
Planar Geometry
CSE P576

Vitaly Ablavsky

These slides were developed by Dr. Matthew Brown for CSEP576 Spring 2020 and adapted (slightly) for Fall 2021
 credit → Matt
 blame → Vitaly

Image Alignment

• Aim: warp our images together using a 2D transformation

2

Image Alignment

• Aim: warp our images together using a 2D transformation

3

Image Alignment

• Find corresponding (matching) points between the images

4

Image Alignment

• Compute the transformation to align the points

5

Image Alignment

• We can also use this transformation to reject outliers

6

!

?

Image Alignment

• We can also use this transformation to reject outliers

7

✘

✘

Planar Geometry
• 2D Linear + Projective transformations

- Euclidean, Similarity, Affine, Homography

• Linear + Projective Cameras
- Viewing a plane, rotating about a point

8[Szeliski 2.1]

2D Transformations
• We will look at a family that can be represented by 3x3

matrices

9

36 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

y

x

similarity

Euclidean affine

projective

translation

Figure 2.4 Basic set of 2D planar transformations.

Translation. 2D translations can be written as x0
= x + t or

x0
=

h
I t

i
x̄ (2.14)

where I is the (2⇥ 2) identity matrix or

x̄0
=

"
I t

0T
1

#
x̄ (2.15)

where 0 is the zero vector. Using a 2⇥ 3 matrix results in a more compact notation, whereas
using a full-rank 3⇥ 3 matrix (which can be obtained from the 2⇥ 3 matrix by appending a
[0T

1] row) makes it possible to chain transformations using matrix multiplication. Note that
in any equation where an augmented vector such as x̄ appears on both sides, it can always be
replaced with a full homogeneous vector x̃.

Rotation + translation. This transformation is also known as 2D rigid body motion or the
2D Euclidean transformation (since Euclidean distances are preserved). It can be written as
x0

= Rx + t or
x0

=

h
R t

i
x̄ (2.16)

where

R =

"
cos ✓ � sin ✓

sin ✓ cos ✓

#
(2.17)

is an orthonormal rotation matrix with RRT
= I and |R| = 1.

Scaled rotation. Also known as the similarity transform, this transformation can be ex-
pressed as x0

= sRx + t where s is an arbitrary scale factor. It can also be written as

x0
=

h
sR t

i
x̄ =

"
a �b tx
b a ty

#
x̄, (2.18)

where we no longer require that a2
+ b2

= 1. The similarity transform preserves angles
between lines.

This group represents perspective projections
of planar surfaces in the world

Affine Transformations
• Transformed points are a linear function of the input points

10

• This can be written as a single matrix multiplication

x0

y0

�
=

a11 a12
a21 a22

�
x
y

�
+

a13
a23

�

Linear Transformations

• Consider the action of the unit square under

11

x

y

1

10 2 3 4

2

3

2

4
3 1 0
1 2 0
0 0 1

3

5

Linear Transform Examples

12

Translation, rotation, scale, shear (parallel lines preserved)

These transforms are not affine (parallel lines not preserved)

Linear Transformations
• Consider a single point correspondence

13

x2

4
x0
1

y01
1

3

5 =

2

4
a11 a12 a13
a21 a22 a23
0 0 1

3

5

2

4
x1

y1
1

3

5

y

p

p0

x0

y0

How many points are needed to solve for a?

Computing Affine Transforms
• Lets compute an affine transform from correspondences:

14

2

4
x0
1

y01
1

3

5 =

2

4
a11 a12 a13
a21 a22 a23
0 0 1

3

5

2

4
x1

y1
1

3

5

• Re-arrange unknowns into a vector

Computing Affine Transforms
• Linear system in the unknown parameters a

15

2

6666664

x1 y1 1 0 0 0
0 0 0 x1 y1 1
x2 y2 1 0 0 0
0 0 0 x2 y2 1
x3 y3 1 0 0 0
0 0 0 x3 y3 1

3

7777775

2

6666664

a11
a12
a13
a21
a22
a23

3

7777775
=

2

6666664

x0
1

y01
x0
2

y02
x0
3

y03

3

7777775

• Of the form

Ma = y

Solve for a using Gaussian Elimination

Computing Affine Transforms

• We can now map any other points between the two images

16

2

4
x0
1

y01
1

3

5 =

2

4
a11 a12 a13
a21 a22 a23
0 0 1

3

5

2

4
x1

y1
1

3

5

p

p0

Computing Affine Transforms

• Or resample one image in the coordinate system of the other

17

This allows us to “stitch”
the two images

Linear Transformations
• Other linear transforms are special cases of affine

18

2

4
a11 a12 a13
a21 a22 a23
0 0 1

3

5

Face Alignment

19

Face Alignment

20

Face Alignment

21

2D Transformations

22

38 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Transformation Matrix # DoF Preserves Icon

translation
h

I t
i

2⇥3
2 orientation

rigid (Euclidean)
h

R t
i

2⇥3
3 lengths ⇢⇢

⇢⇢
SS
SS

similarity
h

sR t
i

2⇥3
4 angles ⇢

⇢
S
S

affine
h

A
i

2⇥3
6 parallelism ⇥⇥ ⇥⇥

projective
h

H̃
i

3⇥3
8 straight lines `̀

Table 2.1 Hierarchy of 2D coordinate transformations. Each transformation also preserves
the properties listed in the rows below it, i.e., similarity preserves not only angles but also
parallelism and straight lines. The 2⇥3 matrices are extended with a third [0T

1] row to form
a full 3⇥ 3 matrix for homogeneous coordinate transformations.

Blinn (1998) describes (in Chapters 9 and 10) the ins and outs of notating and manipulating
co-vectors.

While the above transformations are the ones we use most extensively, a number of addi-
tional transformations are sometimes used.

Stretch/squash. This transformation changes the aspect ratio of an image,

x0 = sxx + tx

y0 = syy + ty,

and is a restricted form of an affine transformation. Unfortunately, it does not nest cleanly
with the groups listed in Table 2.1.

Planar surface flow. This eight-parameter transformation (Horn 1986; Bergen, Anandan,
Hanna et al. 1992; Girod, Greiner, and Niemann 2000),

x0 = a0 + a1x + a2y + a6x
2

+ a7xy

y0 = a3 + a4x + a5y + a7x
2

+ a6xy,

arises when a planar surface undergoes a small 3D motion. It can thus be thought of as a
small motion approximation to a full homography. Its main attraction is that it is linear in the
motion parameters, ak, which are often the quantities being estimated.

Projective Transformation
• General 3x3 matrix transformation (note need scale factor)

23

s

2

4
x0
1

y01
1

3

5 =

2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5

2

4
x1

y1
1

3

5

Project 2

• Try out the Image Warping Test section in Project 2,
particularly similarity, affine and projective transforms. You can
also try warping with the inverse transform, e.g., using
P=np.linalg.inv(P)

24

P2

Camera Models + Geometry

• Pinhole camera, rigid body coordinate transforms

• Perspective, projective, linear/affine models

• Properties of cameras: viewing parallel lines, viewing a scene
plane, rotating about a point

25
[T. Bacha]

Pinhole Camera
• Put the projection plane in front to avoid the 180º rotation

26• Note that Xc Yc Zc are camera coordinates

f

Xc

Yc

Zc

1

Xc

Yc

Zc

1

u

f

u

u = fXc/Zc

v = fYc/Zc

1

s

2

4
u
v
1

3

5 =

2

4
f 0 0
0 f 0
0 0 1

3

5

2

4
Xc

Yc

Zc

3

5

Perspective Camera
• Transform world to camera, to image coordinates

27

X

Y

world

u

v

Xc

Yc

Zc

X

Y

Z

1

camera

image

u

v

Xc

Yc

Zc

X

Y

Z

1

u

v

Xc

Yc

Zc

X

Y

Z

1

u

v

Xc

Yc

Zc

X

Y

Z

1

u

v

Xc

Yc

Zc

X

Y

Z

1

u

v

Xc

Yc

Zc

X

Y

Z

1

Projective Camera
• Perspective camera equation

28

• Multiply and drop constraints to get a general 3x4 matrix

This is called a projective camera

s

2

4
u
v
1

3

5 =

2

4
f 0 0
0 f 0
0 0 1

3

5

2

4
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

3

5

2

664

X
Y
Z
1

3

775

s

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

3

5

2

664

X
Y
Z
1

3

775

How many degrees of freedom do these 2 models have?

Linear Camera
• Zero out bottom row to eliminate perspective division

29

s

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

3

5

2

664

X
Y
Z
1

3

775

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1

3

5

2

664

X
Y
Z
1

3

775

Linear a.k.a. affine camera

Linear vs Projective Cameras
• Consider a linear / affine camera viewing parallel world lines

30

Linear vs Projective Cameras

31

Parallelism preserved if depth variation in scene << depth of scene

More on camera rays and
vanishing points

31.1

Viewing a Plane
• Consider a pair of cameras viewing a plane

32

X

Y

Z

(u2, v2)(u1, v1)

Without loss of generality, we can make it the world plane Z=0

Viewing a Plane
• Viewing the plane Z=0 with projective + linear cameras

33

s

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

3

5

2

664

X
Y
Z
1

3

775

=

2

4
p11 p12 p14
p21 p22 p24
p31 p32 p34

3

5

2

4
X
Y
1

3

5

s

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1

3

5

2

664

X
Y
Z
1

3

775

=

2

4
p11 p12 p14
p21 p22 p24
0 0 1

3

5

2

4
X
Y
1

3

5

1

s

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

3

5

2

664

X
Y
Z
1

3

775

=

2

4
p11 p12 p14
p21 p22 p24
p31 p32 p34

3

5

2

4
X
Y
1

3

5

s

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1

3

5

2

664

X
Y
Z
1

3

775

=

2

4
p11 p12 p14
p21 p22 p24
0 0 1

3

5

2

4
X
Y
1

3

5

1

s

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

3

5

2

664

X
Y
Z
1

3

775

=

2

4
p11 p12 p14
p21 p22 p24
p31 p32 p34

3

5

2

4
X
Y
1

3

5

s

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1

3

5

2

664

X
Y
Z
1

3

775

=

2

4
p11 p12 p14
p21 p22 p24
0 0 1

3

5

2

4
X
Y
1

3

5

1

s

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

3

5

2

664

X
Y
Z
1

3

775

=

2

4
p11 p12 p14
p21 p22 p24
p31 p32 p34

3

5

2

4
X
Y
1

3

5

s

2

4
u
v
1

3

5 =

2

4
p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1

3

5

2

664

X
Y
Z
1

3

775

=

2

4
p11 p12 p14
p21 p22 p24
0 0 1

3

5

2

4
X
Y
1

3

5

1

Projective

Linear

Homography

(2d) Affine

0

0

Viewing a Plane
• Consider a pair of cameras viewing a plane

34

X

Y

Z

(u2, v2)(u1, v1)

s1

"
u1
v1
1

#
= H1

"
X

Y

1

#

s2

"
u2
v2
1

#
= H2

"
X

Y

1

#

s3

"
u2
v2
1

#
= H2 H

1
1

"
u1
v1
1

#

s

"
u

v

1

#
=

"
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

#2

64
X

Y

Z

1

3

75

=

"
p11 p12 p14
p21 p22 p24
p31 p32 p34

#"
X

Y

1

#

1

s1

"
u1
v1
1

#
= H1

"
X

Y

1

#

s2

"
u2
v2
1

#
= H2

"
X

Y

1

#

s3

"
u2
v2
1

#
= H2 H

1
1

"
u1
v1
1

#

s

"
u

v

1

#
=

"
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

#2

64
X

Y

Z

1

3

75

=

"
p11 p12 p14
p21 p22 p24
p31 p32 p34

#"
X

Y

1

#

1

s1

"
u1
v1
1

#
= H1

"
X

Y

1

#

s2

"
u2
v2
1

#
= H2

"
X

Y

1

#

s3

"
u2
v2
1

#
= H2 H

1
1

"
u1
v1
1

#

s

"
u

v

1

#
=

"
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

#2

64
X

Y

Z

1

3

75

=

"
p11 p12 p14
p21 p22 p24
p31 p32 p34

#"
X

Y

1

#

1

s1

"
u1
v1
1

#
= H1

"
X

Y

1

#

s2

"
u2
v2
1

#
= H2

"
X

Y

1

#

s3

"
u2
v2
1

#
= H2 H

1
1

"
u1
v1
1

#

s

"
u

v

1

#
=

"
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

#2

64
X

Y

Z

1

3

75

=

"
p11 p12 p14
p21 p22 p24
p31 p32 p34

#"
X

Y

1

#

1

s1

"
u1
v1
1

#
= H1

"
X

Y

1

#

s2

"
u2
v2
1

#
= H2

"
X

Y

1

#

s3

"
u2
v2
1

#
= H2 H

�1
1

"
u1
v1
1

#

s

"
u

v

1

#
=

"
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

#2

64
X

Y

Z

1

3

75

=

"
p11 p12 p14
p21 p22 p24
p31 p32 p34

#"
X

Y

1

#

1

s1

"
u1
v1
1

#
= H1

"
X

Y

1

#

s2

"
u2
v2
1

#
= H2

"
X

Y

1

#

s3

"
u2
v2
1

#
= H2 H

�1
1

"
u1
v1
1

#

s

"
u

v

1

#
=

"
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

#2

64
X

Y

Z

1

3

75

=

"
p11 p12 p14
p21 p22 p24
p31 p32 p34

#"
X

Y

1

#

1

35

Scene Plane
• What is the form of H in terms of scene parameters?

36

u1
u2
R, t

X1

X⇡

d2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5

1

u1
u2
R, t

X1

X⇡

d2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5

1

u1
u2
R, t

X1

X⇡

d2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5

1

u1
u2
R, t

X1

X⇡

d

n

1

u1
u2
R, t

X1

X⇡

d

n

1

u1
u2
R, t

X1

X⇡

d

n, d

1

Homography (between two views)
induced by plane in 3D

36.1

Homography (between two views)
induced by camera rotation

37

38

Radial Distortion
• In perspective (rectilinear) projection, straight lines in the

world map to straight lines in the image, but many real
imagers exhibit distortion towards the image edges

39

−0.4 −0.2 0 0.2 0.4 0.6
0

10000

20000

30000

40000

50000

m

at
ch

es

kappa
−0.4 −0.2 0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

at
ch

es
 /

fe
at

ur
e

matches
matches/feature

(a) Number of feature matches vs
(b) Example of stitching 2 images
with = 0.5 (the full test set con-
tains 44 images of this scene)

(c) Detail from the pre-
vious figure showing
misregistration

(d) = -0.5 (e) = -0.25 (f) = 0 (g) = 0.25 (h) = 0.5

Figure 9. Stitching with radial distortion. This figure shows the effects on stitching of first order radial distortion
x

0 = (1 + |x|2)x with in the range 2 [�0.5, 0.5] (the image height is normalised to unit length). Note that radial
distortion is not modelled in our algorithm. We used a test sequence of 44 images and applied radial distortion with 20
values of . Examples of the distorted images are given in figures (d)-(h). To evaluate the performance of stitching we
counted the number of consistent matches after RANSAC, the results are shown in figure (a). Although the number of
matches per feature dropped by around a third in the worst case, the number of correct feature matches was still high
(around 500 per image), so the images could still be successfully matched. Nevertheless radial distortion causes visible
artifacts in rendering as shown in figures (b)-(c), and correcting for this in the bundle adjustment and rendering stages
would be important for high quality panorama stitching.

Figure 10. A difficult stitching problem. This example (from Times Square, New York) contains many moving objects
and large changes in brightness between the images. Despite these challenges, our approach is able to find consistent
sets of invariant features, and correctly register the images. Future automatic image stitchers could detect the moving
objects, and compute high dynamic range radiance maps of the scene. This would enable the user to ‘re-photograph’
the scene with different exposure settings and moving objects selected.

−0.4 −0.2 0 0.2 0.4 0.6
0

10000

20000

30000

40000

50000

m

at
ch

es

kappa
−0.4 −0.2 0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

at
ch

es
 /

fe
at

ur
e

matches
matches/feature

(a) Number of feature matches vs
(b) Example of stitching 2 images
with = 0.5 (the full test set con-
tains 44 images of this scene)

(c) Detail from the pre-
vious figure showing
misregistration

(d) = -0.5 (e) = -0.25 (f) = 0 (g) = 0.25 (h) = 0.5

Figure 9. Stitching with radial distortion. This figure shows the effects on stitching of first order radial distortion
x

0 = (1 + |x|2)x with in the range 2 [�0.5, 0.5] (the image height is normalised to unit length). Note that radial
distortion is not modelled in our algorithm. We used a test sequence of 44 images and applied radial distortion with 20
values of . Examples of the distorted images are given in figures (d)-(h). To evaluate the performance of stitching we
counted the number of consistent matches after RANSAC, the results are shown in figure (a). Although the number of
matches per feature dropped by around a third in the worst case, the number of correct feature matches was still high
(around 500 per image), so the images could still be successfully matched. Nevertheless radial distortion causes visible
artifacts in rendering as shown in figures (b)-(c), and correcting for this in the bundle adjustment and rendering stages
would be important for high quality panorama stitching.

Figure 10. A difficult stitching problem. This example (from Times Square, New York) contains many moving objects
and large changes in brightness between the images. Despite these challenges, our approach is able to find consistent
sets of invariant features, and correctly register the images. Future automatic image stitchers could detect the moving
objects, and compute high dynamic range radiance maps of the scene. This would enable the user to ‘re-photograph’
the scene with different exposure settings and moving objects selected.

−0.4 −0.2 0 0.2 0.4 0.6
0

10000

20000

30000

40000

50000

m

at
ch

es

kappa
−0.4 −0.2 0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

at
ch

es
 /

fe
at

ur
e

matches
matches/feature

(a) Number of feature matches vs
(b) Example of stitching 2 images
with = 0.5 (the full test set con-
tains 44 images of this scene)

(c) Detail from the pre-
vious figure showing
misregistration

(d) = -0.5 (e) = -0.25 (f) = 0 (g) = 0.25 (h) = 0.5

Figure 9. Stitching with radial distortion. This figure shows the effects on stitching of first order radial distortion
x

0 = (1 + |x|2)x with in the range 2 [�0.5, 0.5] (the image height is normalised to unit length). Note that radial
distortion is not modelled in our algorithm. We used a test sequence of 44 images and applied radial distortion with 20
values of . Examples of the distorted images are given in figures (d)-(h). To evaluate the performance of stitching we
counted the number of consistent matches after RANSAC, the results are shown in figure (a). Although the number of
matches per feature dropped by around a third in the worst case, the number of correct feature matches was still high
(around 500 per image), so the images could still be successfully matched. Nevertheless radial distortion causes visible
artifacts in rendering as shown in figures (b)-(c), and correcting for this in the bundle adjustment and rendering stages
would be important for high quality panorama stitching.

Figure 10. A difficult stitching problem. This example (from Times Square, New York) contains many moving objects
and large changes in brightness between the images. Despite these challenges, our approach is able to find consistent
sets of invariant features, and correctly register the images. Future automatic image stitchers could detect the moving
objects, and compute high dynamic range radiance maps of the scene. This would enable the user to ‘re-photograph’
the scene with different exposure settings and moving objects selected.

−0.4 −0.2 0 0.2 0.4 0.6
0

10000

20000

30000

40000

50000

m

at
ch

es

kappa
−0.4 −0.2 0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

at
ch

es
 /

fe
at

ur
e

matches
matches/feature

(a) Number of feature matches vs
(b) Example of stitching 2 images
with = 0.5 (the full test set con-
tains 44 images of this scene)

(c) Detail from the pre-
vious figure showing
misregistration

(d) = -0.5 (e) = -0.25 (f) = 0 (g) = 0.25 (h) = 0.5

Figure 9. Stitching with radial distortion. This figure shows the effects on stitching of first order radial distortion
x

0 = (1 + |x|2)x with in the range 2 [�0.5, 0.5] (the image height is normalised to unit length). Note that radial
distortion is not modelled in our algorithm. We used a test sequence of 44 images and applied radial distortion with 20
values of . Examples of the distorted images are given in figures (d)-(h). To evaluate the performance of stitching we
counted the number of consistent matches after RANSAC, the results are shown in figure (a). Although the number of
matches per feature dropped by around a third in the worst case, the number of correct feature matches was still high
(around 500 per image), so the images could still be successfully matched. Nevertheless radial distortion causes visible
artifacts in rendering as shown in figures (b)-(c), and correcting for this in the bundle adjustment and rendering stages
would be important for high quality panorama stitching.

Figure 10. A difficult stitching problem. This example (from Times Square, New York) contains many moving objects
and large changes in brightness between the images. Despite these challenges, our approach is able to find consistent
sets of invariant features, and correctly register the images. Future automatic image stitchers could detect the moving
objects, and compute high dynamic range radiance maps of the scene. This would enable the user to ‘re-photograph’
the scene with different exposure settings and moving objects selected.

−0.4 −0.2 0 0.2 0.4 0.6
0

10000

20000

30000

40000

50000

m

at
ch

es

kappa
−0.4 −0.2 0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

at
ch

es
 /

fe
at

ur
e

matches
matches/feature

(a) Number of feature matches vs
(b) Example of stitching 2 images
with = 0.5 (the full test set con-
tains 44 images of this scene)

(c) Detail from the pre-
vious figure showing
misregistration

(d) = -0.5 (e) = -0.25 (f) = 0 (g) = 0.25 (h) = 0.5

Figure 9. Stitching with radial distortion. This figure shows the effects on stitching of first order radial distortion
x

0 = (1 + |x|2)x with in the range 2 [�0.5, 0.5] (the image height is normalised to unit length). Note that radial
distortion is not modelled in our algorithm. We used a test sequence of 44 images and applied radial distortion with 20
values of . Examples of the distorted images are given in figures (d)-(h). To evaluate the performance of stitching we
counted the number of consistent matches after RANSAC, the results are shown in figure (a). Although the number of
matches per feature dropped by around a third in the worst case, the number of correct feature matches was still high
(around 500 per image), so the images could still be successfully matched. Nevertheless radial distortion causes visible
artifacts in rendering as shown in figures (b)-(c), and correcting for this in the bundle adjustment and rendering stages
would be important for high quality panorama stitching.

Figure 10. A difficult stitching problem. This example (from Times Square, New York) contains many moving objects
and large changes in brightness between the images. Despite these challenges, our approach is able to find consistent
sets of invariant features, and correctly register the images. Future automatic image stitchers could detect the moving
objects, and compute high dynamic range radiance maps of the scene. This would enable the user to ‘re-photograph’
the scene with different exposure settings and moving objects selected.

−0.4 −0.2 0 0.2 0.4 0.6
0

10000

20000

30000

40000

50000

m

at
ch

es

kappa
−0.4 −0.2 0 0.2 0.4 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

at
ch

es
 /

fe
at

ur
e

matches
matches/feature

(a) Number of feature matches vs
(b) Example of stitching 2 images
with = 0.5 (the full test set con-
tains 44 images of this scene)

(c) Detail from the pre-
vious figure showing
misregistration

(d) = -0.5 (e) = -0.25 (f) = 0 (g) = 0.25 (h) = 0.5

Figure 9. Stitching with radial distortion. This figure shows the effects on stitching of first order radial distortion
x

0 = (1 + |x|2)x with in the range 2 [�0.5, 0.5] (the image height is normalised to unit length). Note that radial
distortion is not modelled in our algorithm. We used a test sequence of 44 images and applied radial distortion with 20
values of . Examples of the distorted images are given in figures (d)-(h). To evaluate the performance of stitching we
counted the number of consistent matches after RANSAC, the results are shown in figure (a). Although the number of
matches per feature dropped by around a third in the worst case, the number of correct feature matches was still high
(around 500 per image), so the images could still be successfully matched. Nevertheless radial distortion causes visible
artifacts in rendering as shown in figures (b)-(c), and correcting for this in the bundle adjustment and rendering stages
would be important for high quality panorama stitching.

Figure 10. A difficult stitching problem. This example (from Times Square, New York) contains many moving objects
and large changes in brightness between the images. Despite these challenges, our approach is able to find consistent
sets of invariant features, and correctly register the images. Future automatic image stitchers could detect the moving
objects, and compute high dynamic range radiance maps of the scene. This would enable the user to ‘re-photograph’
the scene with different exposure settings and moving objects selected.

• A common first order model is

“barrel” “pin cushion”

• Wide-angle imagers may have very different projection
models, e.g., for equidistant fisheye

 = �0.5

 = 0.5

r / ✓

s1

"
u1
v1
1

#
= H1

"
X

Y

1

#

s2

"
u2
v2
1

#
= H2

"
X

Y

1

#

s3

"
u2
v2
1

#
= H2 H

�1
1

"
u1
v1
1

#

1

40

Linear/Affine Projective
2

4
p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1

3

5

2

4
p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

3

5

2

4
h11 h12 h13

h21 h22 h23

h31 h32 h33

3

5

2

4
a11 a12 a13
a21 a22 a23
0 0 1

3

5

viewing plane

(Homography)

Next Lecture
• RANSAC

41

