Planar Geometry CSE P576 Vitaly Ablavsky

These slides were developed by Dr. Matthew Brown for CSEP576 Spring 2020 and adapted (slightly) for Fall 2021 credit → Matt blame → Vitaly

• Aim: warp our images together using a 2D transformation

• Aim: warp our images together using a 2D transformation

• Find corresponding (matching) points between the images

• Compute the transformation to align the points

• We can also use this transformation to reject outliers

• We can also use this transformation to reject outliers

Planar Geometry

- 2D Linear + Projective transformations
 - Euclidean, Similarity, Affine, Homography
- Linear + Projective Cameras
 - Viewing a plane, rotating about a point

2D Transformations

• We will look at a family that can be represented by 3x3 matrices

This group represents perspective projections of **planar surfaces** in the world

Affine Transformations

• Transformed points are a linear function of the input points

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12}\\a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} + \begin{bmatrix} a_{13}\\a_{23} \end{bmatrix}$$

• This can be written as a single matrix multiplication

Linear Transformations

Consider the action of the unit square under

Linear Transform Examples

Translation, rotation, scale, shear (parallel lines preserved)

These transforms are not affine (parallel lines not preserved)

Linear Transformations

• Consider a single point correspondence

• Lets compute an affine transform from correspondences:

$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

• Re-arrange unknowns into a vector

• Linear system in the unknown parameters **a**

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ x_3 & y_3 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_3 & y_3 & 1 \end{bmatrix} \begin{bmatrix} a_{11} \\ a_{12} \\ a_{13} \\ a_{21} \\ a_{22} \\ a_{23} \end{bmatrix} = \begin{bmatrix} x_1' \\ y_1' \\ x_2' \\ y_2' \\ x_3' \\ y_3' \end{bmatrix}$$

• Of the form

$$Ma = y$$

Solve for **a** using Gaussian Elimination

• We can now map any other points between the two images

$$\begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

• Or resample one image in the coordinate system of the other

This allows us to "stitch" the two images

Linear Transformations

• Other linear transforms are special cases of affine

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix}$$

Face Alignment

Face Alignment

Face Alignment

2D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & t \end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} m{R} & t \end{array} ight]_{2 imes 3}$	3	lengths	
similarity	$\left[\begin{array}{c c} s oldsymbol{R} & t \end{array} ight]_{2 imes 3}$	4	angles	\bigcirc
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{oldsymbol{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Projective Transformation

• General 3x3 matrix transformation (note need scale factor)

$$s \begin{bmatrix} x_1' \\ y_1' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \\ 1 \end{bmatrix}$$

Project 2

>_ P2

 Try out the Image Warping Test section in Project 2, particularly similarity, affine and projective transforms. You can also try warping with the inverse transform, e.g., using P=np.linalg.inv(P)

Camera Models + Geometry

- Pinhole camera, rigid body coordinate transforms
- Perspective, projective, linear/affine models
- Properties of cameras: viewing parallel lines, viewing a scene plane, rotating about a point

Pinhole Camera

• Put the projection plane in front to avoid the 180° rotation

- $\begin{aligned} u &= fX_c/Z_c \\ v &= fY_c/Z_c \end{aligned} s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_c \\ Y_c \\ Z_c \end{bmatrix}$
- Note that $X_c Y_c Z_c$ are **camera coordinates**

Perspective Camera

• Transform world to camera, to image coordinates

Projective Camera

Perspective camera equation

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

• Multiply and drop constraints to get a general 3x4 matrix

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

This is called a **projective camera**

How many degrees of freedom do these 2 models have?

Linear Camera

• Zero out bottom row to eliminate perspective division

Linear a.k.a. affine camera

Linear vs Projective Cameras

• Consider a linear / affine camera viewing parallel world lines

Linear vs Projective Cameras

Parallelism preserved if depth variation in scene << depth of scene

More on camera rays and vanishing points

Viewing a Plane

• Consider a pair of cameras viewing a plane

Without loss of generality, we can make it the world plane Z=0 $_{32}$

Viewing a Plane

• Viewing the plane Z=0 with projective + linear cameras

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{33} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{14} \\ p_{31} & p_{32} & p_{34} \end{bmatrix} \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix}$$

Projective Homography
$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{14} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ 0 \\ 1 \end{bmatrix}$$

Linear (2d) Affine

Viewing a Plane

Consider a pair of cameras viewing a plane

Scene Plane

• What is the form of H in terms of scene parameters?

Homography (between two views) induced by plane in 3D

Homography (between two views) induced by camera rotation

"barrel"

"pin cushion"

- A common first order model is $\, {f x}' = (1 + \kappa |{f x}|^2) {f x}$
- Wide-angle imagers may have very different projection models, e.g., for equidistant fisheye $\,r\,\propto heta$

Next Lecture

• RANSAC