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Dense Methods I: Stereo
• Stereo matching, local + global optimization

• Multi-view stereo, geometry representations

• Photometric Stereo
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Application: Photo Collections→3D
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[ Y. Furukawa PMVS ]

• Generate detailed 3D 
model (e.g., depth values 
at every pixel in input 
images)



Application: Remote Sensing

• Mars Reconnaissance Orbiter

• Launched 2005, ~13 orbits / earth day

• HIRISE camera pixels are 1µ radian (0.3m at 300km) 

• MARCI camera has 5 visible + 2 UV bands, lower res
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Application:  Remote Sensing

Mars Reconnaissance Orbiter
• Launched 12 Aug 2005
• Entered orbit 10 Mar 2006
• ~ 112 minute orbital period
�~ 12.8 orbits / (Earth) day

• Sensors:
• High Resolution Imaging Science 

Experiment (HiRISE)
• Context Camera
• Mars Color Imager

Image credit: NASA/JPL
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[ NASA/JPL ]



• Martian surface elevation map
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Application: Remote Sensing

Image credit: NASA/JPL/University of Arizona/USGS 9

5km
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Image credit: NASA / JPL-Caltech / UA / Kevin M. Gill 8

Application: Remote Sensing
• Martian surface detail



Epipolar Geometry
• A point in one view may lie on a line in the 2nd
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(u1, v1) (u2, v2)

X?
X?

X?

Position in image 2 depends on the depth of the 3D point

?



2-view Stereo
• Camera motion only, points constrained to epipolar lines
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1D Search



Stereo Camera Configuration
• Humans and many stereo cameras have parallel optical axes

9[ J. Elson ]



Axis Aligned Stereo
• A common stereo configuration has camera optical axes 

aligned, with cameras related by a translation in the x 
direction
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5.1



Stereo Matching
• In a standard stereo setup, where cameras are related by 

translation in the x direction, epipolar lines are horizontal
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 11.1 Stereo reconstruction techniques can convert (a–b) a pair of images into (c)
a depth map (http://vision.middlebury.edu/stereo/data/scenes2003/) or (d–e) a sequence of
images into (f) a 3D model (http://vision.middlebury.edu/mview/data/). (g) An analytical
stereo plotter, courtesy of Kenney Aerial Mapping, Inc., can generate (h) contour plots.

5.2

• Stereo algorithms search along scanlines for matches

• Distance along the scanline (difference in x coordinate) for a 
corresponding feature is called disparity

[ D. Scharstein ] 
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Disparity and Depth: R

12[ D. Scharstein ] 
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 11.1 Stereo reconstruction techniques can convert (a–b) a pair of images into (c)
a depth map (http://vision.middlebury.edu/stereo/data/scenes2003/) or (d–e) a sequence of
images into (f) a 3D model (http://vision.middlebury.edu/mview/data/). (g) An analytical
stereo plotter, courtesy of Kenney Aerial Mapping, Inc., can generate (h) contour plots.

Disparity and Depth: R+L
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[ D. Scharstein ] 



Effect of Window Size
• Larger windows → smoothed result

15

Aggregation window, error and cost functions

Ground truth SAD W=11SAD W=3 SAD W=25

Effect of window size (W) for aggregating the photometric cost: 

W=3 W=11 W=25



Anaglyph
• Stereo pair with images encoded in different color channels

16



Stereo Displays

17

Lenticular lenses send 
different images directly to 
each eye, without the need 

for glasses 

• Field sequential (shutter) glasses transmit alternate left/right 
image at 120Hz



Stereo Displays
• VR headsets send L/R images directly to each eye

18[ Google Cardboard ]



Stereo Rectification

19

• If the optical axes are not aligned, we can rotate the images 
(homography) until they are perpendicular to the baseline



(a) Original image
pair overlayed with
several epipolar
lines.

(b) Image pair
transformed by the
specialized projec-
tive mapping
and . Note that
the epipolar lines
are now parallel to
each other in each
image.

(c) Image pair
transformed by
the similarity
and . Note
that the image pair
is now rectified
(the epipolar lines
are horizontally
aligned).

(d) Final image
rectification after
shearing transform

and . Note
that the image pair
remains rectified,
but the horizon-
tal distortion is
reduced.

Figure 3: An example showing various stages of the proposed rectification algorithm.
12

Stereo Rectification
• Transform (rotate) images so that epipolar lines are horizontal

20[ Loop Zhang 1999 ] 

(a) Original image
pair overlayed with
several epipolar
lines.

(b) Image pair
transformed by the
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tive mapping
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the epipolar lines
are now parallel to
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image.

(c) Image pair
transformed by
the similarity
and . Note
that the image pair
is now rectified
(the epipolar lines
are horizontally
aligned).

(d) Final image
rectification after
shearing transform

and . Note
that the image pair
remains rectified,
but the horizon-
tal distortion is
reduced.
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Occlusions
• Sometimes a point in image 1 does not appear in image 2, or 

vice-versa (this is called an occlusion)

21

C

B

A

a

D
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• Occlusions cause gaps 
in the stereo 
reconstruction

• + Matching is difficult 
nearby as aggregation 
windows often overlap 
the occluded region



Edge Aware Stereo
• Occlusions and depth discontinuities cause problems for 

stereo matching, as aggregation windows overlap multiple 
depths

22

(a) (c) (d)(b)

(e) (g) (h)(f)

(i) (j) (k) (l)

Figure 4. Output images. (a–d) Depth map (αth = 0.5), (e–h) segmentation map, and (i–l) alpha matte for each data set.

[8, 3, 18, 23], because color segmentation fails at object
boundaries with similar foreground and background colors.
For example, Fig. 7 (d) shows the results from Hong and
Chen’s method [8], a color-segmentation based algorithm
that ranked third on the old Middlebury evaluation. Deng
et al.’s patch-based approach [6] overcomes many of these
errors, as shown in Fig. 7 (e). (Deng et al. fill occluded re-
gions with neighboring depth values because these regions
were not considered in the old Middlebury evaluation.) Our
result is similar in quality to Deng et al.’s (Fig. 7 (f)). Cur-
rently, Sun et al. [13] obtain the best results for this image
pair by using segmentation as a soft constraint (Fig. 7 (g)).

5.3. Z-Keying

Figure 8 shows a Z-keying result using estimated depth
maps and alpha mattes for the Teddy and Cones image pairs.
We extracted the teddy bear from the left Teddy image and
composited it into the left Cones image. Because we use
alpha mattes for both extraction and composition, there is
no color bleeding on boundaries between the teddy bears
and other objects (Figs. 8 (a) and (b)). By comparison, the
matting results using a single depth map (calculated with
αth = 0.5) and no alpha matte (Fig. 8 (c)) have artifacts.

6. Discussion and Conclusions

Our adaptive over-segmentation based stereo algorithm
overcomes limitations of traditional segmentation based
methods while properly handling mixed pixels on object
boundaries. Our depth maps are not only accurate according
to accepted standards (Middlebury) but in fact more com-
plete, because we produce opacity information and fore-
ground/background colors and depths for mixed pixels. In
contrast to most matting methods, we produce this informa-
tion along depth discontinuities throughout the scene, not
only for foreground objects. Currently, the most significant
limitation of our method is that it assumes a constant depth
for all pixels in each segment, so it does not handle heav-
ily slanted planes well. In future work, we could attempt to
address this problem by using oriented planes or parametric
surfaces instead of fronto-parallel segments.

To compare our stereo results with other researchers, we
create single-valued depth maps to use with the Middle-
bury stereo evaluation. In doing so, we discovered that
the Tsukuba ground truth depth map is biased toward the
foreground depths of mixed pixels. Our performance on
the Middlebury evaluation gives us good confidence in our
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 11.1 Stereo reconstruction techniques can convert (a–b) a pair of images into (c)
a depth map (http://vision.middlebury.edu/stereo/data/scenes2003/) or (d–e) a sequence of
images into (f) a 3D model (http://vision.middlebury.edu/mview/data/). (g) An analytical
stereo plotter, courtesy of Kenney Aerial Mapping, Inc., can generate (h) contour plots.

• Segmentation-based stereo approaches aim to solve this by 
trying to guess the depth edges (e.g., joint segmentation and 
depth estimation [ Taguchi et al 2008 ])



Ordering Constraint
• If point B is to the right of point A in image 1, the same is 
usually true in image 2
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CB
A

a
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b c d a cb
d B

A

a                   b a

Not always, e.g., if an object
is wholly within the ray 
triangle generated by A



Occlusions + Ordering
• Note that the ordering constraint is still maintained in the 

presence of occlusions

24
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Optimal Scanline Mapping
• We can imagine a mapping between left and right scanlines

• If we assume the ordering constraint this must be monotonic, 
but there may be step changes (due to occlusions)

• How can we find the best monotonic sequence mapping left 
to right scanlines?

25

Left scanline

Right scanline



Dynamic Programming
• At each point, we may make one of 3 moves: left/right 

occlusion (higher cost), or sequential correspondence (lower 
cost based on patch SSD)

26

Look for a path from 
top left to bottom right 

with the lowest cost

[ Cox et al 1996 ]

Left scanline 

R
ight scanline 

Start 



Dynamic Programming
• We need not consider all possible paths, as we only need to 

know the lowest cost path for reaching each state

27

Left scanline 

R
ight scanline 

5.3

Scan over grid finding 
min-cost paths and 

backtrack from the end

[ Cox et al 1996 ]



Stereo Cost Functions
• Energy function for stereo matching based on disparity d(x,y)

• Sum of data and smoothness terms

28
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correcting the apparent gaze during video conferencing, and background replacement. We
discuss the first two applications below and defer the discussion of background replacement
to Section 11.5.3.

The use of head tracking to control a user’s virtual viewpoint while viewing a 3D object
or environment on a computer monitor is sometimes called fish tank virtual reality, since the
user is observing a 3D world as if it were contained inside a fish tank (Ware, Arthur, and
Booth 1993). Early versions of these systems used mechanical head tracking devices and
stereo glasses. Today, such systems can be controlled using stereo-based head tracking and
stereo glasses can be replaced with autostereoscopic displays. Head tracking can also be used
to construct a “virtual mirror”, where the user’s head can be modified in real-time using a
variety of visual effects (Darrell, Baker, Crow et al. 1997).

Another application of stereo head tracking and 3D reconstruction is in gaze correction
(Ott, Lewis, and Cox 1993). When a user participates in a desktop video-conference or video
chat, the camera is usually placed on top of the monitor. Since the person is gazing at a
window somewhere on the screen, it appears as if they are looking down and away from the
other participants, instead of straight at them. Replacing the single camera with two or more
cameras enables a virtual view to be constructed right at the position where they are looking
resulting in virtual eye contact. Real-time stereo matching is used to construct an accurate 3D
head model and view interpolation (Section 13.1) is used to synthesize the novel in-between
view (Criminisi, Shotton, Blake et al. 2003).

11.5 Global optimization
Global stereo matching methods perform some optimization or iteration steps after the dis-
parity computation phase and often skip the aggregation step altogether, because the global
smoothness constraints perform a similar function. Many global methods are formulated in
an energy-minimization framework, where, as we saw in Sections 3.7 (3.100–3.102) and 8.4,
the objective is to find a solution d that minimizes a global energy,

E(d) = Ed(d) + �Es(d). (11.8)

The data term, Ed(d), measures how well the disparity function d agrees with the input image
pair. Using our previously defined disparity space image, we define this energy as

Ed(d) =

X

(x,y)

C(x, y, d(x, y)), (11.9)

where C is the (initial or aggregated) matching cost DSI.
The smoothness term Es(d) encodes the smoothness assumptions made by the algorithm.

To make the optimization computationally tractable, the smoothness term is often restricted
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to measuring only the differences between neighboring pixels’ disparities,

Es(d) =

X

(x,y)

⇢(d(x, y)� d(x + 1, y)) + ⇢(d(x, y)� d(x, y + 1)), (11.10)

where ⇢ is some monotonically increasing function of disparity difference. It is also possi-
ble to use larger neighborhoods, such as N8, which can lead to better boundaries (Boykov
and Kolmogorov 2003), or to use second-order smoothness terms (Woodford, Reid, Torr et
al. 2008), but such terms require more complex optimization techniques. An alternative to
smoothness functionals is to use a lower-dimensional representation such as splines (Szeliski
and Coughlan 1997).

In standard regularization (Section 3.7.1), ⇢ is a quadratic function, which makes d smooth
everywhere and may lead to poor results at object boundaries. Energy functions that do not
have this problem are called discontinuity-preserving and are based on robust ⇢ functions
(Terzopoulos 1986b; Black and Rangarajan 1996). The seminal paper by Geman and Ge-
man (1984) gave a Bayesian interpretation of these kinds of energy functions and proposed a
discontinuity-preserving energy function based on Markov random fields (MRFs) and addi-
tional line processes, which are additional binary variables that control whether smoothness
penalties are enforced or not. Black and Rangarajan (1996) show how independent line pro-
cess variables can be replaced by robust pairwise disparity terms.

The terms in Es can also be made to depend on the intensity differences, e.g.,

⇢d(d(x, y)� d(x + 1, y)) · ⇢I(kI(x, y)� I(x + 1, y)k), (11.11)

where ⇢I is some monotonically decreasing function of intensity differences that lowers
smoothness costs at high-intensity gradients. This idea (Gamble and Poggio 1987; Fua 1993;
Bobick and Intille 1999; Boykov, Veksler, and Zabih 2001) encourages disparity discontinu-
ities to coincide with intensity or color edges and appears to account for some of the good
performance of global optimization approaches. While most researchers set these functions
heuristically, Scharstein and Pal (2007) show how the free parameters in such conditional
random fields (Section 3.7.2, (3.118)) can be learned from ground truth disparity maps.

Once the global energy has been defined, a variety of algorithms can be used to find a
(local) minimum. Traditional approaches associated with regularization and Markov random
fields include continuation (Blake and Zisserman 1987), simulated annealing (Geman and
Geman 1984; Marroquin, Mitter, and Poggio 1987; Barnard 1989), highest confidence first
(Chou and Brown 1990), and mean-field annealing (Geiger and Girosi 1991).

More recently, max-flow and graph cut methods have been proposed to solve a special
class of global optimization problems (Roy and Cox 1998; Boykov, Veksler, and Zabih 2001;
Ishikawa 2003). Such methods are more efficient than simulated annealing and have produced
good results, as have techniques based on loopy belief propagation (Sun, Zheng, and Shum

• Smoothness cost penalises disparity changes with robust 𝜌(.)

• Data term is cost of pixel x,y allocated disparity d (e.g., SSD)

• This is a Markov Random Field (MRF), which can be solved 
using techniques such as Graph Cuts 

[ Szeliski B5 ]



Stereo Comparison
• Global vs Scanline vs Local optimization

29[ Scharstein Szeliski 2002 ]

True disparities 19 – Belief propagation 11 – GC + occlusions 20 – Layered stereo

10 – Graph cuts *4 – Graph cuts 13 – Genetic algorithm 6 – Max flow

12 – Compact windows 9 – Cooperative alg. 15 – Stochastic diffusion *2 – Dynamic progr.

14 – Realtime SAD *3 – Scanline opt. 7 – Pixel-to-pixel stereo *1 – SSD+MF

*5 – Bayesian diffusion 8 – Multiway cut 17 – Disc.-pres. regul. 16 – Fast Correlation

Figure 17: Comparative results on the Tsukuba images. The results are shown in decreasing order of overall performance (BO). Algorithms
implemented by us are marked with a star.
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Ground
truth

Graph Cuts Dynamic
Programming

SSD 21px
aggregation[ Kolmogorov 

Zabih 2001]



Multiview Stereo
• Plane sweep, volumetric, depth map merging

30
[ Szeliski 11.6 ]



Multiview Stereo

31
[ Y. Furukawa PMVS ]

• Use information from 
N>2 views to form a 
dense 3D reconstruction



Multiview Stereo

32

• Search along epipolar lines to find good matches in N views



33
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Plane Sweep Stereo

H12(d)

d=1
d=2

d=N
…



Plane Sweep Stereo
• Warp images using a set of planes in front of the camera

35

12.1 Epipolar geometry 711

 

Virtual camera

d

x

y

Input  image k

u
v

Homography:
  u = H x

 

x
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d
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(a) (b)

Figure 12.6 Sweeping a set of planes through a scene (Szeliski and Golland 1999) c� 1999
Springer: (a) The set of planes seen from a virtual camera induces a set of homographies in
any other source (input) camera image. (b) The warped images from all the other cameras can
be stacked into a generalized disparity space volume Ĩ(x, y, d, k) indexed by pixel location
(x, y), disparity d, and camera k.

12.1.2 Plane sweep

An alternative to pre-rectifying the images before matching is to sweep a set of planes through
the scene and to measure the photoconsistency of different images as they are re-projected
onto these planes (Figure 12.6). This process is commonly known as the plane sweep algo-
rithm (Collins 1996; Szeliski and Golland 1999; Saito and Kanade 1999).

As we saw in Section 2.1.4, where we introduced projective depth (also known as plane
plus parallax (Kumar, Anandan, and Hanna 1994; Sawhney 1994; Szeliski and Coughlan
1997)), the last row of a full-rank 4 ⇥ 4 projection matrix P̃ can be set to an arbitrary plane
equation p3 = s3[n̂0|c0]. The resulting four-dimensional projective transform (collineation)
(2.68) maps 3D world points p = (X, Y, Z, 1) into screen coordinates xs = (xs, ys, 1, d),
where the projective depth (or parallax) d (2.66) is 0 on the reference plane (Figure 2.11).

Sweeping d through a series of disparity hypotheses, as shown in Figure 12.6a, corre-
sponds to mapping each input image into the virtual camera P̃ defining the disparity space
through a series of homographies (2.68–2.71),

x̃k ⇠ P̃kP̃
�1xs = H̃kx̃ + tkd = (H̃k + tk[0 0 d])x̃, (12.3)

as shown in Figure 2.12b, where x̃k and x̃ are the homogeneous pixel coordinates in the
source and virtual (reference) images (Szeliski and Golland 1999). The members of the fam-
ily of homographies H̃k(d) = H̃k + tk[0 0 d], which are parametererized by the addition of

5.4



Plane Sweep Stereo
• Warp images using a set of planes in front of the camera

36

Try out PlaneSweep.ipynb from the course webpage



Volumetric Stereo
• Discretise the scene using a grid of voxels
• Infer occupancy and colour of voxels by projecting to images

37



38[ Seitz Dyer 1997 ]

• Idea: visit all voxels in order, keep only photo-consistent voxels

What is wrong with this idea?



Space Carving
• Space carving finds a voxel reconstruction that is consistent 

with the input images, taking into account visibility

39

Space Carving

Space Carving Algorithm

Image 1 Image N

…...

• Initialize to a volume V containing the true scene

• Repeat until convergence

• Choose a voxel on the current surface

• Carve if not photo-consistent
• Project to visible input images

K. N. Kutulakos and S. M. Seitz, A Theory of Shape by Space Carving, ICCV 1999

• Initialise a volume containing the true scene

• Choose a voxel v on the surface

• Project v to all views where visible

• If v is not photo-consistent, remove it from the volume

• Repeat until all voxels are photo-consistent

[ Kutulakos Seitz 2000 ]
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~1k voxels ~70k voxels902 voxels 4,898 voxels 21,174 voxels 71,841 voxels

(d) (e) (f) (g)

Figure 11: Shaded (top) and colored (bottom) voxel models of a dinosaur toy at different resolutions.

(a) (b) (c)

Figure 12: Comparison of voxel coloring and silhouette-based reconstruction. Input image (a) is shown next to reconstruc-
tions rendered at the same viewpoint. (b): voxel coloring reconstruction. (c): silhouette-based reconstruction.
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902 voxels 4,898 voxels 21,174 voxels 71,841 voxels
(d) (e) (f) (g)

Figure 11: Shaded (top) and colored (bottom) voxel models of a dinosaur toy at different resolutions.

(a) (b) (c)

Figure 12: Comparison of voxel coloring and silhouette-based reconstruction. Input image (a) is shown next to reconstruc-
tions rendered at the same viewpoint. (b): voxel coloring reconstruction. (c): silhouette-based reconstruction.
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Silhouette Intersection
• Consider the case of binary images (silhouettes)

• Voxel is part of the object if it lies in the silhouette in all views

41

Reconstruction from Silhouettes

Binary Images

Finding the silhouette-consistent shape (visual hull):  
• Backproject each silhouette
• Intersect backprojected volumes

• The case of binary images: a voxel is photo-
consistent if it lies inside the object’s silhouette in all 
views

[ Seitz / Lazebnik ]

Voxel algorithm for volume intersection

Color voxel black if on silhouette in every image
Project volumes from each 
silhouette back into scene

and intersect

Voxel reconstruction 
is larger than object



1 camera 3 cameras

Silhouette Intersection
• The intersection of back-projected silhouettes is called the 

visual hull, it is more accurate with increasing # views

42

[ Ben Tordoff / 
Mathworks]



Depth Map Merging
• Idea: Nearby images have the most reliable stereo matches

• If we have a lot of images/pixels, we may not need to perform 
wide baseline matching

43[ http://vision.middlebury.edu/mview ] 

http://vision.middlebury.edu/mview


Depth Map Merging
• Select subsets of images and compute high confidence depth 

maps (e.g., keep only low SSD matches)

• Merge depth maps using robust fusion, e.g., using signed 
distance functions [ Curless Levoy 1996 ]

44[ Goesele Curless Seitz 2006 ] 
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Figure 3.7: The effects of the number of input images after depthmap merging for
the two datasets. The algorithm by Goesele, Curless, and Seitz is used [80]. (Figure
courtesy of Goesele et al.)

3.1.3 MRF Depthmaps

Despite the use of the robust photo-consistency function in the previous
section, the peak of a photo-consistency curve may not correspond to
the true depth in challenging cases. In the presence of severe occlusions,
there may not exist a corresponding match in most other images. A
standard solution for these problems is to enforce spatial consistency,
under the assumption that neighboring pixels have similar depth values,
where Markov Random Field (MRF) is a very popular and successful
formulation for the task. The MRF depthmap formulation [120] can be
seen as a combinatorial optimization problem, where an input depth
range is discretized into a finite set of depth values. The problem is
then to assign a depth label kp from the label set to each pixel p, while
minimizing the following cost function:

E({kp}) =
∑

p

Φ(kp) +
∑

(p,q)∈N
Ψ(kp, kq). (3.2)

The first summation is over all the pixels in the image, while the
second summation is over all the pairs of neighboring pixels denoted



Photo Collections→3D

• Depth map merging is practical for photo collections:

• Adaptable to complex geometry and large-scale scenes

• Robust to varied imagery and noise — select only subsets 
with good matches (don’t try to match everything)
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Figure 1: Our system takes unstructured collections of photographs such as those from online image searches (a) and reconstructs 3D points
and viewpoints (b) to enable novel ways of browsing the photos (c).

Abstract
We present a system for interactively browsing and exploring large
unstructured collections of photographs of a scene using a novel
3D interface. Our system consists of an image-based modeling
front end that automatically computes the viewpoint of each photo-
graph as well as a sparse 3D model of the scene and image to model
correspondences. Our photo explorer uses image-based rendering
techniques to smoothly transition between photographs, while also
enabling full 3D navigation and exploration of the set of images and
world geometry, along with auxiliary information such as overhead
maps. Our system also makes it easy to construct photo tours of
scenic or historic locations, and to annotate image details, which
are automatically transferred to other relevant images. We demon-
strate our system on several large personal photo collections as well
as images gathered from Internet photo sharing sites.
CR Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities I.2.10 [Artificial Intelligence]: Vision and Scene
Understanding—Modeling and recovery of physical attributes
Keywords: image-based rendering, image-based modeling, photo
browsing, structure from motion

1 Introduction
A central goal of image-based rendering is to evoke a visceral sense
of presence based on a collection of photographs of a scene. The
last several years have seen significant progress towards this goal
through view synthesis methods in the research community and in
commercial products such as panorama tools. One of the dreams

is that these approaches will one day allow virtual tourism of the
world’s interesting and important sites.
During this same time, digital photography, together with the In-

ternet, have combined to enable sharing of photographs on a truly
massive scale. For example, a Google image search on “Notre
Dame Cathedral” returns over 15,000 photos, capturing the scene
from myriad viewpoints, levels of detail, lighting conditions, sea-
sons, decades, and so forth. Unfortunately, the proliferation of
shared photographs has outpaced the technology for browsing such
collections, as tools like Google (www.google.com) and Flickr
(www.flickr.com) return pages and pages of thumbnails that the
user must comb through.
In this paper, we present a system for browsing and organizing

large photo collections of popular sites which exploits the common
3D geometry of the underlying scene. Our approach is based on
computing, from the images themselves, the photographers’ loca-
tions and orientations, along with a sparse 3D geometric represen-
tation of the scene, using a state-of-the-art image-based modeling
system. Our system handles large collections of unorganized pho-
tographs taken by different cameras in widely different conditions.
We show how the inferred camera and scene information enables
the following capabilities:

• Scene visualization. Fly around popular world sites in 3D by
morphing between photos.

• Object-based photo browsing. Show me more images that
contain this object or part of the scene.

• Where was I? Tell me where I was when I took this picture.
• What am I looking at? Tell me about objects visible in this
image by transferring annotations from similar images.

Our paper presents new image-based modeling, image-based
rendering, and user-interface techniques for accomplishing these
goals, and their composition into an end-to-end 3D photo brows-
ing system. The resulting system is remarkably robust in practice;
we include results on numerous sites, ranging from Notre Dame
(Figure 1) to the Great Wall of China and Yosemite National Park,
as evidence of its broad applicability.
The remainder of this paper is structured as follows. Section 2

gives an overview of the approach. Section 3 surveys related work
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1 Introduction
A central goal of image-based rendering is to evoke a visceral sense
of presence based on a collection of photographs of a scene. The
last several years have seen significant progress towards this goal
through view synthesis methods in the research community and in
commercial products such as panorama tools. One of the dreams

is that these approaches will one day allow virtual tourism of the
world’s interesting and important sites.
During this same time, digital photography, together with the In-

ternet, have combined to enable sharing of photographs on a truly
massive scale. For example, a Google image search on “Notre
Dame Cathedral” returns over 15,000 photos, capturing the scene
from myriad viewpoints, levels of detail, lighting conditions, sea-
sons, decades, and so forth. Unfortunately, the proliferation of
shared photographs has outpaced the technology for browsing such
collections, as tools like Google (www.google.com) and Flickr
(www.flickr.com) return pages and pages of thumbnails that the
user must comb through.
In this paper, we present a system for browsing and organizing

large photo collections of popular sites which exploits the common
3D geometry of the underlying scene. Our approach is based on
computing, from the images themselves, the photographers’ loca-
tions and orientations, along with a sparse 3D geometric represen-
tation of the scene, using a state-of-the-art image-based modeling
system. Our system handles large collections of unorganized pho-
tographs taken by different cameras in widely different conditions.
We show how the inferred camera and scene information enables
the following capabilities:

• Scene visualization. Fly around popular world sites in 3D by
morphing between photos.

• Object-based photo browsing. Show me more images that
contain this object or part of the scene.

• Where was I? Tell me where I was when I took this picture.
• What am I looking at? Tell me about objects visible in this
image by transferring annotations from similar images.

Our paper presents new image-based modeling, image-based
rendering, and user-interface techniques for accomplishing these
goals, and their composition into an end-to-end 3D photo brows-
ing system. The resulting system is remarkably robust in practice;
we include results on numerous sites, ranging from Notre Dame
(Figure 1) to the Great Wall of China and Yosemite National Park,
as evidence of its broad applicability.
The remainder of this paper is structured as follows. Section 2

gives an overview of the approach. Section 3 surveys related work

[ N. Snavely, M. Goesele ]



Neural Scene Representation

46matthewtancik.com/nerf 

• Neural Radiance Fields, ~10s of input views

http://matthewtancik.com/nerf


Photometric Stereo
• We can also get 3D information about the scene using one 

camera and multiple lights

47

• The most straightforward case of photometric stereo is to 
assume Lambertian reflectance

5.5



Photometric Stereo by Example
• Use object of known geometry, match colour patterns

48[ Hertzmann Seitz 2003 ]





Next Lecture
• Depth, Flow
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