Multiview Alignment and Sparse SFM CSE P576 Vitaly Ablavsky

These slides were developed by Dr. Matthew Brown for CSEP576 Spring 2020 and adapted (slightly) for Fall 2021 credit → Matt blame → Vitaly

Multiview + Sparse SFM

- Multiview Image Alignment, Residuals, Error Function
- Structure from Motion (SFM)
- Bundle Adjustment, Pose Estimation, Triangulation

• Align a set of images given a motion model (e.g., planar affine)

• Align a set of images given a motion model (e.g., planar affine)

Step I: Find all matches between images using SIFT

• Align a set of images given a motion model (e.g., planar affine)

Step I: Find all matches between images using SIFT Step 2: Remove incorrect matches using RANSAC

• Align a set of images given a motion model (e.g., planar affine)

Step I: Find all matches between images using SIFT Step 2: Remove incorrect matches using RANSAC

Planar Mapping Residuals

• Residual = vector between observed feature and projection

• Minimize squared projection errors between images with respect to planar transform parameters (H matrices)

Panorama Stitching

- We can concatenate pairwise homographies, but over time multiple pairwise mappings accumulate errors
- We use global alignment (bundle adjustment) to close the gap

Structure from Motion

Given an (unordered) set of input images, compute cameras and 3D structure of the scene

[Szeliski 7]

Structure from Motion

2-view Structure from Motion

We can use the combination of SIFT/RANSAC and triangulation to compute 3D structure from 2 views

Raw SIFT matches

Ambiguities in 2-view Reconstruction

[Hartley and Zisserman, Ch. 10]

Global Alignment

• Concatenation of pairwise R, t estimates results in drift, e.g.,

Global Alignment

• Concatenation of pairwise R, t estimates results in drift, e.g.,

Global alignment

Global Alignment

In robotic navigation frame-frame alignment also causes drift

We can use **bundle adjustment** to close the gap

[Kaess Dellaert 2010] 32

RANSAC for F

Raw feature matches (after ratio test filtering)

Solved for F and RANSAC inliers

Feature Tracking

• Form feature tracks by combining pairwise feature matches

- Tracked features become individual 3D points in the reconstruction
- Features matched across 3 or more views provide strong constraints on the 3D reconstruction

• Minimise errors projecting 3D points into all images

[Szeliski 7.4]

Initialization with 3 views

Joint optimization of cameras and structure

• Add camera 4

Estimate camera pose, add new 3D points, jointly optimize

• Add camera 5

Estimate camera pose, add new 3D points, jointly optimize

• Add camera 6

Estimate camera pose, add new 3D points, jointly optimize

• Add remaining cameras in same way

Structure from Motion

Why "Bundle" Adjustment?

Can think of bundles of light rays emanating from each 3D point

Adjust camera + 3D point positions so that bundles match measured positions (feature points)

SFM recap

- Match features, e.g., SIFT, between all views
- Use RANSAC to reject outliers and estimate F matrices
- Form feature tracks by linking multiview matches
- Select an initialization set, e.g., 3 images with lots of matches and good baseline (parallax)
- Jointly optimize cameras R, t and structure X for this set
- Repeat for each camera:
 - Estimate pose R, t by minimising projection errors with existing X
 - Add 3D points corresponding to the new view and optimize
 - Bundle adjust optimizing over all cameras and structure

Visual SFM

VisualSFM - [Sparse Reconstruction] - (0] - []	E Task	/ie/ver	1
File SfM View ViP Rep Tools Help	#Uns Foca Rada ### #67:	table points removed: 0+2 Length : [532.971]->[531.451] al Distortion : [-0.376 -> -36] [51] sees 1053 (+253) 3D points	
	Foca Estin # 77 SKIP PBA: #poi #poi #3+ #uns Radi # 17 Foca Radi	Length in EXIF [1066.367] ated Focal Length [1066][1.04N] 8 projs (179 pts and 15 merges) : 14 cams, 8387 points, 31483 projs 4387 3D pts, 67(-33) cams and 19491 projs, 1.110 -> 1.020 (5 LMs in 0.10sec) ints outside bundle : 118 ints w/large errors: 8 points removed: 0+3 bitable points removed: 0+3 of Distortion : [0.111 -> 12] projs (4 pts and 0 merges) Length : [1066.367]->[1080.209] al Distortion : [0.111 -> 12]	
	### #68: Foca Estin NOTI # 27 SKIP PBA: PBA: #poi #poi #poi #3+ #uns	[57] sees 860 (+253) 3D points Length in EXIF [822.222] ated Focal Length [822][1.03N] E: inlier ratio 72%, 83% 8 projs (0 pts and 3 merges) : 12 cams, 7841 points, 28494 projs 4937 3D pts, 68(-36) cams and 22730 projs 1.462 -> 1.005 (5 LMs in 0.05sec) ints outside bundle : 114 ints w/ large errors: 8 points removed: 3 stable points removed: 0+7	
Loo	#68: PBA:	5405 proj, 1596 pts, 47M, 15UP 14054 3D pts, 68(-0) cams and 55740 projs	ų

[ccwu.me/vsfm]

Application: 3D from Internet Images

• Reconstruct 3D from unordered photo collections

[Building Rome in a Day, S.Agarwal et al 2009]

Simultaneous Localization and Mapping

[R. Mur-Artal et al., "ORB-SLAM: A Versatile and Accurate Monocular SLAM System", IEEE Transactions on Robotics, 2015]

Next Lecture

• Dense matching and reconstruction