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Multiview + Sparse SFM
• Multiview Image Alignment, Residuals, Error Function

• Structure from Motion (SFM)

• Bundle Adjustment, Pose Estimation, Triangulation

2[ Szeliski 7, 9 ]



Multiview Image Alignment
• Align a set of images given a motion model (e.g., planar affine)

3[ Szeliski 9.2 ]
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RANSAC recap
• RANSAC solution for Similarity Transform (2 points)
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4 inliers (red, yellow, orange, brown), 
4 outliers (blue, light blue, purple, pink)
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4 outliers (blue, light blue, purple, pink)



RANSAC recap
• RANSAC solution for Similarity Transform (2 points)
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choose light blue, purplewarp imagecheck match distances
#inliers = 2



RANSAC recap
• RANSAC solution for Similarity Transform (2 points)
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check match distanceswarp image

RANSAC recap
• RANSAC solution for Similarity Transform (2 points)
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choose pink, blue

#inliers = 2



RANSAC recap
• RANSAC solution for Similarity Transform (2 points)
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check match distances

RANSAC recap
• RANSAC solution for Similarity Transform (2 points)
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choose red, orange

#inliers = 4

warp image



RANSAC recap
• RANSAC solution for Similarity Transform (2 points)
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Planar Image Alignment
• Given a clean set of correspondences, align all images
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Planar Mapping Residuals
• Residual = vector between observed feature and projection

19
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Multiview Image Alignment
• Minimize squared projection errors between images with 

respect to planar transform parameters (H matrices)

20
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Panorama Recognition
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Panorama Recognition
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Panorama Recognition
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Panorama Recognition
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Panorama Stitching

26

• We can concatenate pairwise homographies, but over time 
multiple pairwise mappings accumulate errors

• We use global alignment (bundle adjustment) to close the gap



Structure from Motion
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Given an (unordered) set of input images, compute 
cameras and 3D structure of the scene

[ Szeliski 7 ]



Structure from Motion
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2-view Structure from Motion
• We can use the combination of SIFT/RANSAC and 

triangulation to compute 3D structure from 2 views

29

K1,R1, t1 K2,R2, t2

X

u1

u2

Raw SIFT matches

RANSAC for F

Triangulate to 3D Point CloudExtract R, t



Global Alignment
• Concatenation of pairwise R, t estimates results in drift, e.g., 

30
Pairwise alignment Global alignment



Global Alignment
• Concatenation of pairwise R, t estimates results in drift, e.g., 
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Pairwise alignment Global alignment



Global Alignment
• In robotic navigation frame-frame alignment also causes drift

32[ Kaess Dellaert 2010 ]

We can use bundle adjustment to close the gap



RANSAC for F

33

Raw feature matches (after ratio test filtering)

Solved for F and RANSAC inliers



Feature Tracking
• Form feature tracks by combining pairwise feature matches

34

• Tracked features become individual 3D points in the 
reconstruction

• Features matched across 3 or more views provide strong 
constraints on the 3D reconstruction



Bundle Adjustment
• Minimise errors projecting 3D points into all images

35

4.6

Ki,Ri, ti

mij

uij

Xj

[ Szeliski 7.4 ]



Bundle Adjustment
• Initialization with 3 views

36

Joint optimization of cameras and structure



Bundle Adjustment
• Add camera 4
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Pose EstimationEstimate camera pose,  add new 3D points, jointly optimize



Bundle Adjustment
• Add camera 5
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Estimate camera pose,  add new 3D points, jointly optimize



Bundle Adjustment
• Add camera 6
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Estimate camera pose,  add new 3D points, jointly optimize



Bundle Adjustment
• Add remaining cameras in same way
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Structure from Motion
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Why “Bundle” Adjustment?
• Can think of bundles of light rays emanating from each 3D 

point
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Adjust camera + 3D point positions so that bundles 
match measured positions (feature points)



SFM recap
• Match features, e.g., SIFT, between all views

• Use RANSAC to reject outliers and estimate F matrices

• Form feature tracks by linking multiview matches

• Select an initialization set, e.g., 3 images with lots of matches 
and good baseline (parallax)

• Jointly optimize cameras R, t and structure X for this set

• Repeat for each camera:
- Estimate pose R, t by minimising projection errors with existing X
- Add 3D points corresponding to the new view and optimize
- Bundle adjust optimizing over all cameras and structure

43



Visual SFM

44[ ccwu.me/vsfm ]



Application: 3D from Internet Images
• Reconstruct 3D from unordered photo collections

45[ Building Rome in a Day,  S. Agarwal et al 2009 ]
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Next Lecture
• Dense matching and reconstruction
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