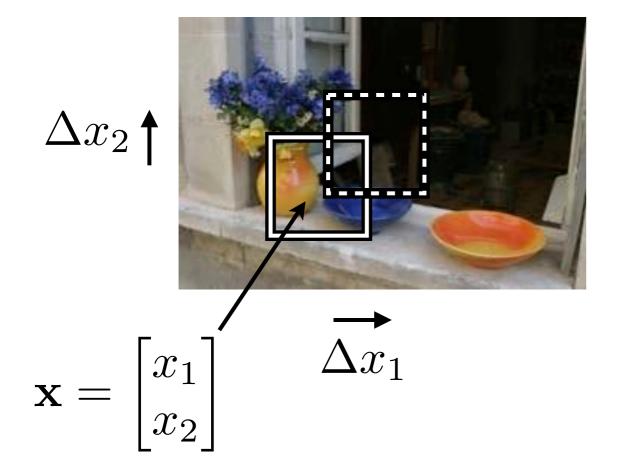
ID Structure: edge, can be localised in one direction, subject to the "aperture problem"

2D Structure: corner, or interest point, can be localised in both directions, good for matching

Edge detectors find contours (ID structure), Corner or Interest point detectors find points with 2D structure.

Local SSD Function

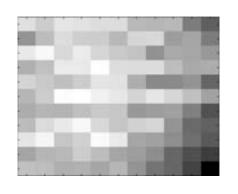
 Consider the sum squared difference (SSD) of a patch with its local neighbourhood

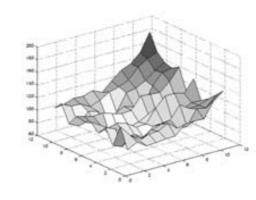


$$SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$$

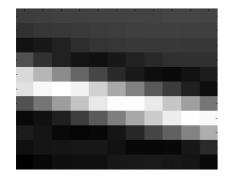
Local SSD Function

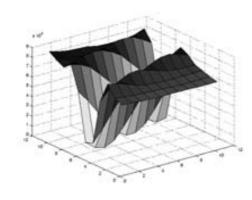
Consider the local SSD function for different patches



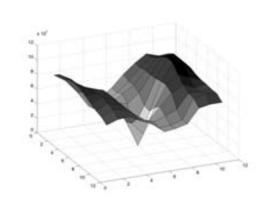


High similarity locally





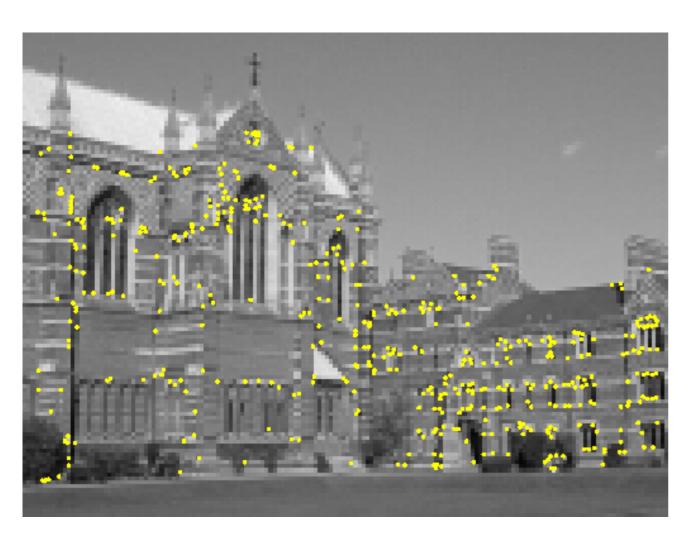
High similarity along the edge

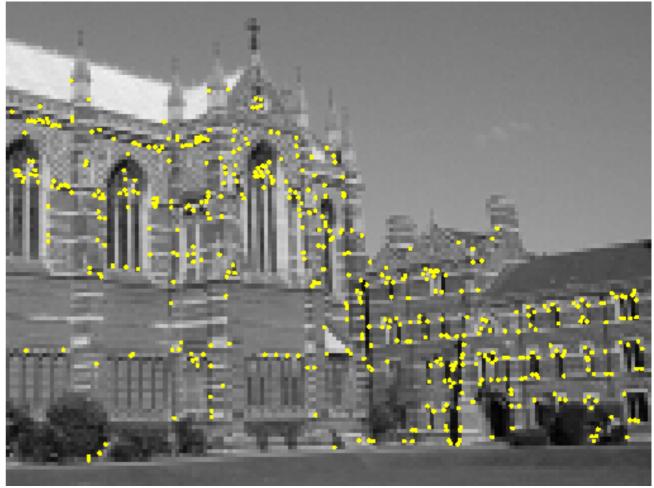


Clear peak in similarity function

Harris Corners

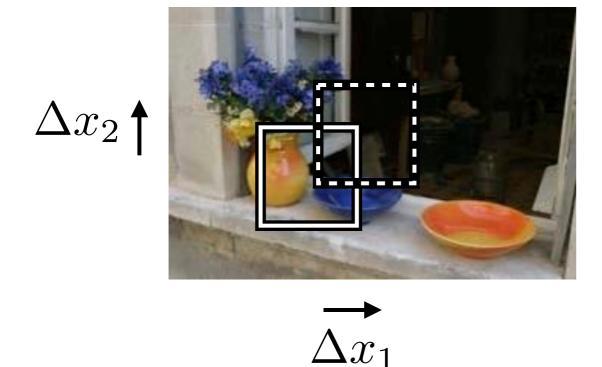
• Harris corners are peaks of a local similarity function





Harris Corners

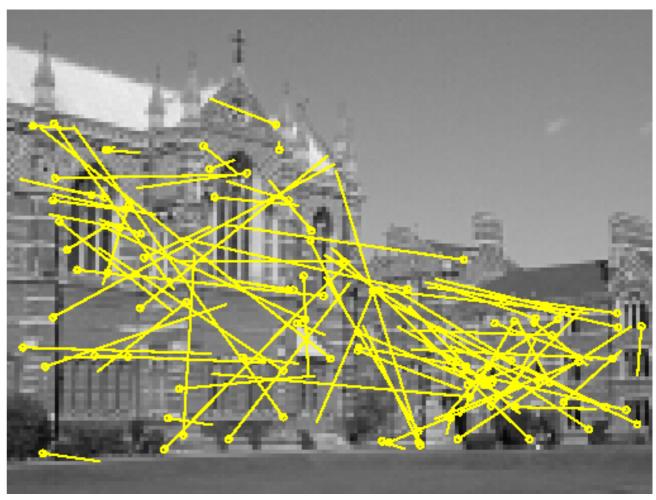
We will use a first order approximation to the local SSD function



$$SSD = \sum_{\mathcal{R}} |I(\mathbf{x}) - I(\mathbf{x} + \Delta \mathbf{x})|^2$$

Harris Corners

Corners matched using correlation

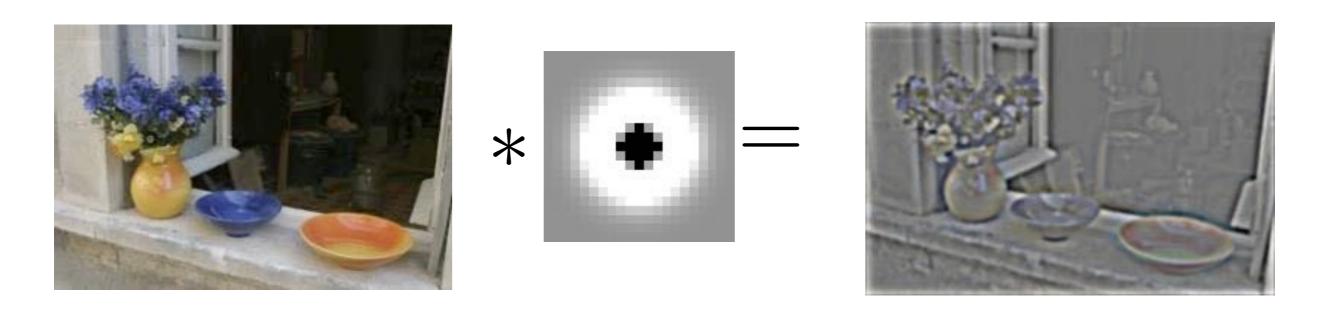


99 inliers

89 outliers

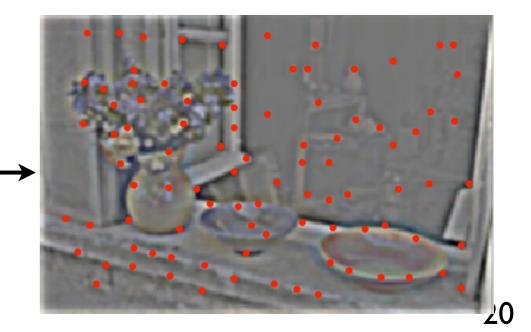
Difference of Gaussian

DoG = centre-surround filter



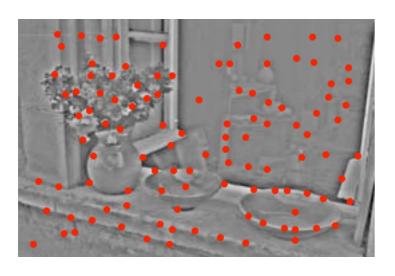
• Find local-maxima of the centre surround response

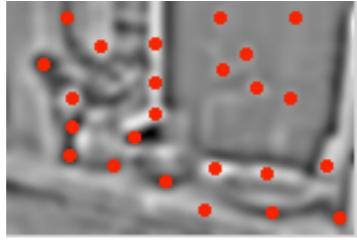
Non-maximal suppression:
These points are maxima
in a 10 pixel radius

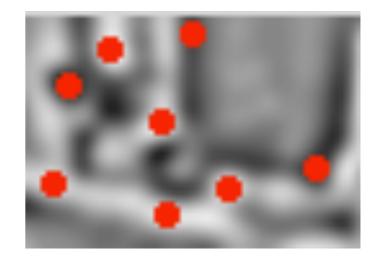


Difference of Gaussian

 DoG detects blobs at scale that depends on the Gaussian standard deviation(s)



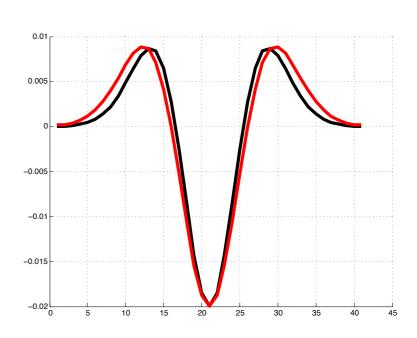




Note: DOG ≈ Laplacian of Gaussian

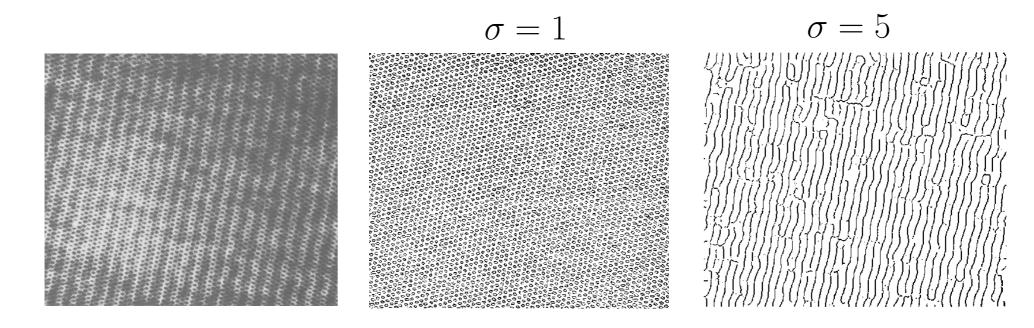
$$red = [1 -2 1] * g(x; 5.0)$$

black =
$$g(x; 5.0) - g(x; 4.0)$$



Detection Scale

 Smoothing standard deviations determine scale of detected features, e.g., edge detection in cloth



- Many algorithms use multi-scale architectures to get around this problem
- e.g., Scale-Invariant Feature Transform "SIFT"

MSERS

Maximally Stable Extremal Regions

Find regions of high contrast using a watershed approach

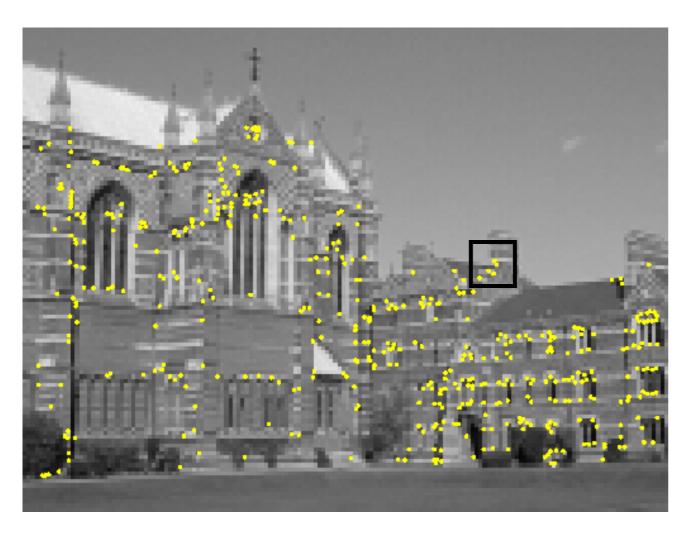
MSERS are stable (small change) over a large range of thresholds

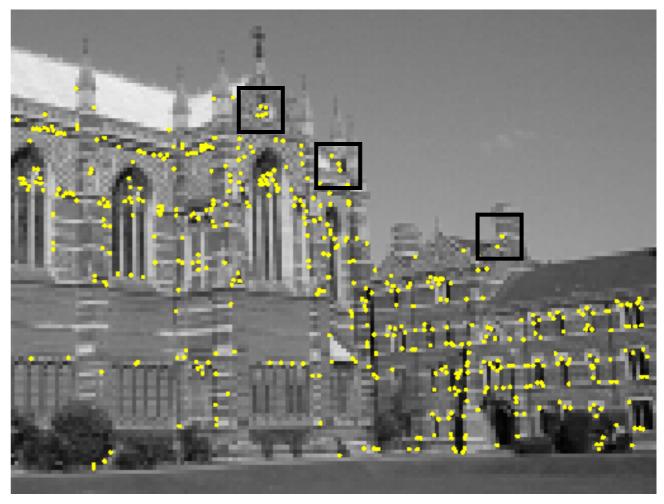
Project I

- Try the Interest Point Extractor section in Project I
- corner_function : Devise a corner strength function
- find_local_maxima : Find interest points as maxima of the corner strength function

Corner Matching

 A simple approach to correspondence is to match corners between images using normalised correlation or SSD





Breaking Correlation

- Correlation/SSD works well when the images are quite similar (e.g., tracking in frames of a video)
- However, it is easily broken by simple image transforms, e.g.,

Original

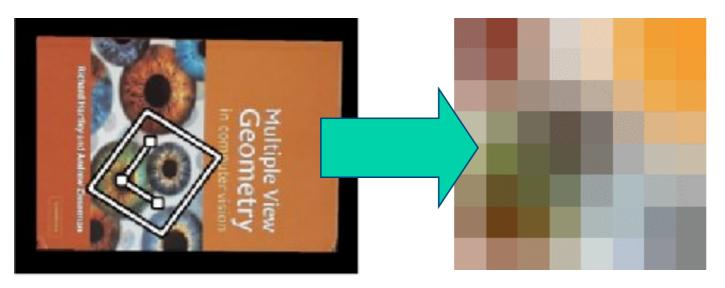
Rotation

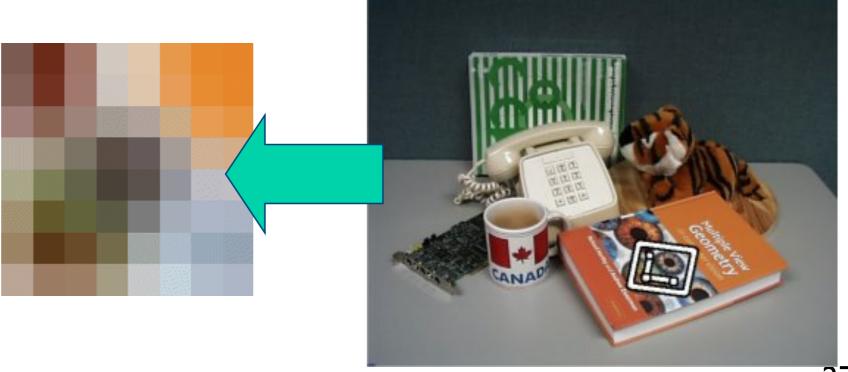
Scale

These transformations are very common in imaging, so we would like feature matching to be invariant to them

Local Coordinate Frame

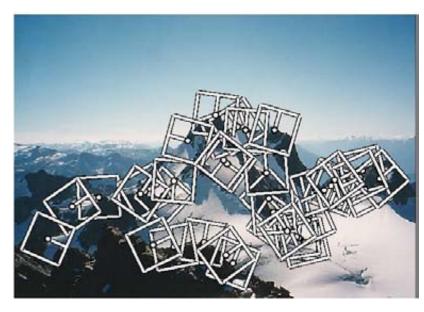
 One way to achieve invariance is to use local coordinate frames that follow the surface transformation

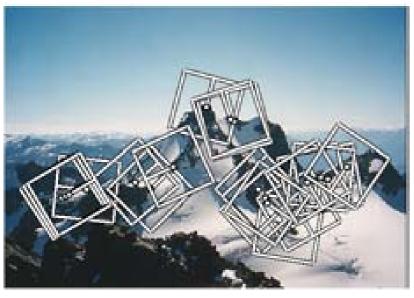


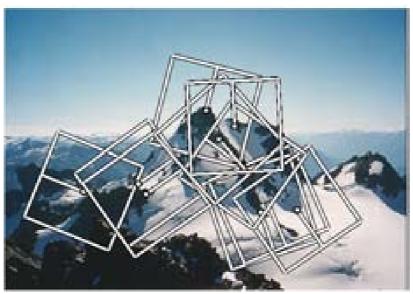


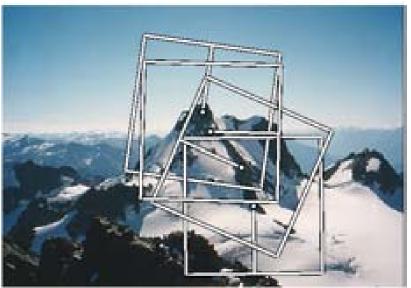
Detecting Scale/Orientation

 A common approach is to detect a local scale and orientation for each feature point





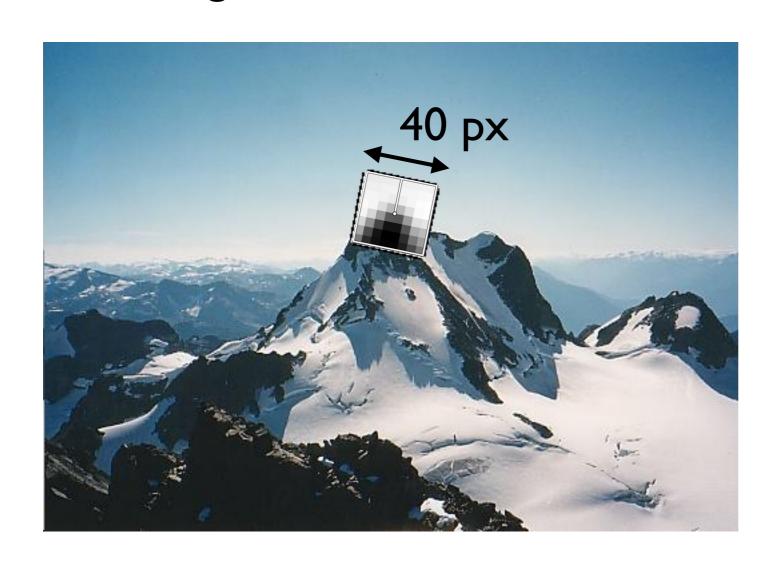


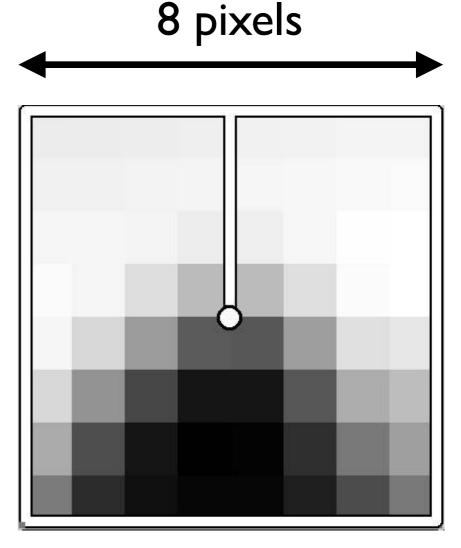


e.g., extract Harris at multiple scales and align to the local gradient,

Detecting Scale/Orientation

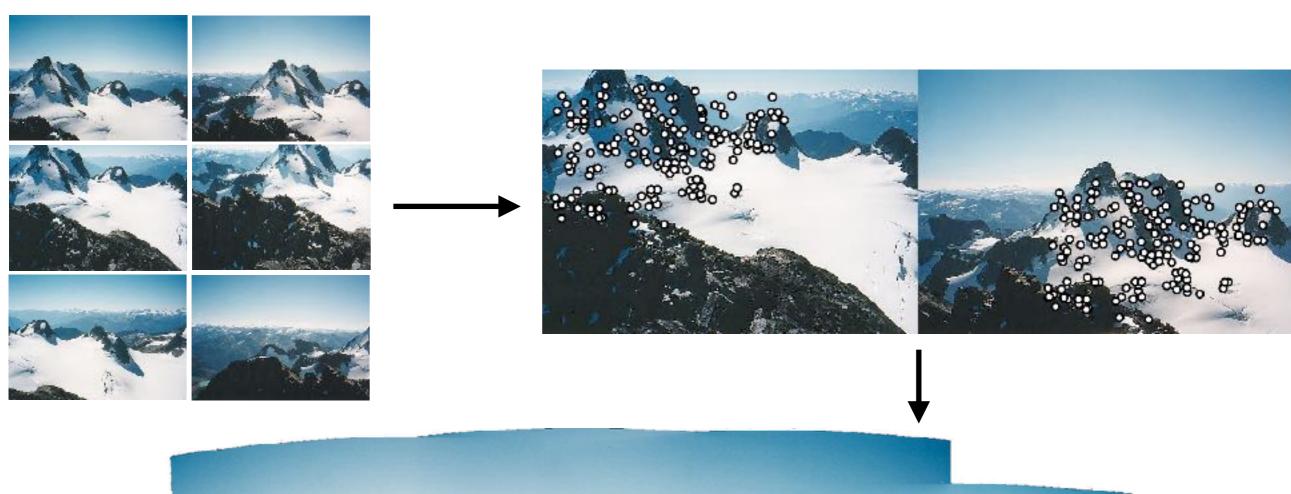
 Patch matching can be improved by using scale/orientation and brightness normalisation





Sampling at a coarser scale than detection further improves robustness

Panorama Alignment



Wide Baseline Matching

 Patch-based matching works well for short baselines, but fails for large changes in scale, rotation or 3D viewpoint

What factors cause differences between these images?

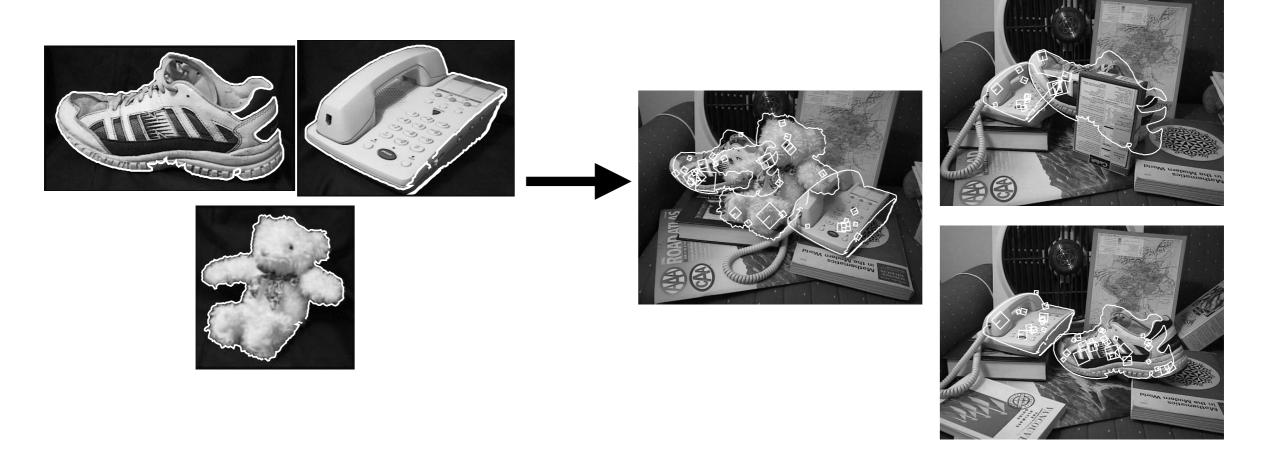
Wide Baseline Matching

We would like to match patches despite these changes

What features of the local patch are invariant?

Scale Invariant Feature Transform

A detector and descriptor designed for object recognition



- SIFT features are invariant to translation, rotation and scale and slowly varying under perspective and 3D distortion
- Variants widely used in object recognition, image search etc.

Scale Invariant Feature Transform

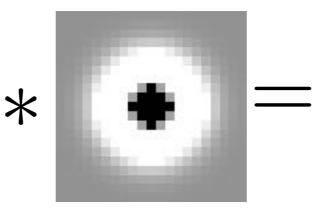


[vlfeat.org]

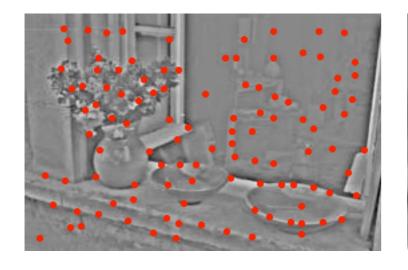
- Scale invariant detection and local orientation estimation
- Edge based representation that is robust to local shifting of edges (parallax and/or stretch)

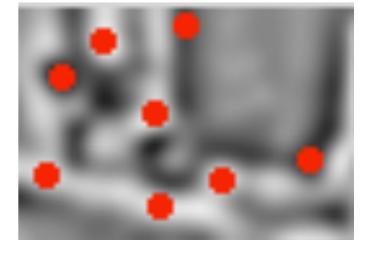
SIFT Detection

Convolve with centre-surround Laplacian/DoG filter

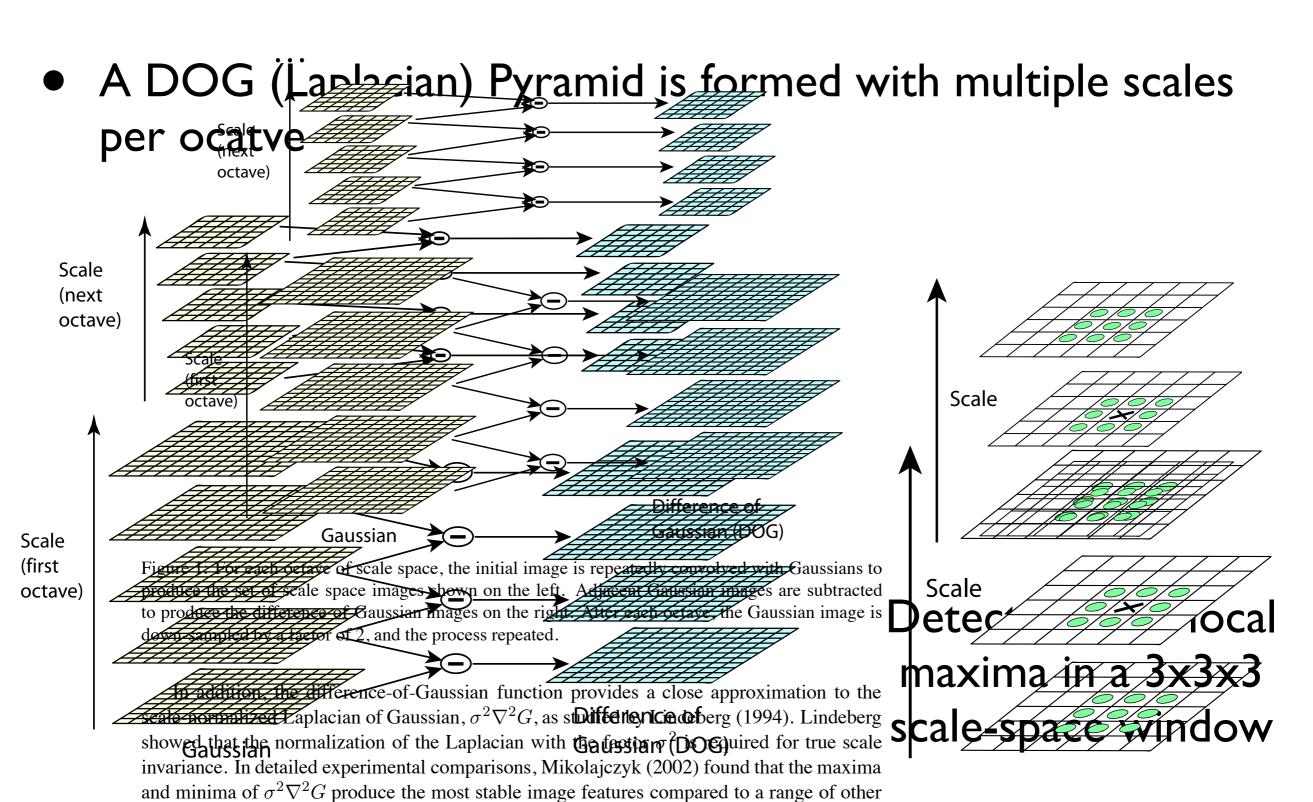


Find all maxima at all scales in a Laplacian Pyramid





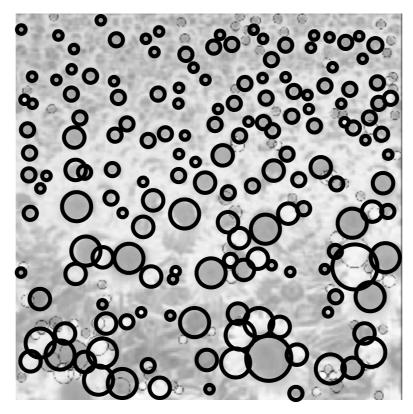
Scale Selection

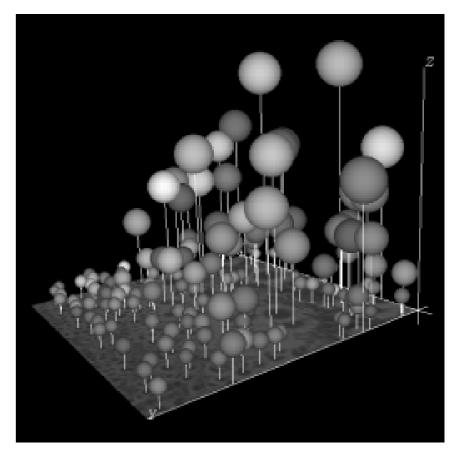


possible image functions, such as the gradient, Hessian or Harris corner function. The relationship between D and $\sigma^2 \nabla^2 G$ can be understood from the heat diffusion equation (parameterized in terms of σ rather than the more usual $t = \sigma$). The relationship between t and t and t are the current t are the current t and t are the current t and t are the current t are the current t and t are the current t and t are the current t and t are the current t are the current t and t are the current t are the current t and t are the current with circles).

Scale Selection

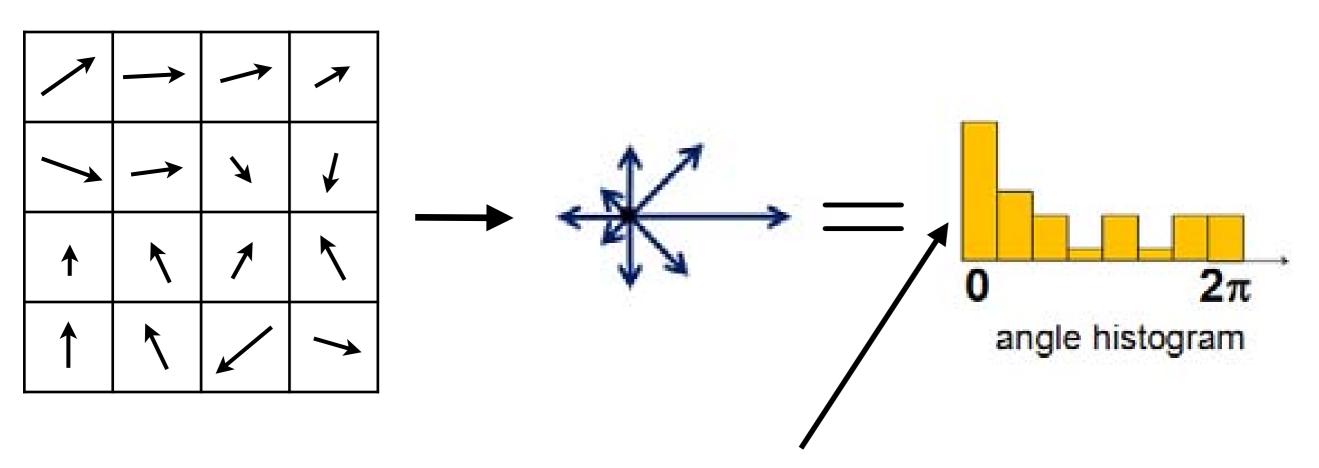
Maximising the DOG function in scale as well as space performs scale selection





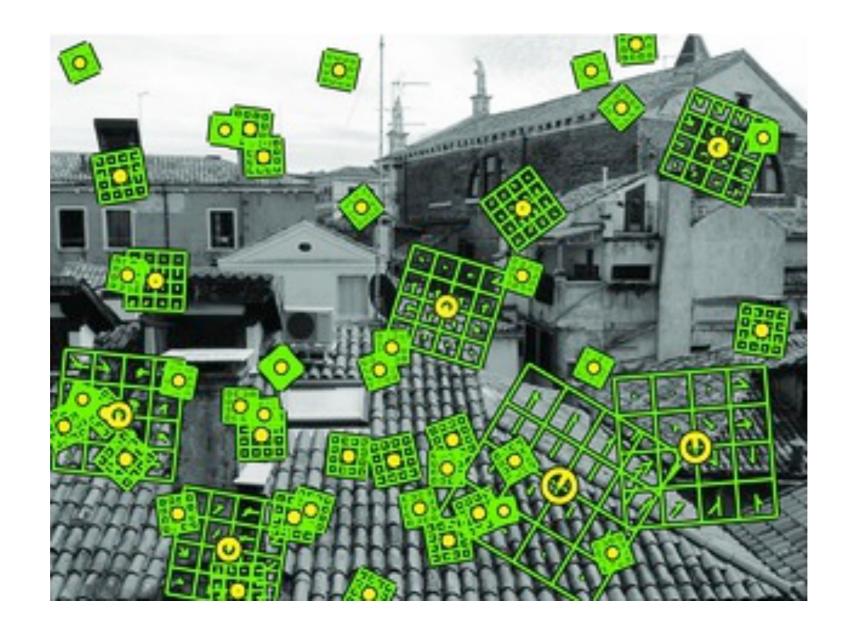
Orientation Selection

• To select a local orientation, build a histogram over orientation



Selected orientation is peak in this histogram

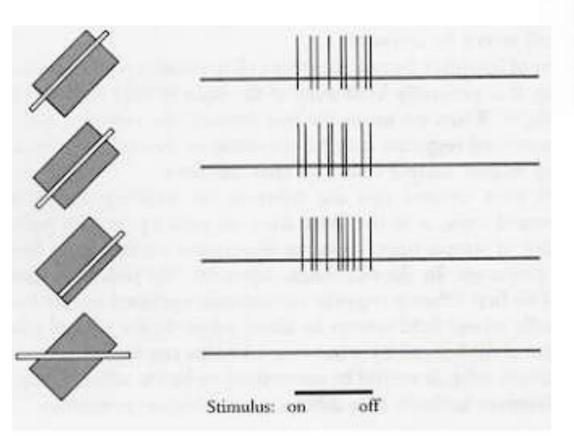
SIFT Descriptor

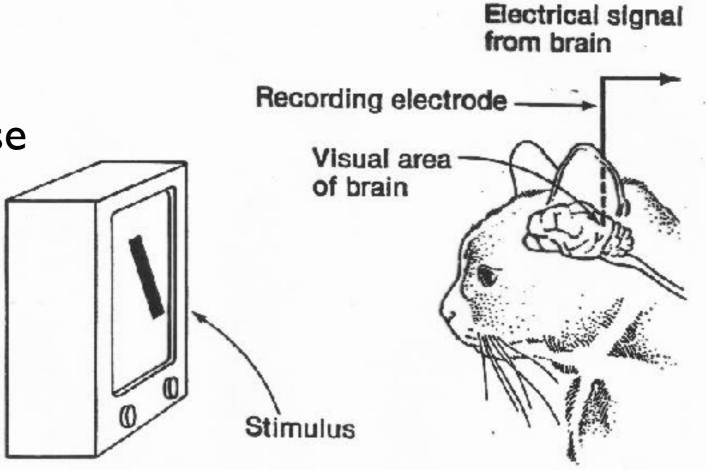


- We selected a scale and orientation at each detection,
- Now need descriptor to represent the local region in a way robust to parallax, illumination change etc.

Simple + Complex Cells in VI

 Neuroscientists have investigated the response of cells in the primary visual cortex



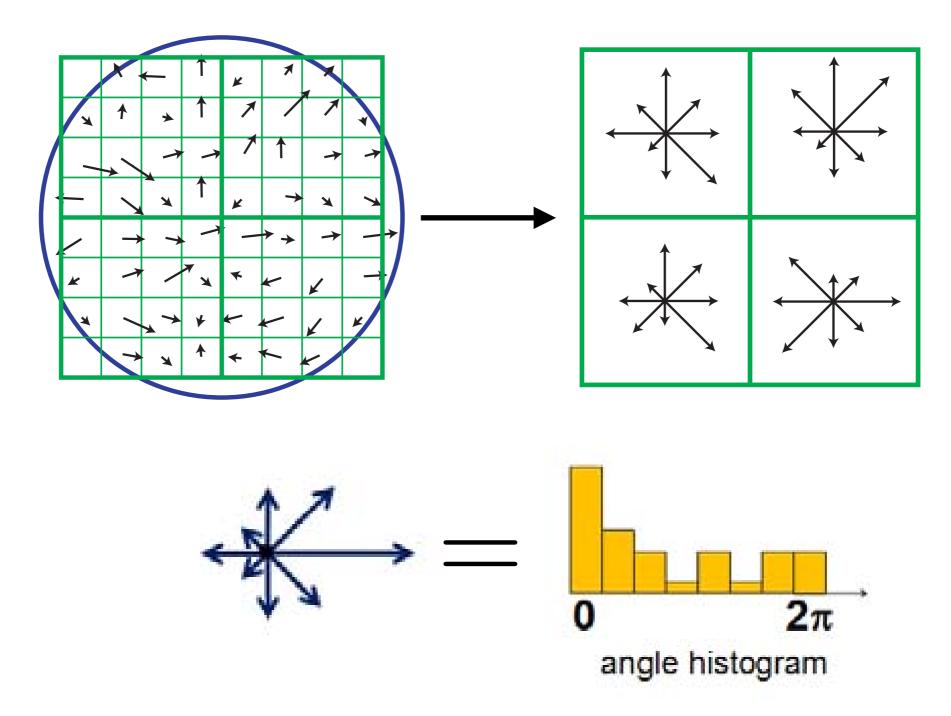


 "Complex Cells" in VI respond over a range of positions but are highly sensitive to orientation

[Hubel and Wiesel]

SIFT Descriptor

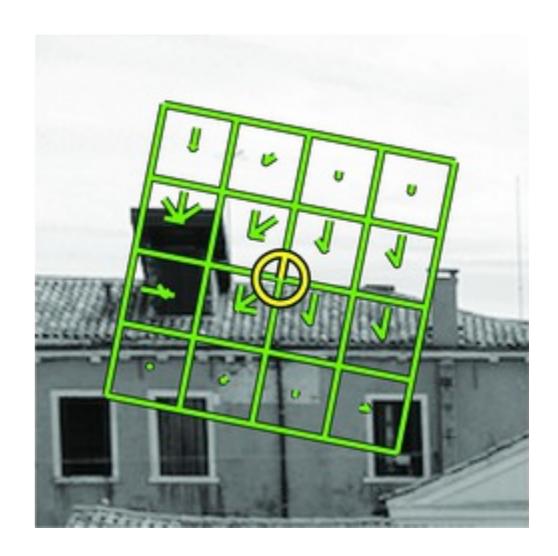
Describe local region by distribution (over angle) of gradients



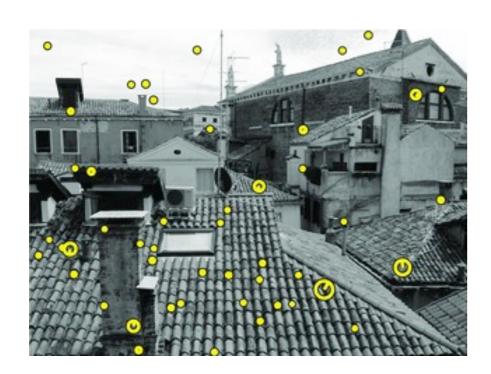
Each descriptor: 4×4 grid $\times 8$ orientations = 128 dimensions

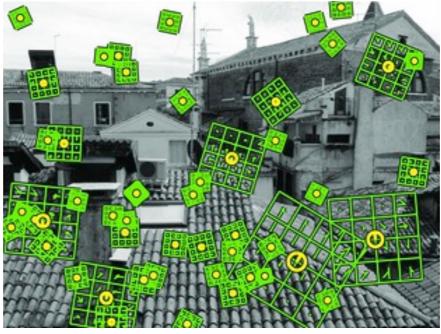
SIFT Recap

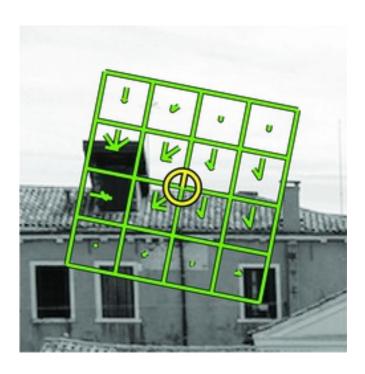
- Detector: find points that are maxima in a DOG pyramid
- Compute local orientation from gradient histogram
- This establishes a local coordinate frame with scale/ orientation
- Descriptor: Build histograms over gradient orientations (8 orientations, 4x4 grid)
- Normalise the final descriptor



Extract SIFT features from an image



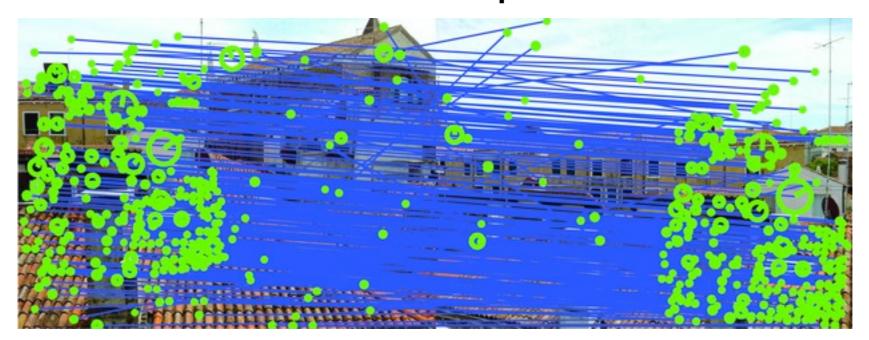




Each image might generate 100's or 1000's of SIFT descriptors

Goal: Find all correspondences between a pair of images

Extract and match all SIFT descriptors from both images

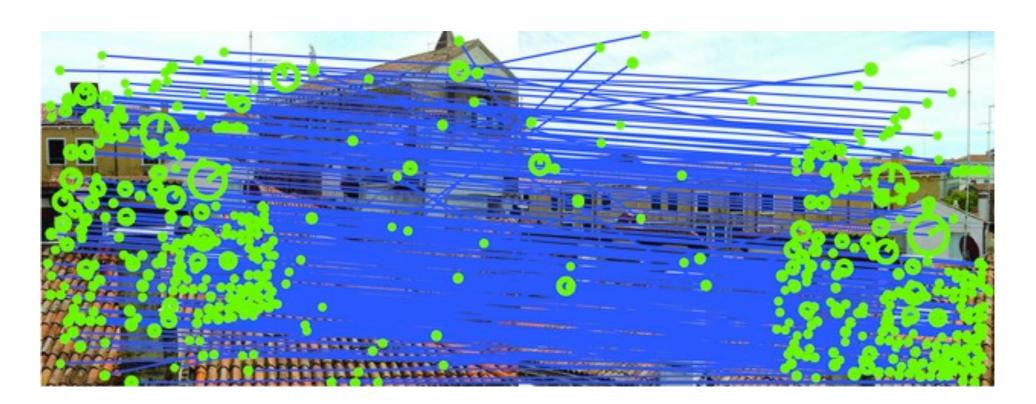


- Each SIFT feature is represented by I28 numbers
- Feature matching becomes task of finding a nearby 128-d vector
- Nearest-neighbour matching:

$$NN(j) = \arg\min_{i} |\mathbf{x}_i - \mathbf{x}_j|, i \neq j$$

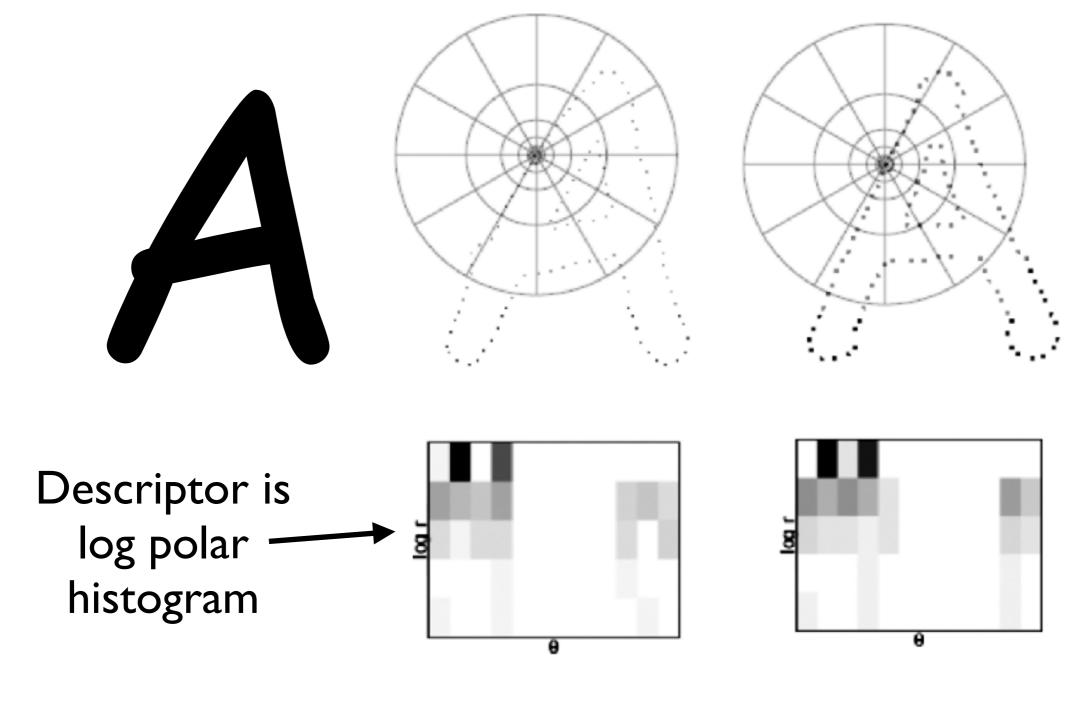
- Linear time, but good approximation algorithms exist
- e.g., Best Bin First K-d Tree [Beis Lowe 1997], FLANN (Fast Library for Approximate Nearest Neighbours) [Muja Lowe 2009]

- Feature matching returns a set of noisy correspondences
- To get further, we will have to know something about the geometry of the images



Shape Context

Useful for matching with contours



[Belongie Malik 2000]

Choosing Features

The best choice of features is usually application dependent

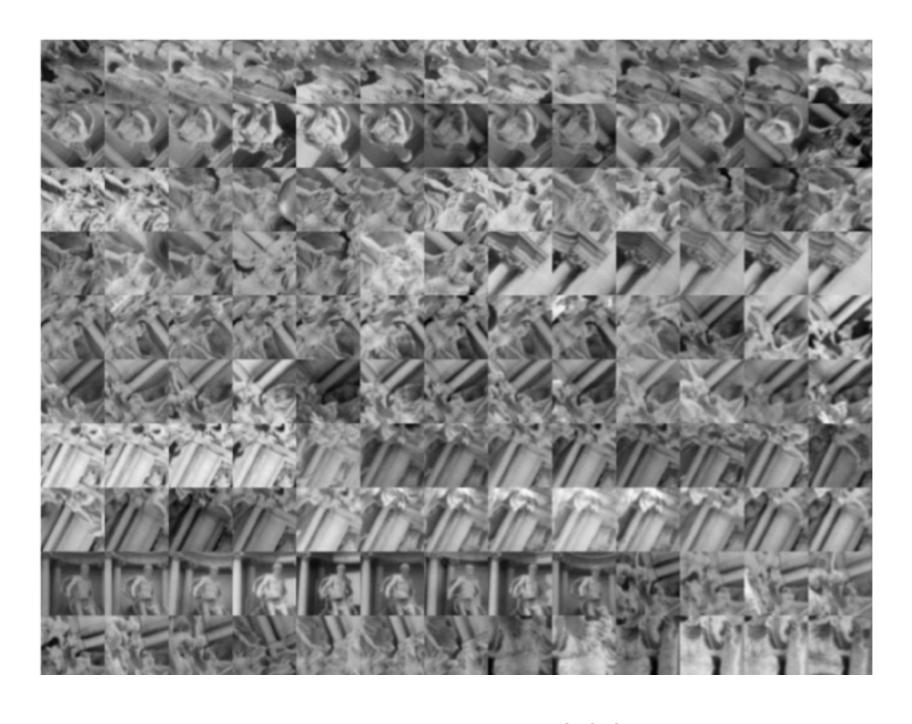
Shape context?

SIFT?

Something else?

Learning Descriptors

Descriptor design as a learning (embedding) problem



[Winder Brown 2007]

Learning Descriptors

Deep networks for descriptor learning

Patch labels

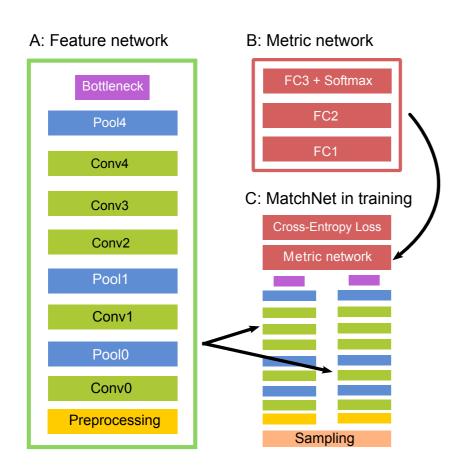
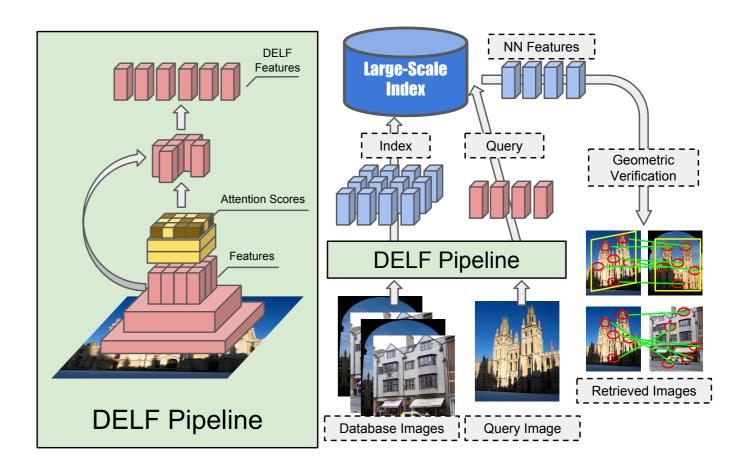


Image labels, also learns interest function



[MatchNet Han et al 2015]

[DELF Noh et al 2017]

Project I

 You can now complete Project | — Descriptors and Matching and Testing and Improving Feature Matching sections.

Next Lecture

Planar Geometry, Camera Models, RANSAC