Filtering and Pyramids CSE P576

Vitaly Ablavsky

These slides were developed by Dr. Matthew Brown for CSEP576 Spring 2020 and adapted (slightly) for Fall 2021 credit → Matt blame → Vitaly

Filtering and Pyramids

- Linear filtering (convolution, correlation)
 - Blurring, sharpening, edge detection
- Gaussian and Laplacian Pyramids
 - Multi-scale representations

Linear Operators

• How are photo filters implemented?

original image

blur

sharpen

edge filter

Non-Linear Operators

• How are photo filters implemented?

original image

edge preserve smooth

median

canny edges

Correlation Example

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

*

0.1	0.1	0.1	
0.1	0.2	0.1	
0.1	0.1	0.1	

69	95	116	125	
68	92	110	120	
66	86	104	114	
62	78	94	108	
57	69	83	98	

71

85

60

53

=

129 132

126 132

132

129

124

124

120

112

100 114

element wise (dot) product

*

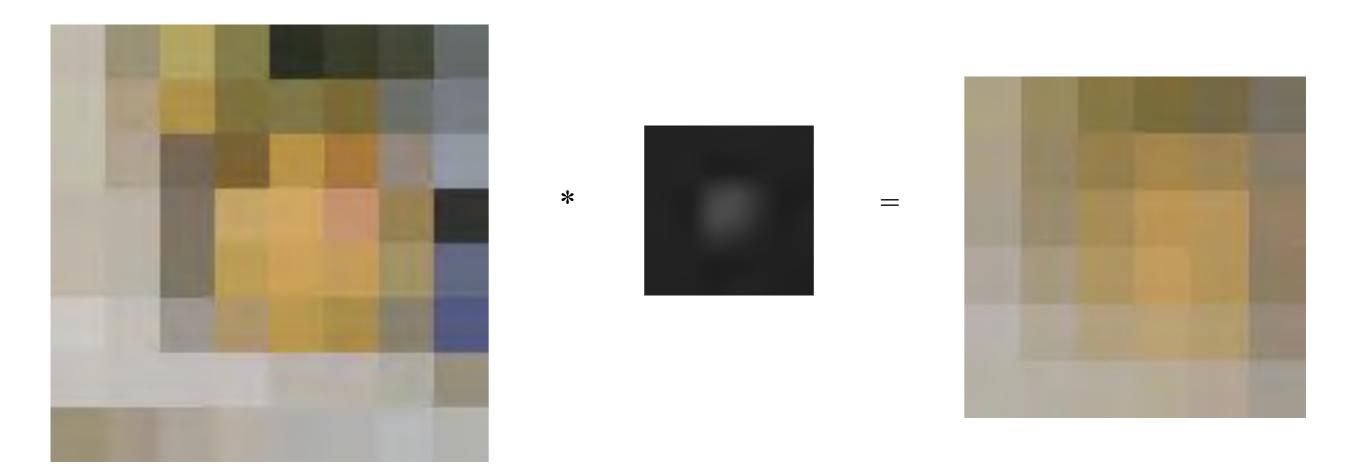
65	98	123
65	96	115
63	91	107

0.1	0.1	0.1
0.1	0.2	0.1
0.1	0.1	0.1

0.1 * 65 + 0.1 * 98 + 0.1 * 123 +0.1 * 65 + 0.2 * 96 + 0.1 * 115 +0.1 * 63 + 0.1 * 91 + 0.1 * 107

5

Correlation Example



• With colour images, perform the dot products over each band

Correlation

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

*

0.1	0.1	0.1
0.1	0.2	0.1
0.1	0.1	0.1

=

69	95	116	125	129	132
68	92	110	120	126	132
66	86	104	114	124	132
62	78	94	108	120	129
57	69	83	98	112	124
53	60	71	85	100	114

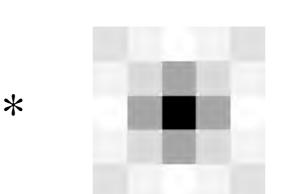
I(x, y)

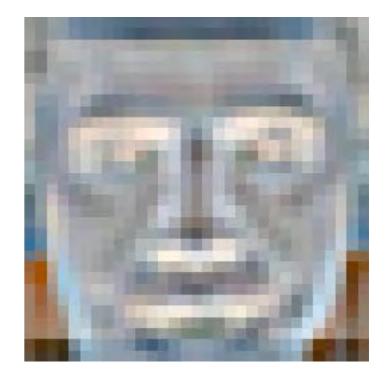
k(x, y)

 $I_{cr}(x,y)$

Correlation Example

• Centre-surround filter





-2

=

-3 -2 -1 -2 -1 -3 -4 -4 -3 -2 -1 -1 1 -3 1 -4 1 1 -4

-3

-2

 $\begin{array}{cccc} -2 & -3 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & -1 \\ -1 & -1 \\ -3 & -1 \\ -3 & -1 \\ -3 & -1 \\ -4 & -2 \end{array}$

-3

-5

-4

1 1

0

0

-1

0

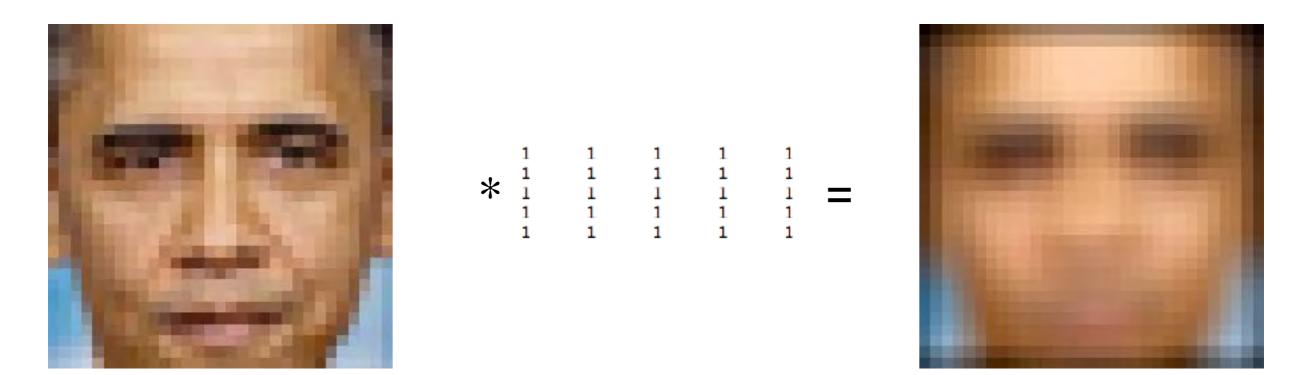
-1

•••

8

Correlation Example

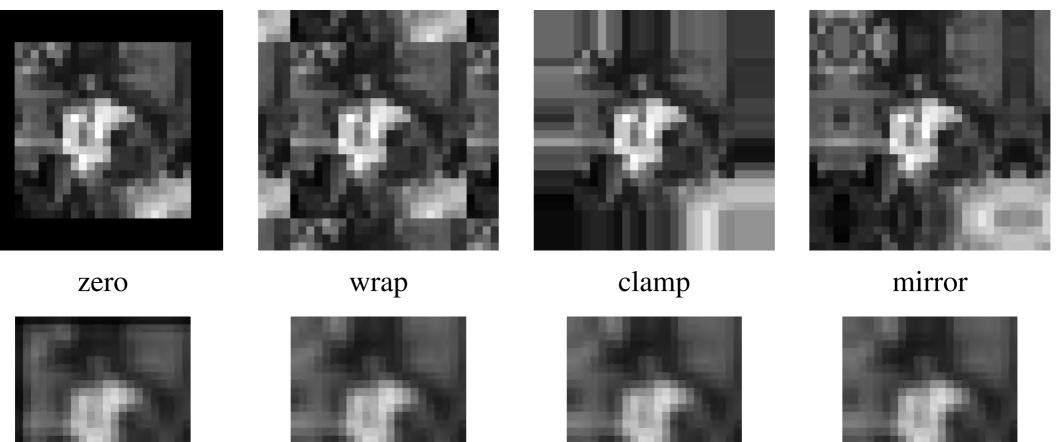
• Edge effects



- To maintain the image size, we can pad the input by adding boundary pixels
- In this example the input has been **zero padded**

Padding

What happens to pixels that overlap the boundary?



blurred zero

normalized zero

blurred clamp



blurred mirror

"zero" and "clamp" (also called zero-order hold) are common in vision applications

Correlation and Convolution

Correlation

$$I(x,y) \operatorname{corr} k(x,y) = \int_t \int_s I(x+s,y+t)k(s,t) \, ds \, dt$$

Convolution

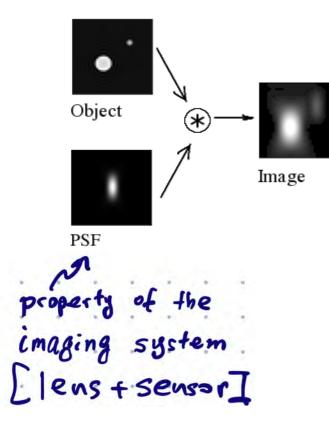
$$I(x,y) * k(x,y) = \int_t \int_s I(x-s,y-t)k(s,t) \, ds \, dt$$

For (180° rotation) symmetric kernels, correlation == convolution

Point Spread Function

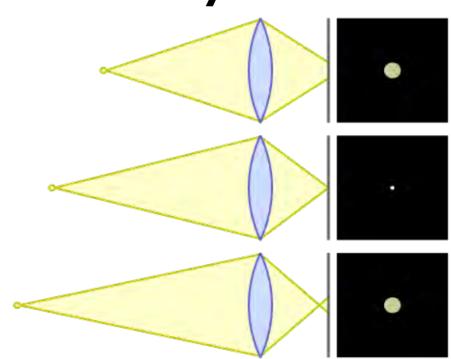
0	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0					0	9	8	7	0	0	0	0
0	0		0	0	0	0	0			2	2	0	6	5	4	0	0	0	0
0	0	0	0	0	0	0	0	*		L F	3	 0	3	2	Ι	0	0	0	0
0	0	0	0	0	0	0	0		4	5	6	 0	0	0	0	9	8	7	0
0	0	0	0	0		0	0			8	9	0	0	0	0	6	5	4	0
0	0	0	0	0	0	0	0					0	0	0	0	3	2	I	0
0	0	0	0	0	0	0	0					0	0	0	0	0	0	0	0

Point Spread Function (PSF) and Linear Shift-(In)variant Systems



IF PSF is shift-invariant

AND can be treated as a linear operation **THEN** PSF can be written as a convolution



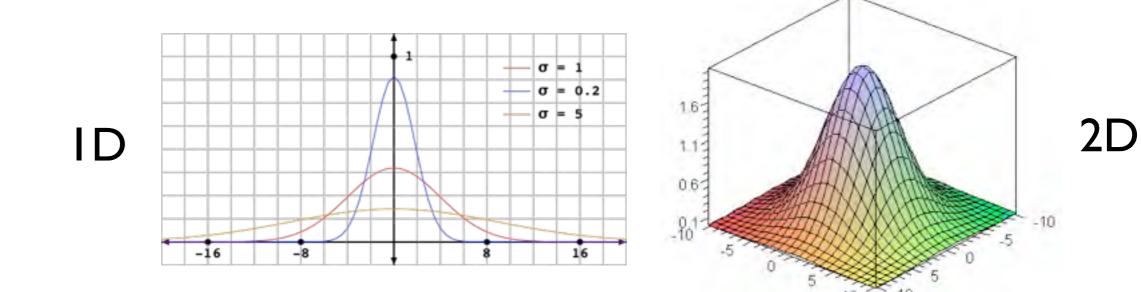
QI: can circle of confusion be treated as a convolution operation?

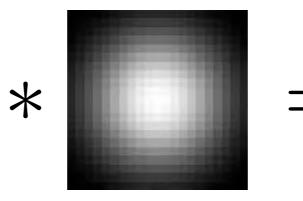
Q2: can an image of a 3D scene captured by a camera with finite aperture be treated as a convolution of an "ideal" image with a blurring PSF?

Credit: https://en.wikipedia.org/wiki/Point_spread_function https://en.wikipedia.org/wiki/Circle_of_confusion

GaussianBlur

• Gaussian kernels are often used for smoothing





Gaussian Blur

• 2D Gaussian filter is a product of row and column filters

*		

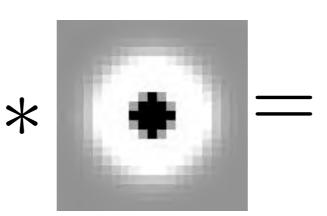
• Gradients can be derivative, e.g., $g_x = I_{x+1} - I_x$

 g_x

 g_y

Centre Surround Filter

• Useful for extracting features at a certain scale



We can implement a **sharpening** filter by adding a multiple of this highfrequency band back to the image

Properties of Convolution

• Linear + associative, commutative

$$y = Cx = \begin{pmatrix} c_0 & c_1 & c_2 & \cdots & c_{n-1} \\ c_{n-1} & c_0 & c_1 & c_2 & \cdots \\ c_{n-2} & c_{n-1} & c_0 & \cdots & & \\ \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ c_1 & c_2 & \cdots & c_{n-1} & c_0 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix}$$

$$y_k = \sum_{j=0}^n c_{j-k} x_j$$

Credit: MIT 18.06, Steven G. Johnson

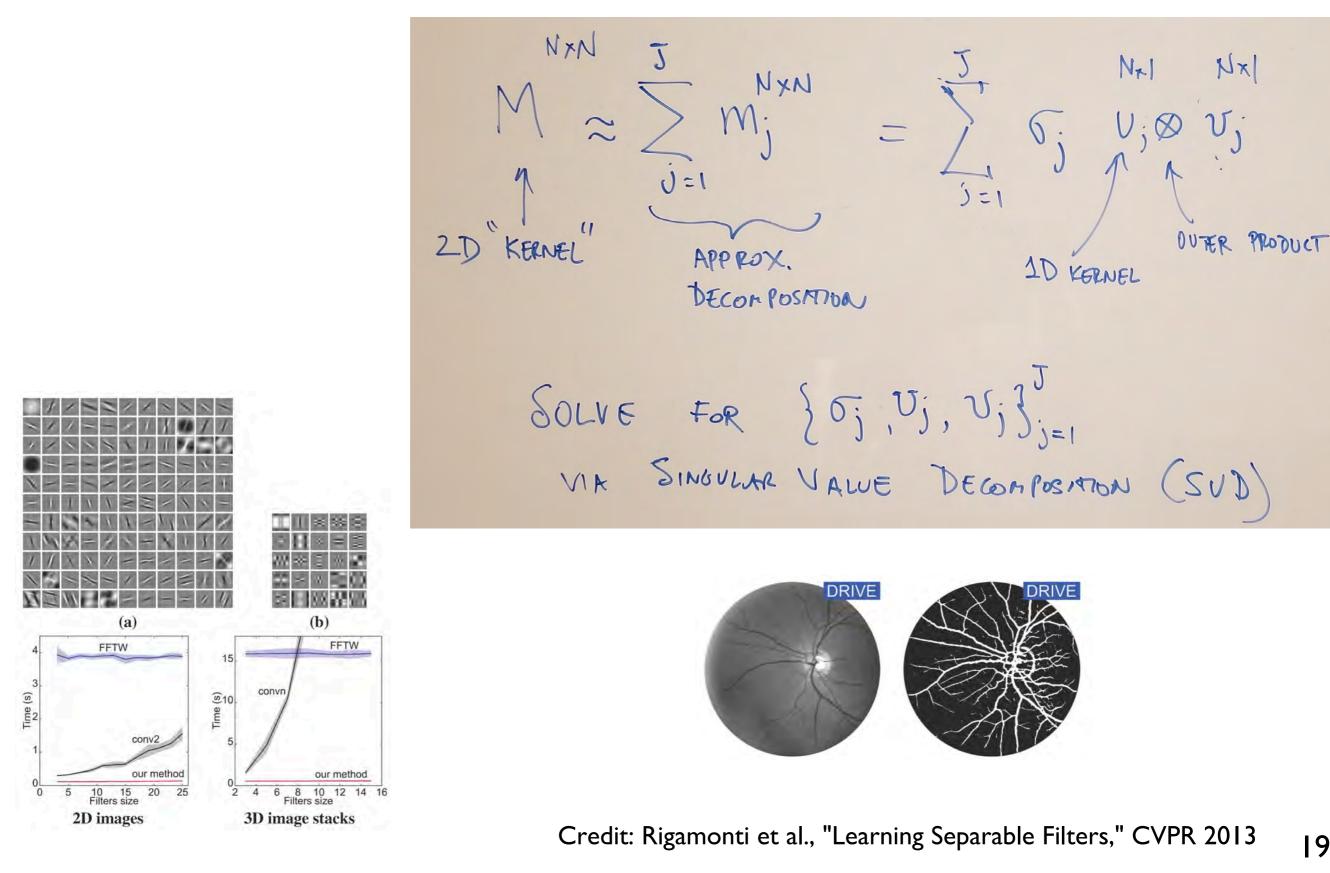
Separable Filtering

• 2D Gaussian blur by horizontal/vertical blur

vertical

horizontal

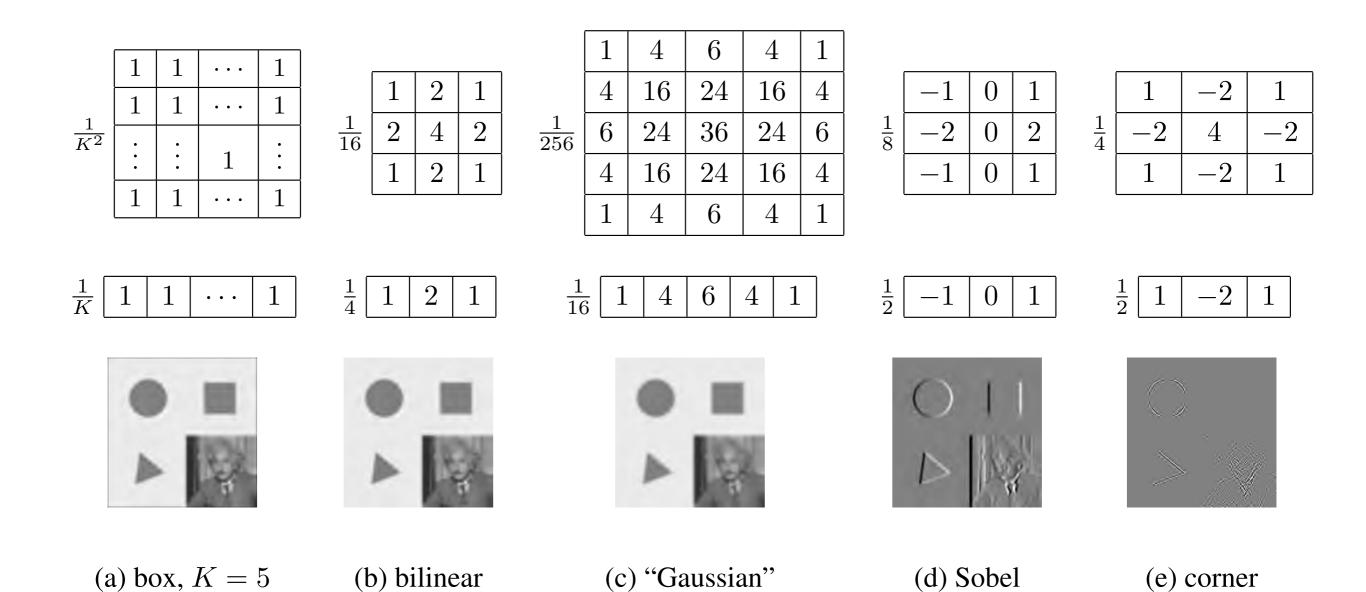
Separable Filtering via Approximation



19.1

Separable Filtering

Several useful filters can be applied as independent row and column operations

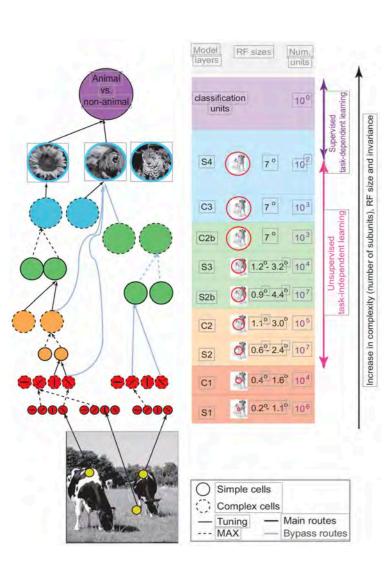


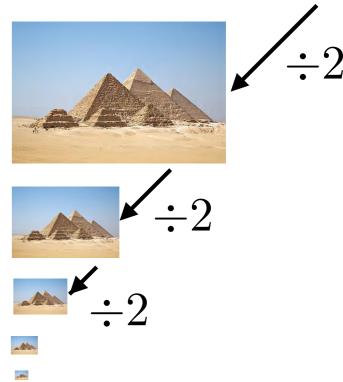
Project I

>_ PI

- You are now ready to try the Convolution and Image Filtering section in Project I
- convolve_1d : Implement ID convolution. Hint: pad the input with zeros to avoid border cases.
- convolve_gaussian : you can transpose a kernel to flip horizontal/vertical, but make sure it is a 2D numpy array - use np.expand_dims if not

Image Pyramids

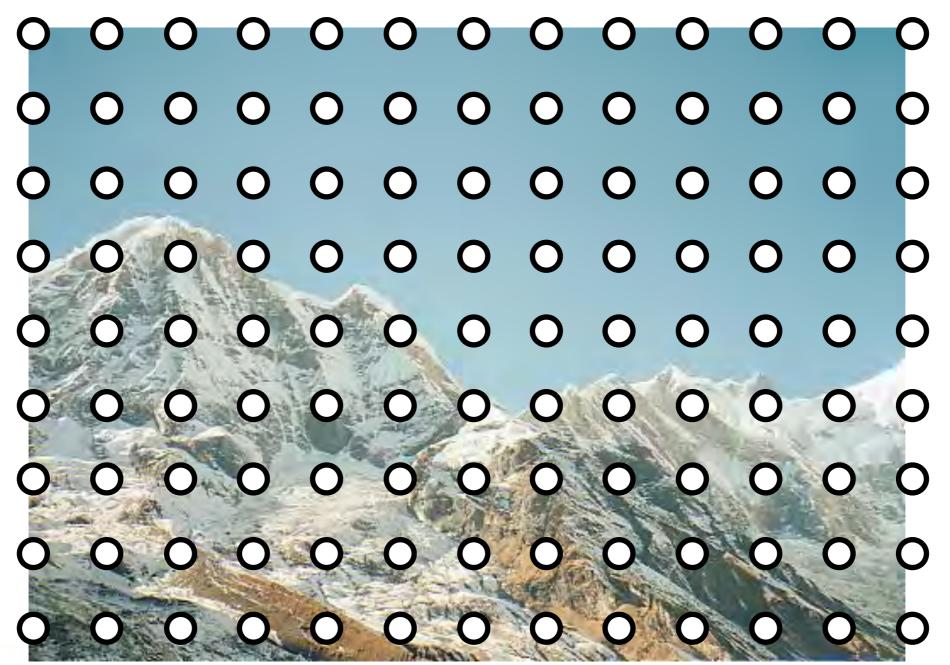




Used in Graphics (Mip-map) and Vision (for **multi-scale** processing)

Resizing Images

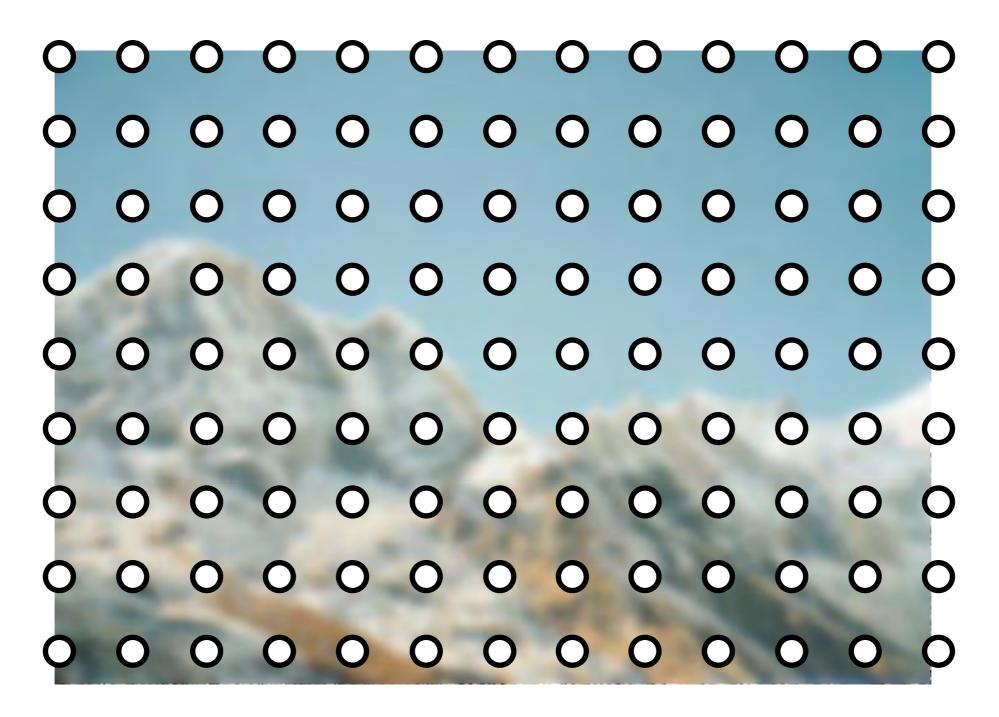
• Naive method: form new image by selecting every *n*th pixel



What is wrong with this method?

Resizing Images

• Improved method: first **blur** the image (low pass filter)



With the correct filter, no information is lost (Nyquist)

Aliasing Example

• Sampling every 5th pixel, with and without low pass filtering

No filtering

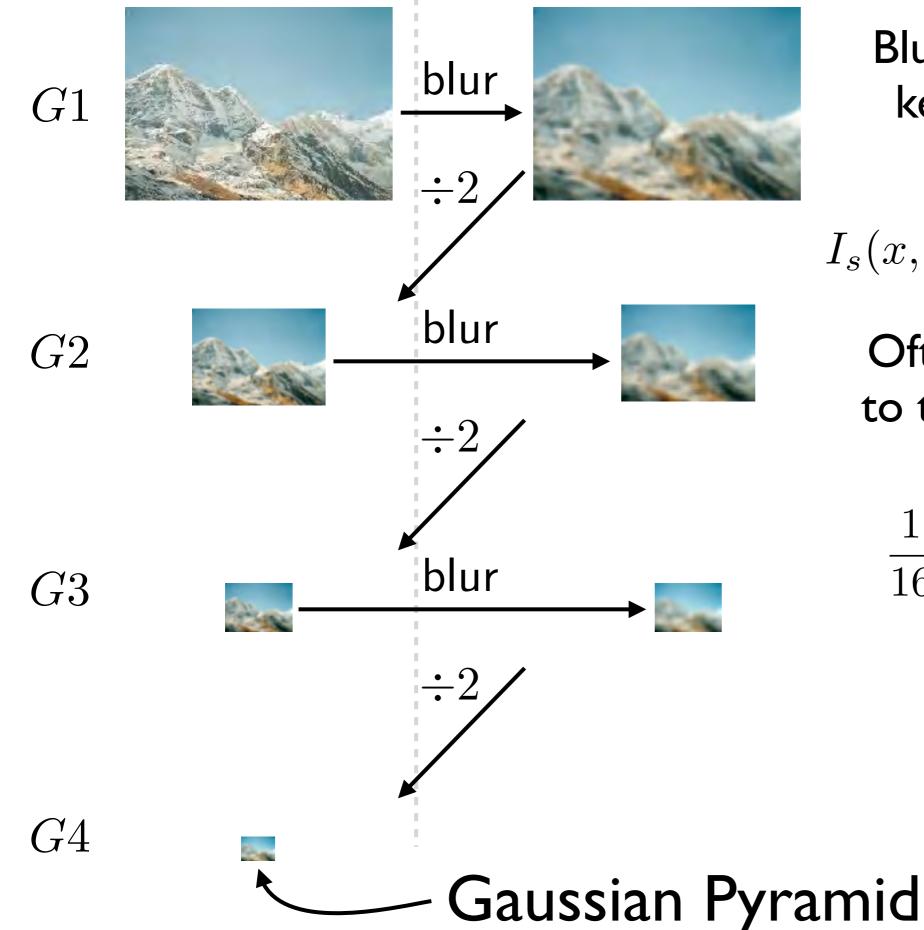
Gaussian Blur $\sigma=3.0$

Resizing Images

every 10th pixel (aliased)

low pass filtered (correct sampling)

- Note that selecting every 10th pixel ignores the intervening information, whereas the low-pass filter (blur) smoothly combines it
- If we shifted the original image I pixel to the right, the aliased image would look completely different, but the the low pass filtered image would look almost the same

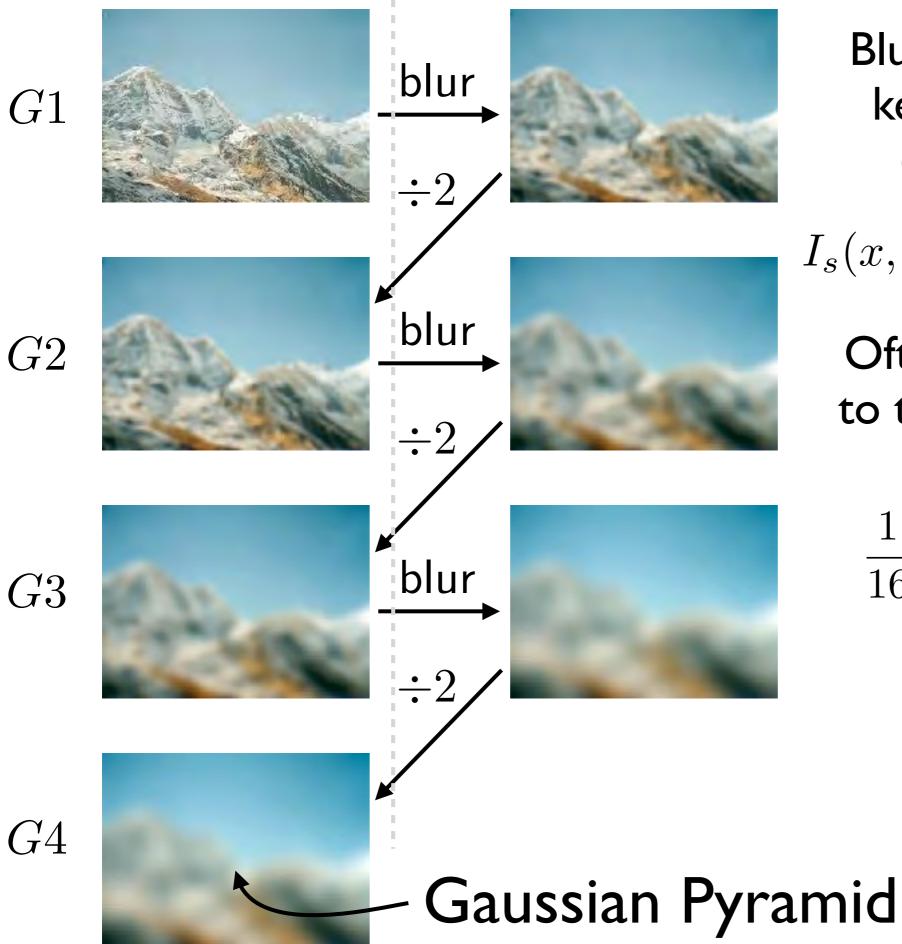


Blur with a Gaussian kernel, then select every 2nd pixel

 $I_s(x,y) = I(x,y) * g_\sigma(x,y)$

Often approximations to the Gaussian kernel are used, e.g.,

 $\frac{1}{16} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \end{bmatrix}$



Blur with a Gaussian kernel, then select every 2nd pixel

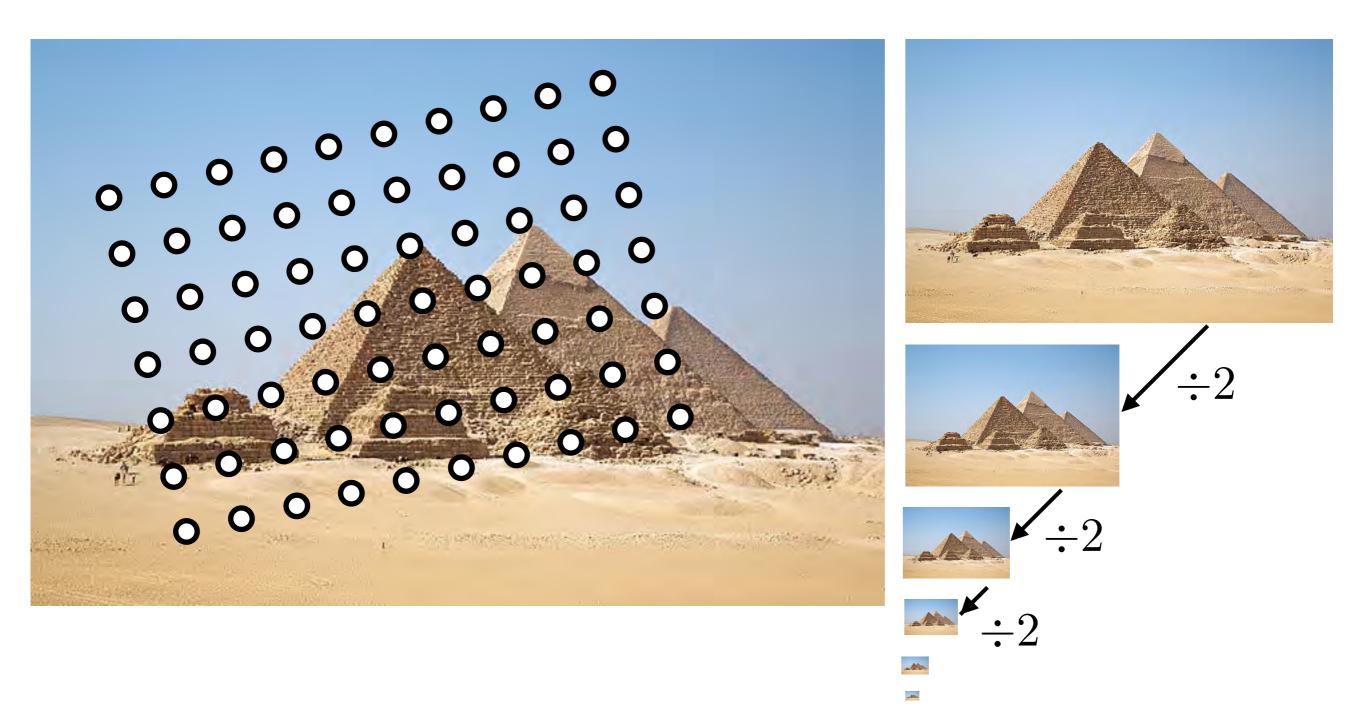
$$I_s(x,y) = I(x,y) * g_\sigma(x,y)$$

Often approximations to the Gaussian kernel are used, e.g.,

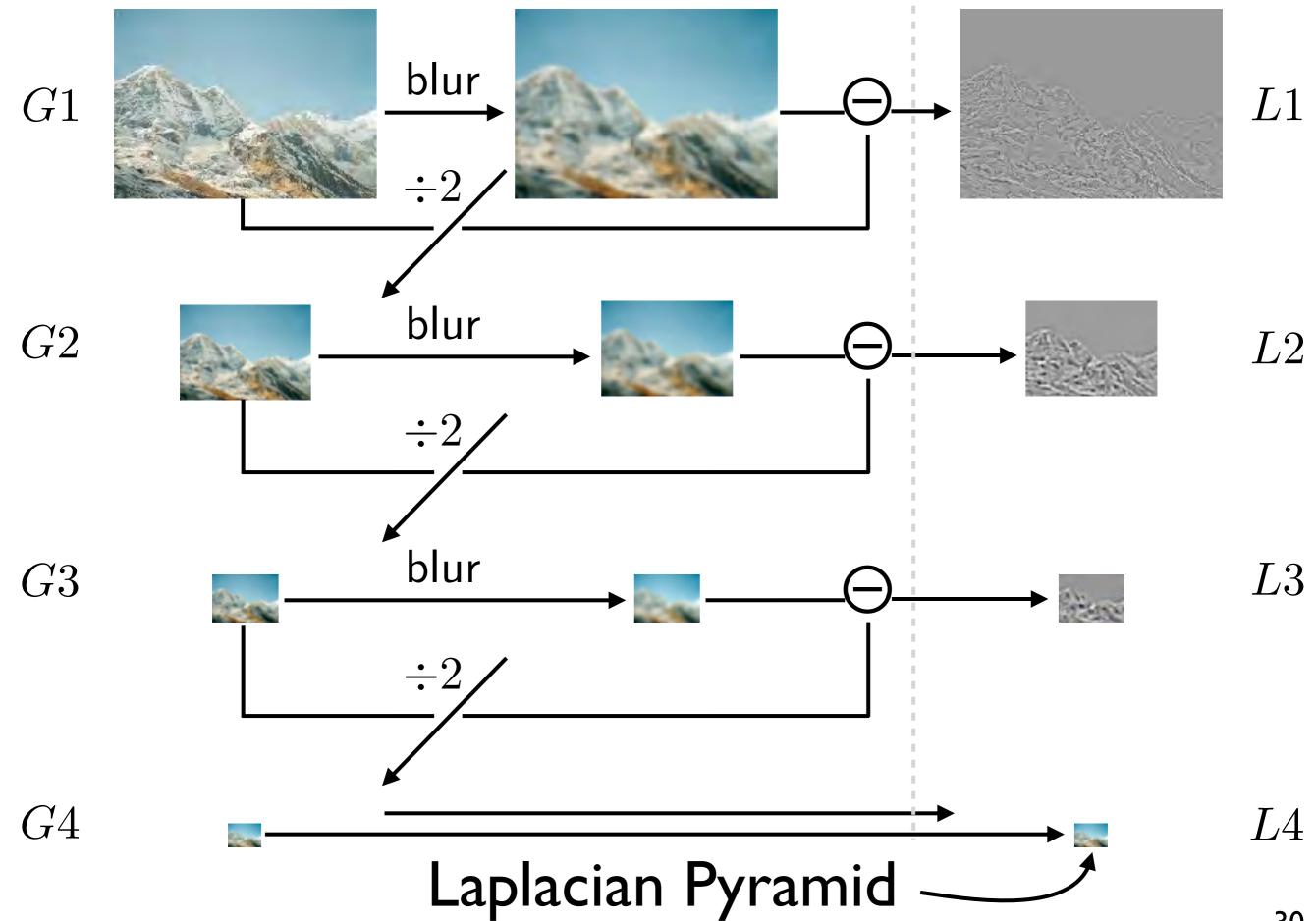
$$\frac{1}{16} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$

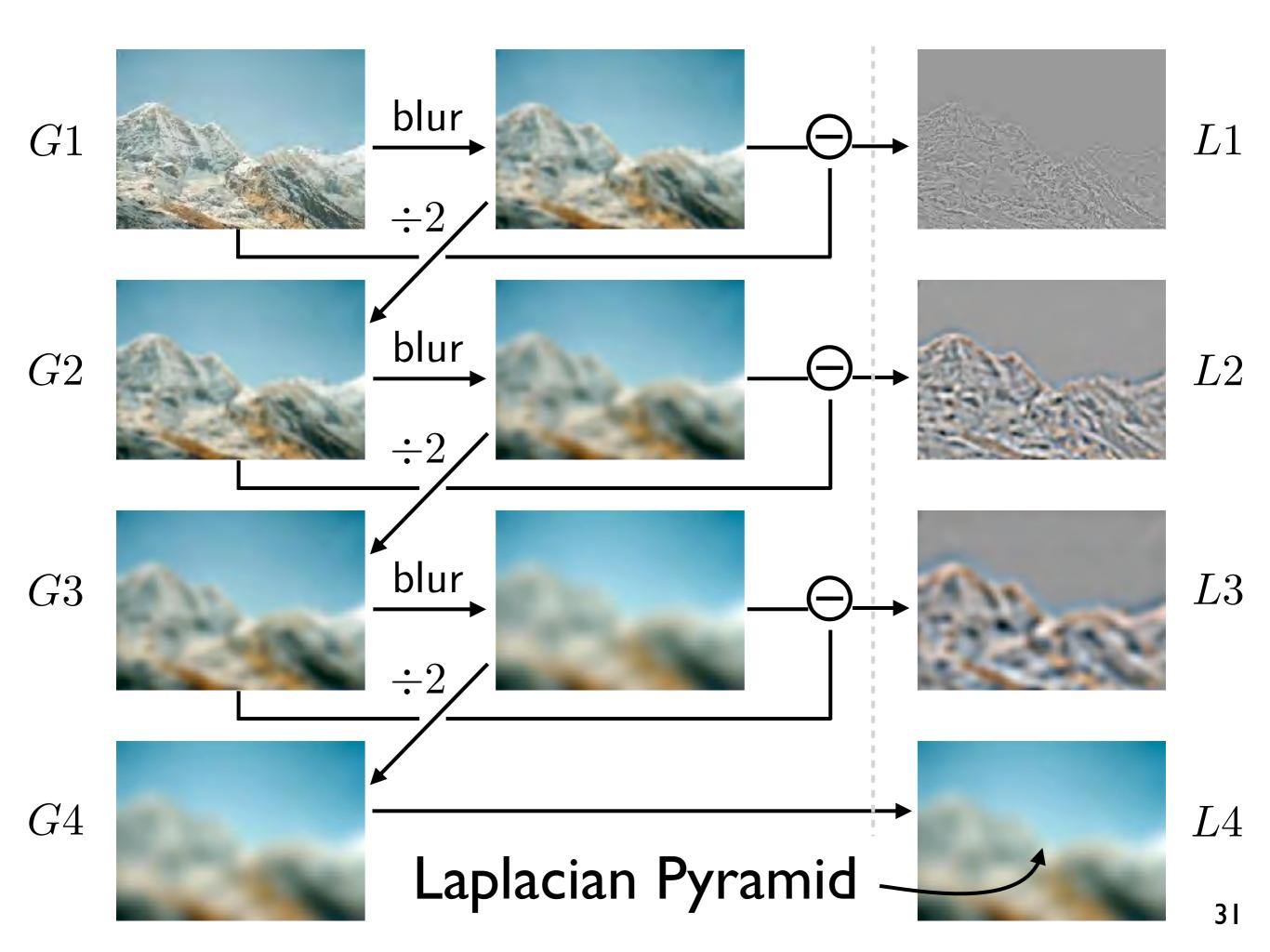
28

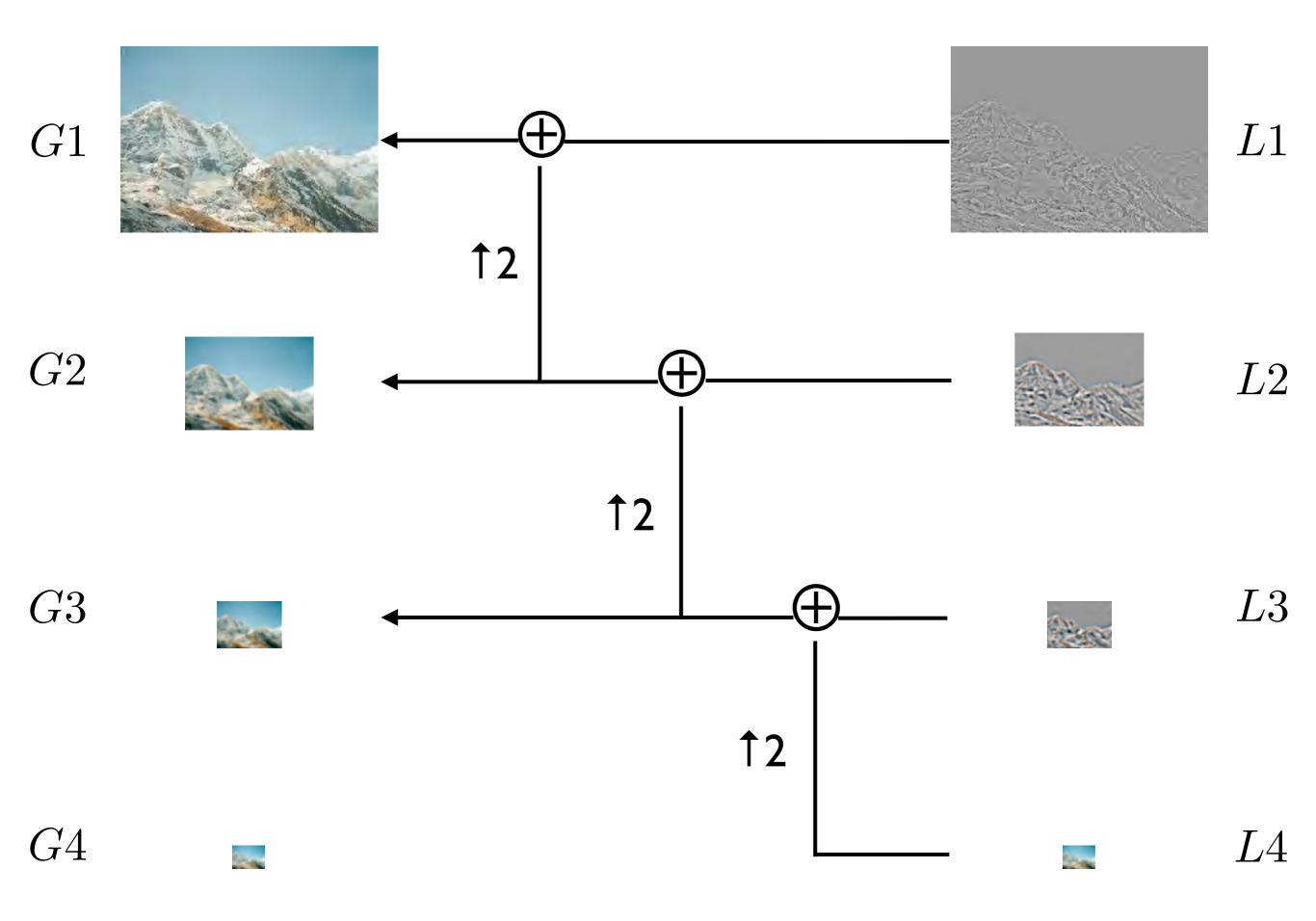
Sampling with Pyramids

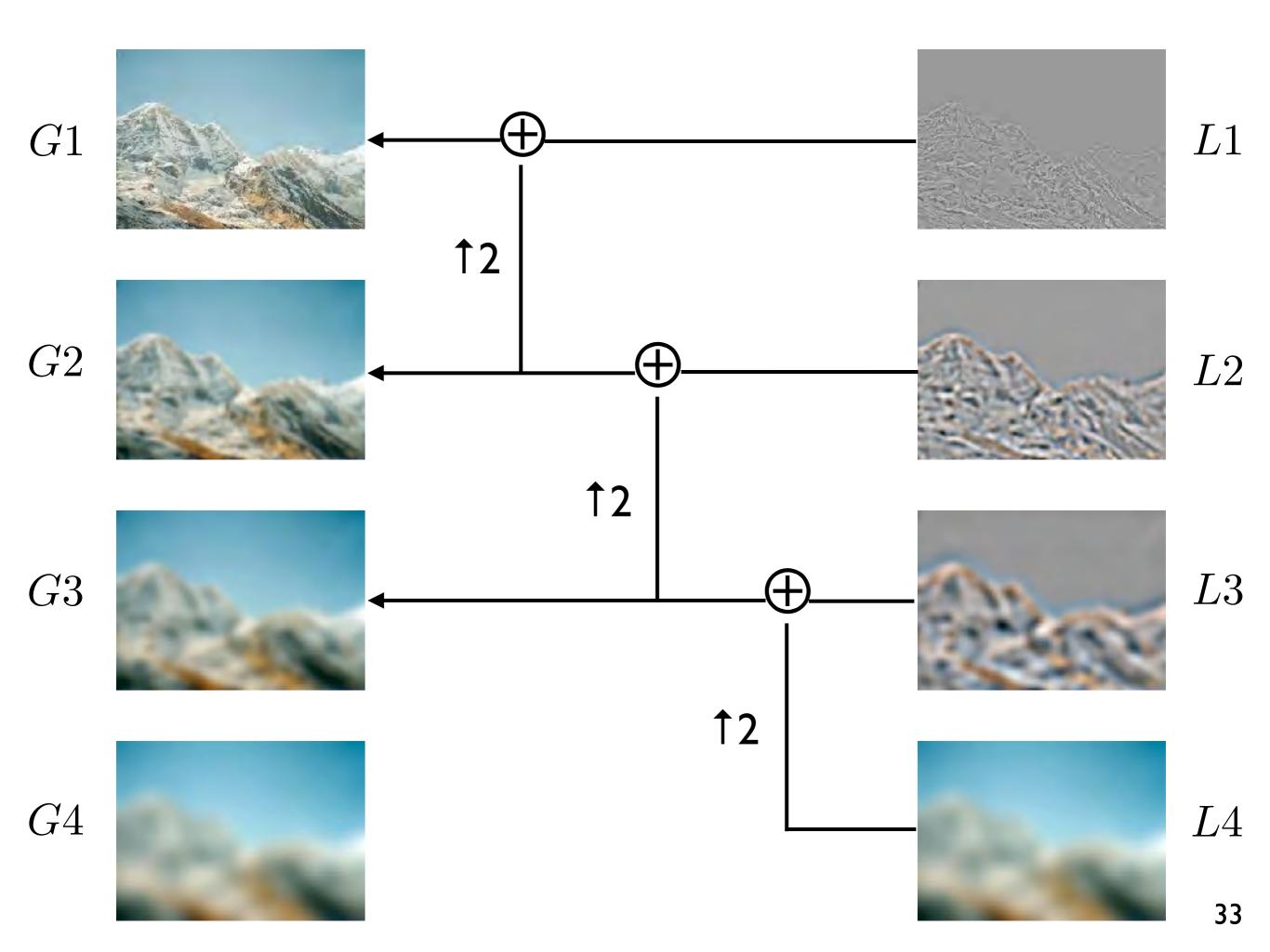


Find the level where the sample spacing is between 1 and 2 pixels, apply extra fraction of inter-octave blur as needed



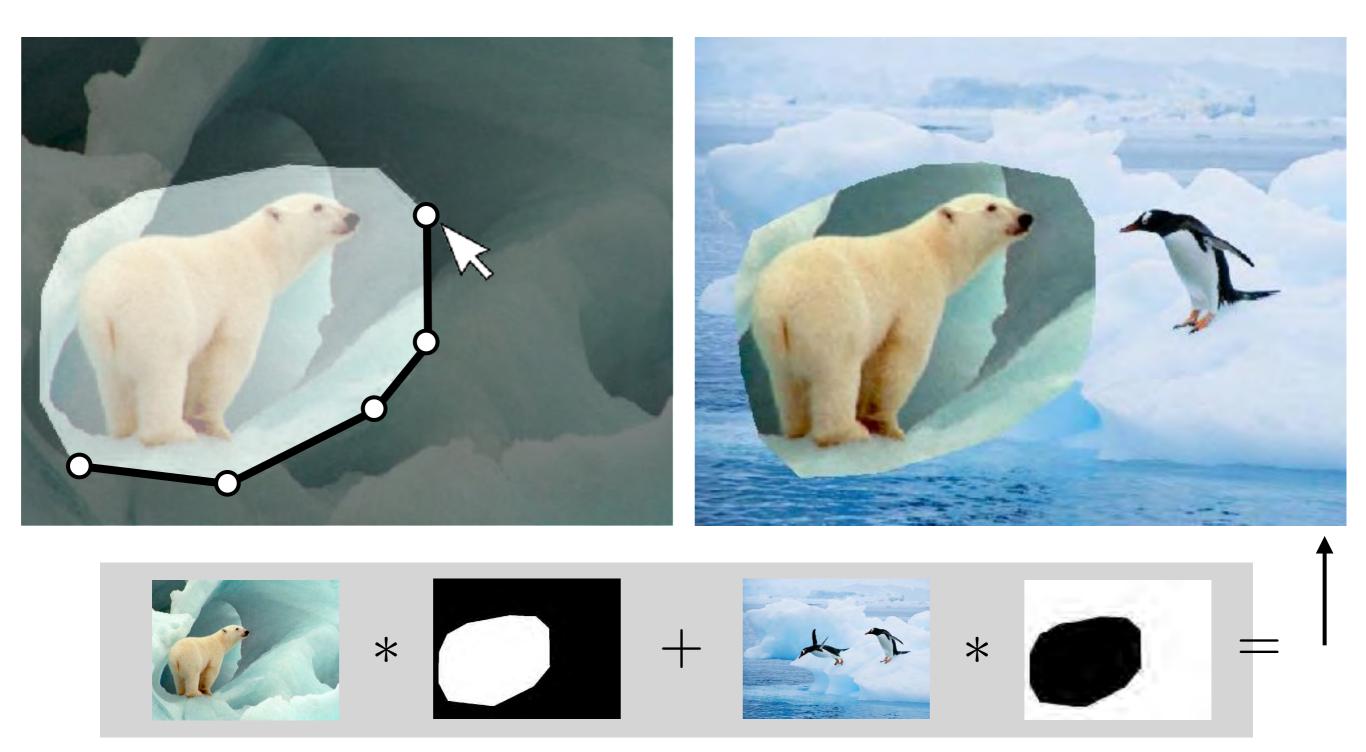




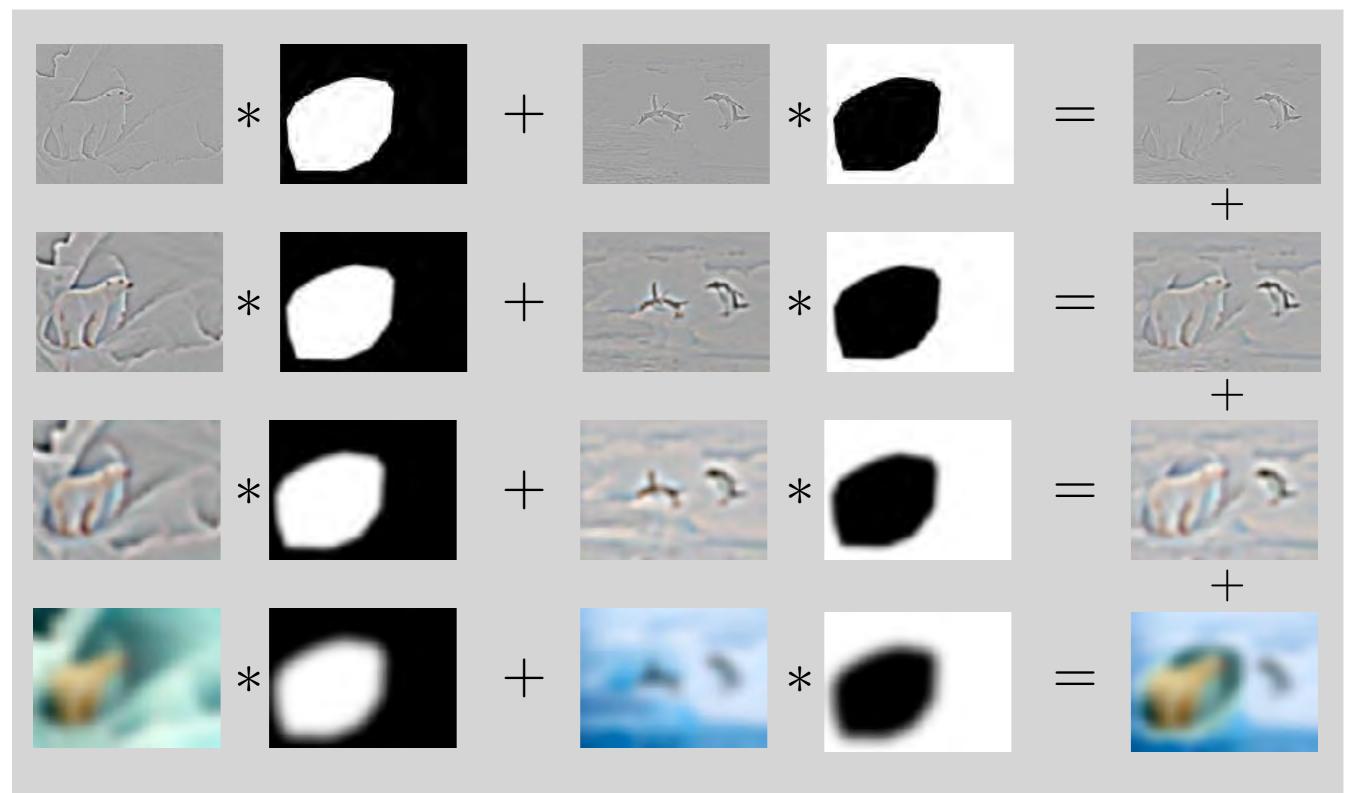


Pyramid Blending

Pyramid Blending



 $I = \alpha F + (1 - \alpha)B$

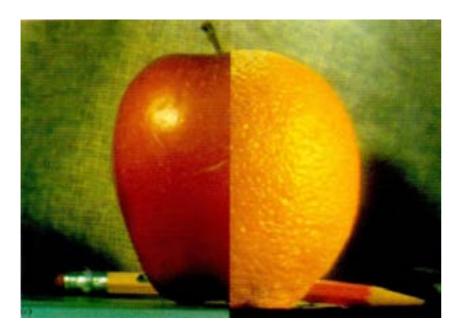


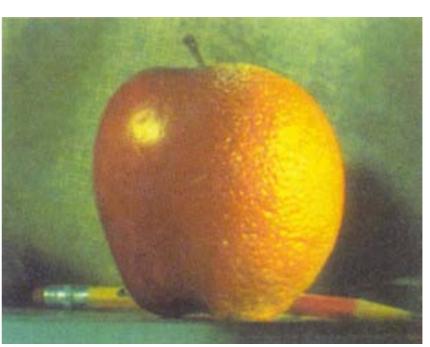
Pyramid Blending: blend lower frequency bands over larger spatial ranges

Pyramid Blending

• Smooth low frequencies, whilst preserving high frequency detail

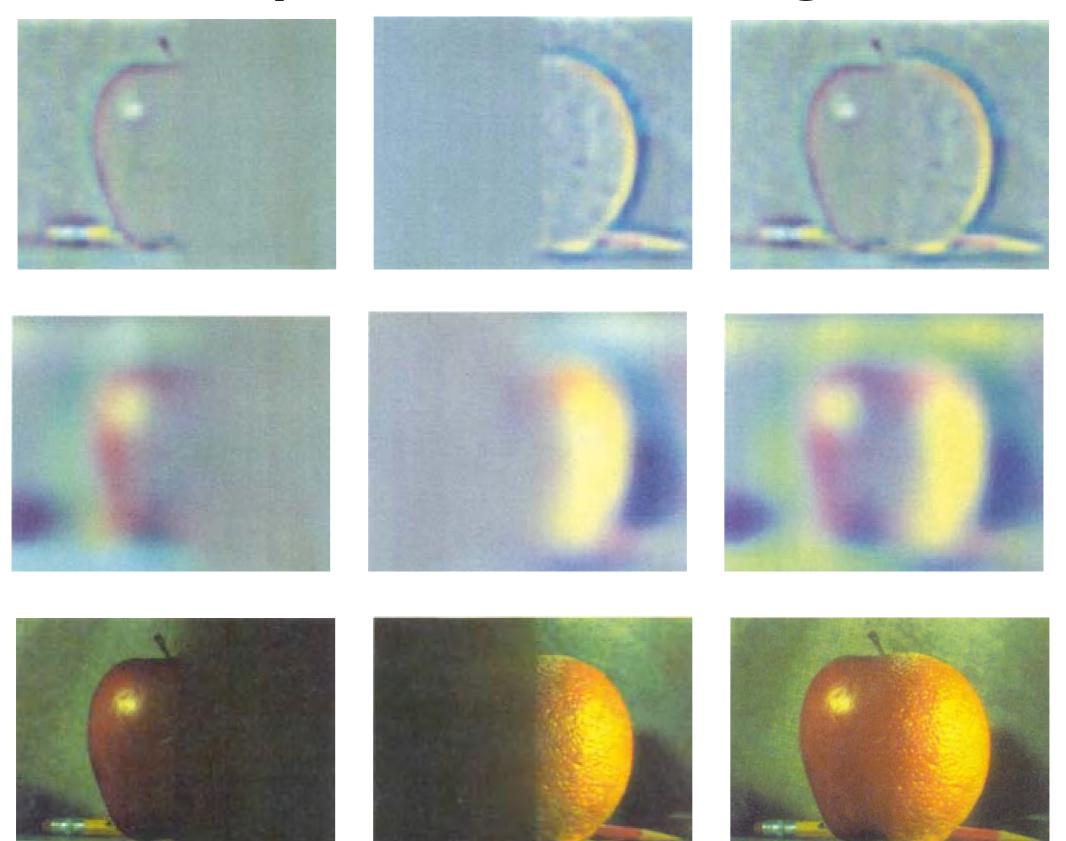
(a)

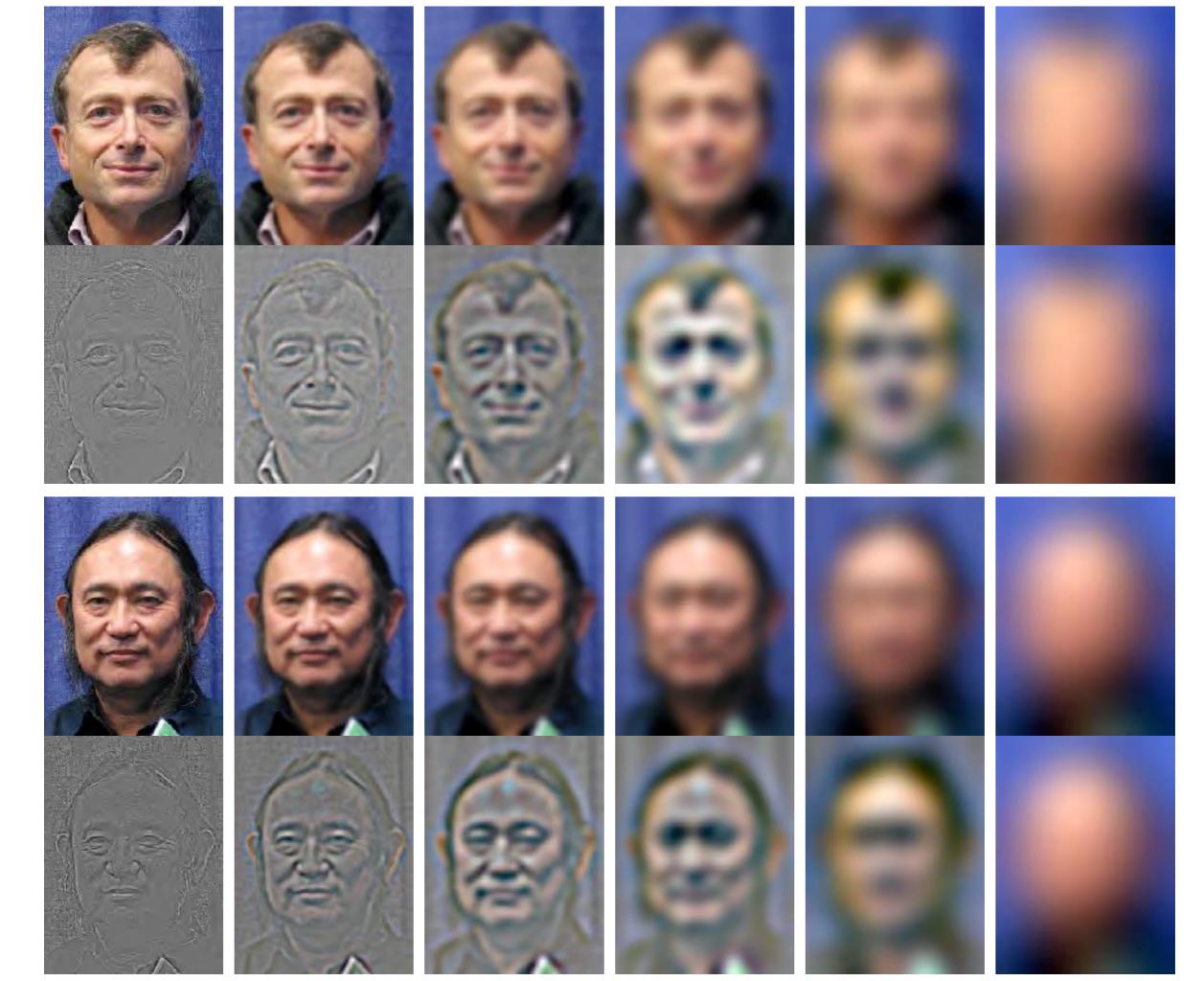


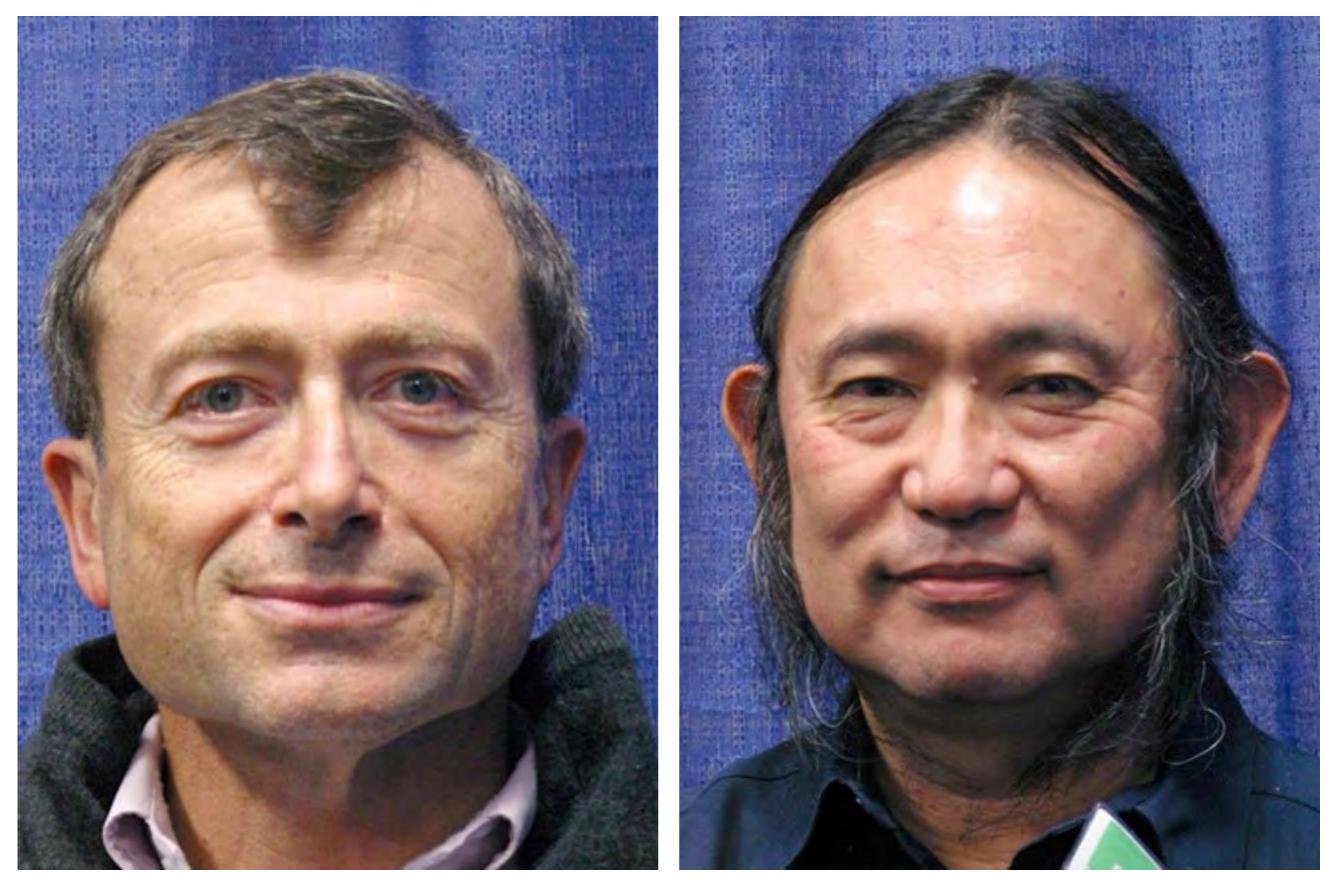


[Burt Adelson 1983] ³⁹

Pyramid Blending







[Jim Kajiya, Andries van Dam] 42

Alpha blend with sharp fall-off

Alpha blend with gradual fall-off

Pyramid Blend

Non-linear Filtering

• Example: Median filter

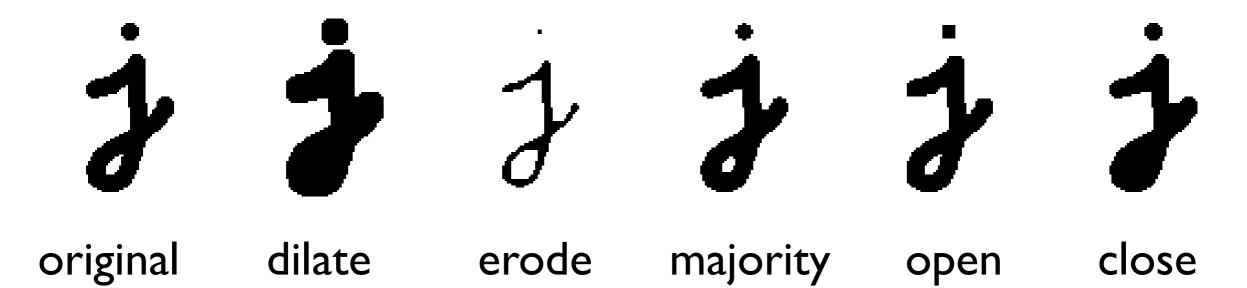
"shot" noise

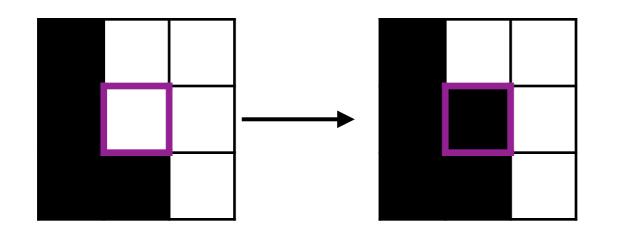
gaussian blurred

median filtered

Morphology

Non-linear binary image operations





Threshold function in local structuring element

close(.) = erode(dilate(.)) etc., see Szeliski 3.3.2

Binary Operators

More operators that apply to binary images

original image

connected components 48

dilate

distance transform

Next Lecture

• Feature Extraction and Matching