Planar Geometry

CSE P576

Vitaly Ablavsky

These slides were developed by Dr. Matthew Brown for CSEP576 Spring 2020 and adapted (slightly) for Fall 2021
credit \rightarrow Matt
blame \rightarrow Vitaly

Image Alignment

- Aim: warp our images together using a 2D transformation

Image Alignment

- Aim: warp our images together using a 2D transformation

Image Alignment

- Find corresponding (matching) points between the images

Image Alignment

- Compute the transformation to align the points

Image Alignment

- We can also use this transformation to reject outliers

Image Alignment

- We can also use this transformation to reject outliers

Planar Geometry

- 2D Linear + Projective transformations
- Euclidean, Similarity, Affine, Homography
- Linear + Projective Cameras
- Viewing a plane, rotating about a point

2D Transformations

- We will look at a family that can be represented by 3×3 matrices

This group represents perspective projections of planar surfaces in the world

Affine Transformations

- Transformed points are a linear function of the input points

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]+\left[\begin{array}{l}
a_{13} \\
a_{23}
\end{array}\right]
$$

- This can be written as a single matrix multiplication

Linear Transformations

- Consider the action of the unit square under $\left[\begin{array}{lll}3 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$

Linear Transform Examples

Translation, rotation, scale, shear (parallel lines preserved)

These transforms are not affine (parallel lines not preserved)

Linear Transformations

- Consider a single point correspondence

How many points are needed to solve for a?

Computing Affine Transforms

- Lets compute an affine transform from correspondences:

$$
\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]
$$

- Re-arrange unknowns into a vector

Computing Affine Transforms

- Linear system in the unknown parameters a

$$
\left[\begin{array}{cccccc}
x_{1} & y_{1} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{3} & y_{3} & 1
\end{array}\right]\left[\begin{array}{l}
a_{11} \\
a_{12} \\
a_{13} \\
a_{21} \\
a_{22} \\
a_{23}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
x_{2}^{\prime} \\
y_{2}^{\prime} \\
x_{3}^{\prime} \\
y_{3}^{\prime}
\end{array}\right]
$$

- Of the form

$$
\mathbf{M a}=\mathbf{y}
$$

Solve for a using Gaussian Elimination

Computing Affine Transforms

- We can now map any other points between the two images

$$
\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]
$$

Computing Affine Transforms

- Or resample one image in the coordinate system of the other

This allows us to "stitch" the two images

Linear Transformations

- Other linear transforms are special cases of affine

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
0 & 0 & 1
\end{array}\right]
$$

Face Alignment

Face Alignment

Face Alignment

2D Transformations

Transformation	Matrix	\# DoF	Preserves	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation	
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths	
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles	
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism	
projective	$[\tilde{\boldsymbol{H}}]_{3 \times 3}$	8	straight lines	\square

Projective Transformation

- General 3×3 matrix transformation (note need scale factor)

$$
s\left[\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right]
$$

Project 2

- Try out the Image Warping Test section in Project 2, particularly similarity, affine and projective transforms. You can also try warping with the inverse transform, e.g., using P=np.linalg.inv(P)

Camera Models + Geometry

- Pinhole camera, rigid body coordinate transforms
- Perspective, projective, linear/affine models
- Properties of cameras: viewing parallel lines, viewing a scene plane, rotating about a point

Pinhole Camera

- Put the projection plane in front to avoid the 180° rotation

$$
\begin{aligned}
& u=f X_{c} / Z_{c} \\
& v=f Y_{c} / Z_{c}
\end{aligned} \quad s\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right]
$$

- Note that $X_{c} Y_{c} Z_{c}$ are camera coordinates

Perspective Camera

- Transform world to camera, to image coordinates

Projective Camera

- Perspective camera equation

$$
s\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{lll}
f & 0 & 0 \\
0 & f & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
r_{11} & r_{12} & r_{13} & t_{1} \\
r_{21} & r_{22} & r_{23} & t_{2} \\
r_{31} & r_{32} & r_{33} & t_{3}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

- Multiply and drop constraints to get a general 3×4 matrix

$$
s\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
$$

This is called a projective camera
How many degrees of freedom do these 2 models have?

Linear Camera

- Zero out bottom row to eliminate perspective division

$$
\begin{gathered}
s\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right] \\
{\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]}
\end{gathered}
$$

Linear a.k.a. affine camera

Linear vs Projective Cameras
Consider a linear / affine camera viewing parallel world lines

Linear vs Projective Cameras

Parallelism preserved if depth variation in scene << depth of scene

More on camera rays and vanishing points

COMPUTING RAYS FROM AN IMAGE POINT INTO THE SD WORLD (-) LET A ray (in 30) be Defines by $d^{3 \times 1}$ (direction)

$$
\begin{array}{rl}
x & =K[I l o]\left[\begin{array}{c}
\lambda d \\
1
\end{array}\right] \approx \frac{\pi}{\lambda} K d \quad \text { projoctue equivalence } \\
\therefore d & d K^{-1} \cdot x \\
& \text { not neossar. (y a unit vector } r
\end{array}
$$

(-) VANISHING POINT
CONSDER A RAY in $3 D$ From a port A in direction d

$$
\begin{aligned}
& X(\lambda)=\underbrace{A+\lambda \cdot\left[\begin{array}{l}
d \\
0
\end{array}\right]}_{\begin{array}{c}
\text { projective } \\
\text { space }
\end{array}} \quad \lambda \in[0, \infty) \quad \Rightarrow \underbrace{x(\lambda)}_{\text {image }}=\underbrace{K[I \mid 0]}_{P}\left(A+\lambda\left[\begin{array}{l}
d \\
0
\end{array}\right]\right): \Rightarrow
\end{aligned}
$$

Viewing a Plane

- Consider a pair of cameras viewing a plane

Without loss of generality, we can make it the world plane $Z=0_{32}$

Viewing a Plane

- Viewing the plane $Z=0$ with projective + linear cameras

$$
s\left[\begin{array}{c}
u \\
v \\
1
\end{array}\right]=\underset{\text { Projective }}{\left[\begin{array}{llll}
p_{11} & p_{12} & p_{1} & p_{14} \\
p_{21} & p_{22} & p_{3} & p_{24} \\
p_{31} & p_{32} & p_{3} & p_{34}
\end{array}\right]}\left[\begin{array}{c}
X \\
Y \\
0 \\
1
\end{array}\right]=\underset{\text { Homography }}{\left[\begin{array}{lll}
p_{11} & p_{12} & p_{14} \\
p_{21} & p_{22} & p_{24} \\
p_{31} & p_{32} & p_{34}
\end{array}\right]}\left[\begin{array}{c}
X \\
Y \\
1
\end{array}\right]
$$

$s\left[\begin{array}{l}u \\ v \\ 1\end{array}\right]=\left[\begin{array}{cccc}p_{11} & p_{12} & p_{2} & p_{14} \\ p_{21} & p_{22} & p_{3} & p_{24} \\ 0 & 0 & p_{1} & 1\end{array}\right]\left[\begin{array}{c}X \\ Y \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{ccc}p_{11} & p_{12} & p_{14} \\ p_{21} & p_{22} & p_{24} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}X \\ Y \\ 1\end{array}\right]$
Linear
(2d) Affine

Viewing a Plane

- Consider a pair of cameras viewing a plane

$$
s_{3}\left[\begin{array}{c}
u_{2} \\
v_{2} \\
1
\end{array}\right]=H_{2} H_{1}^{-1}\left[\begin{array}{c}
u_{1} \\
v_{1} \\
1
\end{array}\right]
$$

Scene Plane

- What is the form of H in terms of scene parameters?

Homography (between two views) induced by plane in 3D

ray: $X=\left[\begin{array}{l}x \\ \rho \\ \text { equation }\end{array}\right]$ because $P \cdot X=[I \mid 0]\left[\begin{array}{l}x \\ \rho\end{array}\right]=x$
ON The OTUER HAND, $X \cap \pi=X \pi$ i.e. $\pi^{T}\left[\begin{array}{l}x \\ \rho\end{array}\right]=0$

$$
\begin{aligned}
& \therefore {\left[v^{\top}, 1\right]\left[\begin{array}{l}
x \\
\rho
\end{array}\right]=0 \Rightarrow v^{\top} x+\rho=0 \Rightarrow \rho=-v^{\top} x } \\
& \therefore X=\left[\begin{array}{c}
x \\
-v^{\top} x
\end{array}\right] \Rightarrow x^{\prime}=P^{\prime} X=[A \mid a]\left[\begin{array}{c}
x \\
-v^{\top} x
\end{array}\right]=A x-a v^{\top} x \\
&=\left(A-a v^{\top}\right) x
\end{aligned}
$$

Homography (between two views)

 induced by camera rotation

Radial Distortion

- In perspective (rectilinear) projection, straight lines in the world map to straight lines in the image, but many real imagers exhibit distortion towards the image edges

"barrel"
"pin cushion"
- A common first order model is $\mathbf{x}^{\prime}=\left(1+\kappa|\mathbf{x}|^{2}\right) \mathbf{x}$
- Wide-angle imagers may have very different projection models, e.g., for equidistant fisheye $r \propto \theta$

Linear/Affine

Projective

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
0 & 0 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{cccc}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34}
\end{array}\right]} \\
& \text { viewing plane } \\
& {\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]} \\
& \text { (Homography) }
\end{aligned}
$$

Next Lecture

- RANSAC

