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Correspondence Problem

® A basic problem in Computer Vision is to establish matches
(correspondences) between images

® This has many applications: rigid/non-rigid tracking, object
recognition, image registration, structure from motion,
stereo...



Feature Detectors

Corners/Blobs Regions

Edges Straight Lines



Feature Descriptors

Image Patch Shape Context

SIFT Learned Descriptors



Features and Matching

® Feature detectors
- Canny edges, Harris corners, DoG, MSERs

® Feature descriptors
- Image patches, invariance, SIFT, learned features

[ Szeliski Chapter 7 ]



Edge Detection

® One of the first algorithms in Computer Vision
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Edge Detection

Consider edge detection for a ID signal ](a;')

Signal
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Naive approach: look for maxima/minima in [’ (x)

Differentiated signal
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What's the problem! [ Slide credits: R. Cipolla]



Edge Detection

® Solution: start by smoothing the image to remove noise
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Edges are found by thresholding the smoothed derivative

I(x) = image

k(x) = kernel

/
s'(x) = smoothed
derivative



2D Edge Detection

® Smooth image and convolve with [-] 1]

9z

2D gradient: VI = Ja




2D Edge Detection

® Look at the magnitude of the smoothed gradient |V |

VIl =/g2+ g3

® Non-maximal suppression (keep only points where |V |
is 2 maximum in directions =V /)

[ Canny 1986 ]
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2D Edge Detection

® Threshold the gradient magnitude with two thresholds: Thigh
and Tlow

® Edges start at edge locations with gradient magnitude > Thigh
® Continue tracing edge until gradient magnitude falls below Tiow

[ Canny 1986 ]
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Edges + Segmentation

® Segmentation is subjective [ Martin, Fowlkes, Tal, Malik 2001 ]
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Image Structure

® What kind of structures are present in the image locally?

OD Structure: not useful for matching

I D Structure: edge, can be localised in one
direction, subject to the “aperture problem”

2D Structure: corner, or interest point, can be
localised in both directions, good for matching

Edge detectors find contours (1D structure), Corner or
Interest point detectors find points with 2D structure.
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Local SSD Function

® Consider the sum squared difference (SSD) of a patch with
its local neighbourhood

Ars ] SSD — Zu I(x + Ax)|?
—>
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_ZEQ
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Local SSD Function

® Consider the local SSD function for different patches

High similarity locally

High similarity along the edge

Clear peak in similarity function
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Harris Corners

® Harris corners are peaks of a local similarity function
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Harris Corners

® We will use a first order approximation to the local SSD
function

Az ﬂ SSD — Zu I(x + Ax)|?
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Y 1
=
z+yY 1+z/y

eigenvalue of the structure tensor using that approximation:

Ady  det(M)

'\mi'n, ~
()\1 —1 )\2) tI‘(M)
with the trace tr(M) = my; + mos.

For z < y, one has ~ . In this step, we compute the smallest

Another commonly used Harris response calculation is shown as below,
R=MXX— k- (A 4+ X)? =det(M) — k- tr(M)?
where k is an empirically determined constant; & € [0.04, 0.06] .

18. 1

Credit: https://en.wikipedia.org/wiki/Harris_corner_detector



Harris Corners

® Corners matched using correlation

99 inliers 89 outliers

[ Zhang, Deriche, Faugeras, Luong 1995, Beardsley, Torr, Zisserman 1996 ] 9



Difference of Gaussian

® DoG = centre-surround filter

%
|

® Find local-maxima of the centre surround response

Non-maximal suppression:
These points are maxima —»
in a 10 pixel radius
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Difference of Gaussian

® DoG detects blobs at scale that depends on the Gaussian
standard deviation(s)

Note: DOG = Laplacian of Gaussian
red =1 —2 1] % g(x; 5.0)
black = g(z; 5.0) — g(x; 4.0)
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Detection Scale

® Smoothing standard deviations determine scale of detected
features, e.g., edge detection in cloth

® Many algorithms use multi-scale architectures to get around
this problem

® e.g,Scale-Invariant Feature Transform “SIFT”
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MSERS

® Maximally Stable Extremal Regions

® Find regions of high contrast using a watershed approach

MSERS are stable (small change) over a large range of thresholds
[ Matas et al 2002 ] 23



Project |

® Try the Interest Point Extractor section in Project |
® corner function : Devise a corner strength function

¢ find local maxima : Find interest points as maxima of
the corner strength function
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Corner Matching

® A simple approach to correspondence is to match corners
between images using normalised correlation or SSD
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Breaking Correlation

® Correlation/SSD works well when the images are quite similar
(e.g., tracking in frames of a video)

® However, it is easily broken by simple image transforms, e.g.,

Original Rotation Scale

® These transformations are very common in imaging, so we
would like feature matching to be invariant to them
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Local Coordinate Frame

® One way to achieve invariance is to use local coordinate
frames that follow the surface transformation
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Detecting Scale/Orientation

® A common approach is to detect a local scale and orientation
for each feature point

e.g., extract Harris at multiple scales and align to the local gradient



Detecting Scale/Orientation

® Patch matching can be improved by using scale/orientation

and brightness normalisation

8 pixels
——p

40
— PX

Sampling at a coarser scale than detection further
improves robustness
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Panorama Alignment
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Wide Baseline Matching

® Patch-based matching works well for short baselines, but fails
for large changes in scale, rotation or 3D viewpoint

What factors cause differences between these images!? .



Wide Baseline Matching

® We would like to match patches despite these changes

What features of the local patch are invariant!
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Scale Invariant Feature Transform

® A detector and descriptor designed for object recognition

® SIFT features are invariant to translation, rotation and scale
and slowly varying under perspective and 3D distortion

® Variants widely used in object recognition, image search etc.

[ Lowe 1999 ] 33



Scale Invariant Feature Transform

[ vifeat.org ]

® Scale invariant detection and local orientation estimation

e Edge based representation that is robust to local shifting

of edges (parallax and/or stretch)
34


http://vlfeat.org

SIFT Detection

® Convolve with centre-surround Laplacian/DoG filter

%
|

® Find all maxima at all scales in a Laplacian Pyramid

35



Scale Selection

e A DOG (Laplacian) Pyramid is formed with multiple scales

per ocatve
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Scale Selection

scale, t

Figure 1.4. Schematic three-dimensional illustration of the scale-space repre-
sentation of a one-dimensional signal.

[ T.Lindeberg ] 36.1



Scale Selection

® Maximising the DOG function in scale as well as space
performs scale selection

[ T.Lindeberg ] 37



Orientation Selection

® To select a local orientation, build a histogram over orientation

A N—|—| ~
~(—| |/
o J—
t N2\
PN | >

Selected orientation
is peak in this histogram
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SIFT Descriptor

® Ve selected a scale and orientation at each detection,

® Now need descriptor to represent the local region in a
way robust to parallax, illumination change etc.
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Simple + Complex Cells in V|

® Neuroscientists have
investigated the response
of cells in the primary
visual cortex

® “Complex Cells” inVI| respond
over a range of positions but are
highly sensitive to orientation

[ Hubel and Wiesel ] 40



SIFT Descriptor

® Describe local region by distribution (over angle) of gradients

Each descriptor: 4 x 4 grid x 8 orientations = 128 dimensions 4,



SIFT Recap

Detector: find points that are
maxima in a DOG pyramid
Compute local orientation from
gradient histogram

This establishes a local
coordinate frame with scale/
orientation

Descriptor: Build histograms
over gradient orientations (8
orientations, 4x4 grid)
Normalise the final descriptor

42



SIFT Matching

® Extract SIFT features from an image

Each image might generate 100’s or 1000’s of SIFT descriptors
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SIFT Matching

® Goal: Find all correspondences between a pair of images

® Extract and match all SIFT descriptors from both images

44



SIFT Matching

Each SIFT feature is represented by |28 numbers

Feature matching becomes task of finding a nearby |28-d
vector

Nearest-neighbour matching:

NN (j) = argmin |x; — X;|, i # J

Linear time, but good approximation algorithms exist

e.g., Best Bin First K-d Tree [Beis Lowe 1997], FLANN (Fast

Library for Approximate Nearest Neighbours) [Muja Lowe
2009]
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SIFT Matching

® Feature matching returns a set of noisy correspondences

® To get further, we will have to know something about the
geometry of the images
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Shape Context

® Useful for matching with contours

Descriptor is ii
log polar — & g
histogram

8

[ Belongie Malik 2000 ]



Choosing Features

® The best choice of features is usually application dependent

Shape context! SIFT? Something else!?
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Learning Descriptors

® Descriptor design as a learning (embedding) problem

[ Winder Brown 2007 ]

49



Learning Descriptors

® Deep networks for descriptor learning

Patch labels

A: Feature network B: Metric network
Bottleneck FC3 + Softmax
FC1
Conv4
Conv3 C: MatchNet in training
Cross-Entropy Loss
Conv2

Metric network
Pool1

|
i

Conv1

Pool0
Conv0

Preprocessing
Sampling

[ MatchNet
Han et al 2015 ]

Image labels, also learns
interest function
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Project |

® You can now complete Project | — Descriptors and
Matching and Testing and Improving Feature
Matching sections.
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Next Lecture

® Planar Geometry, Camera Models, RANSAC
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