Visual Classification I: Intro and Linear Methods

CSE P576

Dr. Matthew Brown

Visual Classification I

- Object recognition: instance, category
- Image classification vs object detection
- Linear classification, CIFARIO case study
- 2-class, N -class, linear + softmax regression

Object Recognition

- Object recognition with SIFT features [Lowe 1999]

What is present? Where? What orientation?

Object Recognition

- PASCALVisual Object Classes Challenges [2005-20I2]

What is present? Where? What orientation?

Classification and Detection

- Classification: Label per image, e.g., ImageNet

- Detection: Label per region, e.g., PASCALVOC

[Krizhevsky et al 201 I][Ren et al 2016]

Segmentation

- Segmentation: Label per pixel, e.g., MS COCO

Structured Image Understanding

- "Girl feeding large elephant"
- "A man taking a picture behind girl"

visualgenome.org [Krishna et al 2017]

Shape + Tracking

- Other vision applications might need shape modelling (possibly deformable) and/or tracking in video

[Zuffi et al 2017]
[SMPL Loper et al 2015]
We'll focus on single image classification today

Classification: Instance vs Category

Instance of Aeroplane (Wright Flyer)

Category of Aeroplanes

Classification: Instance vs Category

Instance of a cat

Category of domestic cats

Taxonomy of Cats

\llcorner Mammals (Class Mammalia)
\hookrightarrow Therians (Subclass Theria)
\hookrightarrow Placental Marmmals (Infraclass Placentalia)

Bengal Tiger
[Omveer Choudhary]

\hookrightarrow Domestic Cat (Felis catus)
\hookrightarrow Jungle Cat (Felis chaus)
European Wildcat [the wasp factory]
\hookrightarrow African Wildcat (Felis (ybica)
\hookrightarrow Sand Cat (Felis margerita)
\hookrightarrow Black-footed Cat (Felis nigripes)
\hookrightarrow European Wildcat (Felis silvestris)

[inaturalist.org]।।

Taxonomy of Boats

vehicle

sailboat

[Deng et al 2009]

WordNet

- We can use language to organise visual categories
- This is the approach taken in ImageNet [Deng et al 2009], which uses the WordNet lexical database [wordnet.princeton.edu]
- As in language, visual categories have complex relationships
- e.g., a "sail" is part of a "sailboat" which is a "watercraft"
- S: (n) sailboat, sailing_boat (a small sailing vessel; usually with a single mast) - direct hyponym / full hyponym
- S: (n) catboat (a sailboat with a single mast set far forward)
- $\underline{\text { S: }}$ (n) sharpie (a shallow-draft sailboat with a sharp prow, flat bottom, and triangular sail; formerly used along the northern Atlantic coast of the United States)
- S: (n) trimaran (a fast sailboat with 3 parallel hulls)
- part meronym
- direct hypernym / inherited hypernym / sister term
- $\underline{\text { S: }}(\mathrm{n})$ sailing vessel, sailing ship (a vessel that is powered by the wind; often having several masts)

8
If we call a "sailboat" a watercraft, is this wrong? What if we call it a "sail"?

Tiny Image Dataset

- Precursor to ImageNet and CIFARI0/I00
- 80 million images collected via image search using 75,062 noun synsets from WordNet (labels are noisy)
- Very small images ($32 \times 32 \times$ RGB) used to minimise storage
- Note human performance is still quite good at this scale!

[Torralba Freeman Fergus 2008] 14

CIFARIO Dataset

- Hand labelled set of 10 categories from Tiny Images dataset
- 60,000 32×32 images in 10 classes (50k train, IOk test)

Good test set for visual recognition problems

CIFARIO Classification

- Let's build an image classifier!

- Start by vectorizing the image data

$$
\begin{gathered}
32 \times 32 \times \text { RGB }(8 \mathrm{bit}) \text { image } \rightarrow \\
x=\left[\begin{array}{lll}
65 \mathrm{I} & \rightarrow 235754 \ldots
\end{array}\right]
\end{gathered}
$$

- $x=3072$ element vector of 0-255
- Note this throws away spatial structure, we'll bring it back later when we look at feature extraction and CNNs

\squareProject 3: Image Classification using CIFARIO (Part I)

Nearest Neighbour Classification

- Find nearest neighbour in training set

$$
i_{N N}=\arg \min _{i}\left|\mathbf{x}_{q}-\mathbf{x}_{i}\right|
$$

- Assign class to class of the nearest neighbour

$$
\hat{y}\left(\mathbf{x}_{q}\right)=y\left(\mathbf{x}_{i_{N N}}\right)
$$

Calculate $\left|\mathbf{x}_{q}-\mathbf{x}_{i}\right|$ for all training data

Nearest Neighbour Classification

- We can view each image as a point in a high dimensional space

Nearest Neighbour Classifier

- What is the decision boundary for a nearest-neighbour classifier?

k-NN Classifier

- Identify k nearest neighbours of the query
- Assign class as most common class in set
- k-NN decision boundaries:

Good performance depends on suitable choice of k

Query

Tiny Image Recognition

- Recognition performance (categories vary in semantic level)

Vehicle
(20)

$$
=7900, \text { red }=790,000, \text { blue }=79,000,000
$$

Nearest neighbour becomes increasingly accurate as N increases, but do we need to store a dataset of 80 million images?

Nearest Mean Classification

- How about a single template per class

Nearest Mean Classification

- Find nearest mean and assign class

$$
c_{q}=\arg \min _{i}\left|\mathbf{x}_{q}-\mathbf{m}_{i}\right|^{2}
$$

- CIFAR 10 class means

airplane automobile
bird

- Can we do better?
- What is the best template for L2 matching?

Linear Classification

- Linear classification, 2-class, N -class
- Regularization, softmax, cross entropy
- SGD, learning rate, momentum

Linear Classification

- Let's start by using 2 classes, e.g., bird and plane
- Apply labels (y) to training set:

$$
\begin{aligned}
& y=+1 \\
& y=-1
\end{aligned}
$$

- Use a linear model to regress y from x 6.2

2-class Linear Classification

- Separating hyperplane, projection to a line defined by \mathbf{w}

N-class Linear Classification

- We could construct $O\left(n^{2}\right)$ I vs I classifiers

N-class Linear Classification

- We could regress directly to integer class id, $y=\{0,1,2,3 \ldots 9\}$

bird

One-Hot Regression

- A better solution is to regress to one-hot targets $=1 \mathrm{vs}$ all classifiers

One-Hot Regression

- Stack into matrix form

$$
\begin{array}{r}
{\left[\mathbf{W}^{T}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
\ldots
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
\ldots
\end{array}\right] \ldots=\left[\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
\ldots
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
\ldots
\end{array}\right] \ldots} \\
\text { class } 2= \\
\text { 'automobile' class } 4= \\
\text { 'cat' }
\end{array}
$$

One-Hot Regression

- Transpose (to match Project 3 notebook)
\(\left[$$
\begin{array}{cccc}x_{11} & x_{12} & x_{13} & \ldots \\
x_{21} & x_{22} & x_{23} & \ldots \\
x_{31} & x_{32} & x_{33} & \ldots \\
& \ldots & & \end{array}
$$\right][\mathbf{W}]=\left[\begin{array}{ccccc}0 \& 1 \& 0 \& 0 \& ···

0 \& 0 \& 0 \& 1 \& ···

\& . . \& . . \& \& \end{array}\right]\)| auto |
| :---: |
| cat |

$$
\mathbf{X W}=\mathbf{T}
$$

- Solve regression problem by Least Squares

N-class Linear Classification

- One hot regression $=\mid$ vs all classifiers

bird

One-Hot Regression

- Visualise class templates for the least squares solution

- Classifier accuracy $=35 \%$ (not bad, c.f., nearest mean $=27 \%$)

What is happening here?

Polynomial Fitting

- Consider fitting a polynomial to some data by linear regression

6.4

Polynomial Fitting

- Multiple data points $\left(y_{i}, x_{i}\right)$

$$
\begin{aligned}
& y_{1}=a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2}+a_{3} x_{1}^{3} \\
& y_{2}=a_{0}+a_{1} x_{2}+a_{2} x_{2}^{2}+a_{3} x_{2}^{3} \\
& y_{3}=a_{0}+a_{1} x_{3}+a_{2} x_{3}^{2}+a_{3} x_{3}^{3}
\end{aligned}
$$

- In matrix form

$$
\begin{aligned}
& {\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
\cdots
\end{array}\right]=\left[\begin{array}{llll}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} \\
1 & x_{3} & x_{3}^{2} & x_{3}^{3} \\
& \cdots & \cdots &
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]} \\
& \mathbf{y}=\mathbf{M a}
\end{aligned}
$$

- Solve linear system by Gaussian elimination (if square) or Least Squares (if overconstrained)

Polynomial Fitting

- Fit Nth order polynomial by least squares

- Overfitting

Cross Validation

- Fit the model to a subset of data, and evaluate the fit on a held out validation set

- Calculate rms error $e_{r \text { mas }}=\left(\frac{1}{N} \sum_{i}\left(y_{i}-\hat{y_{s}}\right)^{2}\right)^{\frac{1}{2}}$

Cross Validation

- Training error always decreases, but validation error has a minimum for the best model order

Polynomial Fitting

- For large N, coefficients become HUGE!

	$\mathrm{N}=1$	$\mathrm{~N}=2$	$\mathrm{~N}=4$	$\mathrm{~N}=10$
a_{0}	0.90	2.03	-2.88	48.50
a_{1}		-1.54	29.76	-1294.90
a_{2}			-57.43	14891.41
a_{3}			31.86	-95161.10
a_{4}				367736.84
a_{5}				-885436.68
a_{6}				1331063.41
a_{7}				-1212056.89
a_{8}				610930.32
a_{9}				-130727.39

Regularization

- L2 penalty on polynomial coefficients 6.5

Regularized Linear Regression

- IOth order polynomial, prior on the coefficients weight λ

- Over-smoothing...

Under/Overfitting

- Test error vs lambda

- Training error always decreases as lambda is reduced
- Test error reaches a minimum, then increases \Rightarrow overfitting

Regularized Classification

- Add regularization to CIFARIO linear classifier

- Row I = overfitting, Row 3 = oversmoothing?

Non-Linear Optimisation

- With a linear predictor and L2 loss, we have a closed form solution for model weights W
- How about this (non-linear) function

$$
\mathbf{h}=\mathbf{W}_{2} \max \left(0, \mathbf{W}_{1} \mathbf{x}\right)
$$

- Previously (e.g., bundle adjustment), we locally linearised the error function and iteratively solved linear problems

$$
\begin{gathered}
e=\sum_{i}\left|\mathbf{h}_{i}-\mathbf{t}_{i}\right|^{2} \approx|\mathbf{J} \Delta \mathbf{W}+\mathbf{r}|^{2} \\
\Delta \mathbf{W}=-\left(\mathbf{J}^{T} \mathbf{J}\right)^{-1} \mathbf{J}^{T} \mathbf{r}
\end{gathered}
$$

Does this look like a promising approach?

Gradient Descent

- Let's try Ist order optimization instead
- Even though we can solve our Linear L2 model in closed form, we'll try it out with gradient descent
- In stochastic gradient descent (SGD), we select a random batch of data, compute the gradient, and take a step
- L2 loss for a single example x

Learning Rate

- Controls the size of the gradient descent step

$\alpha=0.02$

$\alpha=0.05$

$\alpha=0.2$
Too slow
Too fast 48

SGD + Momentum

- We can accelerate convergence of gradient descent using momentum
66

Softmax + Logistic Outputs

- Linear regression to one-hot targets is a bit strange..
- Output could be very large, and scores $\gg 1$ are penalised even for the correct class, ditto scores $\ll \mid$ for incorrect
- How about restricting output scores to 0-I?
6.9

Softmax + Cross Entropy

- What is the gradient of the softmax linear classifier?
- We could use L2 loss, but we'll use cross entropy instead
- This has a sound motivation - it is a measure of the difference between probability distributions
- It also leads to a simple update rule

Linear + Softmax Regression

- We found the following gradient descent update rule

$$
\mathbf{W}_{t+1}=\mathbf{W}_{t}-\alpha(\mathbf{h}-\mathbf{t}) \mathbf{x}^{T}
$$

- This applies to:

Linear regression $\quad \mathbf{h}=\mathbf{W}^{T} \mathbf{x} \quad$ L2 loss Softmax regression $\quad \mathbf{h}=\sigma\left(\mathbf{W}^{T} \mathbf{x}\right) \quad$ cross-entropy loss

- The same update rule with a binary prediction function

$$
\mathbf{h}=\mathbb{1}_{\max }\left(\mathbf{W}^{T} \mathbf{x}\right)
$$

implements the multiclass Perceptron learning rule

History of the Perceptron

[I.B.M. Italia]

- This machine (IBM 704) was used by Frank Rosenblatt to implement the perceptron in 1958
- Based on his statements, the New York Times reported it as: "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence."

2-class Perceptron Classifier

- Classification function is

$$
\hat{y}=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}\right)
$$

- Linear function of the data (x) followed by $0 / I$ activation
- Update rule: present data x
- if correctly classified, do nothing
- if incorrectly classified, update the weight vector

$$
\mathbf{w}_{n+1}=\mathbf{w}_{n}+y_{i} \mathbf{x}_{i}
$$

Example of Perceptron Learning

Perceptron Limitations

- Perceptrons + linear + softmax regressors are limited to data that are linearly separable, e.g.,

How could we transform the RHS to be linearly separable?

CIFARIO Feature Extraction

- So far, we used RGB pixels as the input to our classifier
- Feature extraction can improve results by a lot
- e.g., Coates et al. achieve 79.6\% accuracy on CIFARIO with a features based on k-means of whitened image patches

k-means, whitened

k-means, raw RGB [Coates et al. 201I]

Linear = Fully Connected Layer

- Note that our linear matrix multiplication classifier is equivalent to a fully connected layer in a neural network

- Typically, we'll also add a bias term b

$$
\mathbf{h}=\sigma\left(\mathbf{W}^{T} \mathbf{x}+\mathbf{b}\right)
$$

Linear = Fully Connected Layer

- Note that our linear matrix multiplication classifier is equivalent to a fully connected layer in a neural network

- Typically, we'll also add a bias term b

$$
\mathbf{h}=\sigma\left(\mathbf{W}^{T} \mathbf{x}+\mathbf{b}\right)
$$

Linear = Fully Connected Layer

- Note that our linear matrix multiplication classifier is equivalent to a fully connected layer in a neural network

- Typically, we'll also add a bias term b

$$
\mathbf{h}=\sigma\left(\mathbf{W}^{T} \mathbf{x}+\mathbf{b}\right)
$$

Linear = Fully Connected Layer

- Note that our linear matrix multiplication classifier is equivalent to a fully connected layer in a neural network

- Typically, we'll also add a bias term b

$$
\mathbf{h}=\sigma\left(\mathbf{W}^{T} \mathbf{x}+\mathbf{b}\right)
$$

Linear = Fully Connected Layer

- Note that our linear matrix multiplication classifier is equivalent to a fully connected layer in a neural network

- Typically, we'll also add a bias term b

$$
\mathbf{h}=\sigma\left(\mathbf{W}^{T} \mathbf{x}+\mathbf{b}\right)
$$

Next Lecture

- Visual Classification 2: Fundamentals + Pre-deep learning

