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Mathematical Morphology

X=ZtxZ}f={(z1,22) €Z® : 1<z <m, 1 <z2<n}.

m

We follow standard practice and represent these rectangular point sets by listing the points in

matrix form. Figure 1.2.1 provides a graphical representation of the point set X = Z,}> xZ'.
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Figure 1.2.1. The rectangular point set X = Z,, X Z,

[ Ritter and Wilson, Handbook of Computer
Vision Algorithms in Image Algebra, 1996 ] 0.2



Mathematica
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F1G. 6. Two different B’s extract different features when eroding the same X (the arrow indicates the

location of the origin in the structuring element).
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Mathematical Morphology

IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-35, NO. 8, AUGUST 1987 1153

Morphological Filters—Part I: Their Set-Theoretic

Analysis and Relations to Linear Shift-Invariant
Filters

PETROS MARAGOS, MeEMBER, IEEE, AND RONALD W. SCHAFER, FELLOW, IEEE
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Fig. 6. Dilations and erosions of discrete sets: (a) Minkowski subtraction;
(b) erosion; (¢) Minkowski addition, (d) dilation; (e) forming larger sets
as the Minkowski sum of simpler sets. (® = sct points; + marks origin
(0, 0) of Z%.)
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Corner Detection Revisited

what’s the size of W?

/ do all pixels contribute equally?

0.5



Peak-finding: Practicalities

A 1D example:

(Pdb) a2

array([O, 1! 2! 3! 4/ 5I 5I 5/ 5! 41 5l 4/ 7! 6! 2])

(Pdb) se2

array([ 1.000, 1.000, 1.000])

(Pdb) a2dse2 = ndimage.grey dilation(aZ2,

footprint=se2)

(Pdb) a2dse?2

array([1l, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 7, 7

(Pdb) a2peaks se2 = np.where((a2dse2 - a2) =

(Pdb) a2peaks se2

arraY([Ol Ol Ol Or Or 1/ 1/ 1/ 1l Ol ll Ol 11 OI 0])

(Pdb) a2peaks skimg =

skimage.feature.peak local max(a2,footprint=se2)

(Pdb) a2peaks skimg

array([[12],
[ 51,
[ 61,
[ 71,
[ 81,
[10]])

(Pdb) idx 1 =

(Pdb) idx 1

array([ 5, 6, 7, 8, 10, 121])

(Pdb) idx 0 = np.where(a2peaks se2)

(Pdb) idx 0

(array([ 5, 6, 7, 8, 10, 121),)

(Pdb)

np.sort(a2peaks skimg.flatten())



Random Sampling Consensus
(RANSAC)

[ Hartley and Zisserman, Ch. 4 ] 0.7



RANSAC:
How Many Samples Are Needed?

0.8



Epipolar Geometry
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Epipolar Geometry

® Epipolar Lines, Plane Constraint

® Fundamental Matrix, Linear solution
® RANSAC for F 2-view SFM

[ Szeliski Chapters 7+1 1]



Correspondence

® Find all matches between views



Geometric Constraints

® Find subset of matches that are consistent with a geometric
transformation

Consistent matches can be used for subsequent stages,
e.g., 3D reconstruction, object recognition etc.



2-view Geometry

® How do we transfer points between 2 views!

(Ul,m) (Uz,vz)?




2-view Geometry

® How do we transfer points between 2 views?! (planar case)
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(Ul,m) (Uz,vz)?

Planar case: one-to-one mapping via plane (Homography)



2-view Geometry

® How do we transfer points between 2 views! (non-planar)

X7
X7 o

(U1,U1) (Uz,vz)?

Non-planar case: depends on the depth of the 3D point



Epipolar Line

® How do we transfer points between 2 views! (non-planar)

X7
X7 e
X7 e

(Ul,m) (Uz,vz)?

A point in image | gives a line in image 2



Epipolar Lines from F

® What is the equation of the epipolar line for point x?

. L

8.1



Epipolar Lines

X
[ R. Cipolla ]



Epipolar Lines

[ R. Cipolla ] 10



Focus of Expansion

5\9’ L\V
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The Epipolar Constraint

® For rays to intersect at a point (X), the two rays and the
camera translation must lie in the same plane

[ Szeliski 1.3 ]



Epipolar geometry: geometric and
algebraic derivations

11.1



Computing F

® Single correspondence gives us one equation

f11
[Ul U1 1} fo1
/31

e Multiply out

w121 f11 + w1y fi2 + ur fis F vz for -

fi2
f22
f32

fiz
f23

f33_

L]
Y1

1

- U1Y1 f22

+vifos + 21 f31 +y1fz2 + f33 =0

12



® Rearrange for unknowns, add points by stacking rows

: U111
:U2$2
:U3£I’J3
:u4$4
:u5x5
:U6$6
:u7a’:7
:U8$8

U1Y1
U2Y2
U3ys
U4Y4
Us5Ys
UeYe
U7y
Usys

Computing F

U117
U2X2
U333
Va4
U555
UeL6
U7Xy
Vg8

U1Y1
U2Y2
U3Y3
U4Y4
Us5Y5
U6 Y6
v7rY7
Vg Y8

Y1
Y2
Y3
Y4
Ys
Ye
Y
Ys

fi1
fi2
fi3
f1
f22
f23
fa31
f 32
/33

e This is a linear system of the form Af = 0

0]

can be solved using Singular Value Decomposition (SVD)

|3



Epipolar Geometry

® Example: 2-view matching in 3D

| 4



Epipolar Geometry

® Raw SIFT matches

|5



Epipolar Geometry

® Epipolar lines

| T

Can use RANSAC to find inliers with
small distance from epipolar line

|6



Epipolar Geometry

® Consistent matches

|7



A W —

RANSAC for F

Match Features between 2 views

Randomly select set of 8 matches

Compute F using 8-point algorithm (SVD to solve Af=0)
Check consistency of all points with F compute distances to
epipolar lines and count #inliers with distance < threshold
Repeat steps 2-4 to maximise #inliers

|18



RANSAC for F

Raw feature matches (after ratio test filtering)

(@)

° ®

d

Solved for F and RANSAC inliers

20



2-view Structure from Motion

® We can use the combination of SIFT/RANSAC and
triangulation to compute 3D structure from 2 views

N
IS

Raw SIFT matches

RANSAC for F
Extract R, t

K17R17t1

K27R27t2

>
Triangulate to 3D Point Cloud

21



Cameras from F

® T[he Fundamental matrix is derived from the cameras
us Ko 'RA (ty —t1) x RiK;'uy =0
—~—

F

Can we invert it to get the cameras from F?

Kl,Rl,tl K27R27t2

22



Cameras from F

® First simplify by writing in terms of relative translation/
rotation and assume K, K5 are known

E = [t| xR can be solved for t,R [Szeliski p350]

23



5> Point Algorithm

Instead of using the 8 point algorithm to solve for F we can
directly solve for R and t using only 5 correspondences

This involves solving a |0th degree polynomial [Nister 2004]
Often we can guess the focal length (e.g., guess field of view),
and solve for it later using bundle adjustment

24



Triangulation

Given cameras X
and corresponding

points...

...we can triangulate
to find the 3D point

K27R27t2



Triangulation

detections,
rays do not intersect
exactly

feature
measurement

projection

K2, Ro, to



Triangulation

® We can solve for the 3D point X by minimising the closest
approach of the rays in 3D (linear), or better find an X such
that image measurement errors are minimised (non-linear)

[ Szeliski 7.1 ]

27



Recap: 2-view Geometry

® Planar geometry: one to one mapping of points

11 = HX viewing a plane, rotation

° full 3D

\0

28



Recap: 2-view Geometry

® Epipolar (3D) geometry: point to line mapping

uTFX — O moving camera, 3D scene

' L

29



Next Lecture

® Multiview alignment, structure from motion

30





