Dense Methods 2: Depth, Flow

 CSE P576

 CSE P576}

Vitaly Ablavsky

These slides were developed by Dr. Matthew Brown for CSEP576 Spring 2020 and adapted (slightly) for Fall 2021
credit \rightarrow Matt
blame \rightarrow Vitaly

Dense Methods 2: Depth, Flow

- Depth Imaging + Fusion, Signed Distance Functions
- Non-Rigid matching, Optical Flow, Lucas Kanade

Depth Image Fusion

- How can we combine multiple depth scans?

[KinectFusion Izadi et al]

Problem: How to Combine Depth Images into a Complete Model?

(a) Measurement

(b) 2 Frames

(c) 30 Frames

(d) 100 Frames

(e) Complete model

Merging depth maps

- Naïve combination (union) produces artifacts
- Better solution: find "average" surface
- \rightarrow Surface that minimizes sum (of squared) distances to the depth maps
[From Curless \& Levoy, 1996]

Least squares surface solution

[Slide from Seitz, UW CSEP576]

Representing Geometry Implicitly

Signed Distance Functions

Example: Truncated Signed Distance Function (TSDF)

Representing Scenes with TSDF

[KinectFusion, Newcombe et al, 2011]

A Single Ray Observation in TSDF

Ray Observations in TSDF

Fusing Noisy Ray Observations in TSDF

VRIP [Curless \& Levoy 1996]

Merging Depth Maps: Temple Model

input image

317 images (hemisphere)

ground truth model

Application: Multi-view stereo from Internet Collections

KinectFusion: Dense Surface Tracking and Mapping in Real-Time

- Uses an RGB-D Sensor
- First Dense SLAM System
- Interleaves:

1. TSDF Fusion (Map)
2. Projective ICP (Track)

- Efficient to implement on GPU Compute Architecture
- Memory for Scene is $\mathrm{O}\left(\mathrm{N}^{\wedge} 3\right)$

Newcombe, Izadi et al

Iterated Closest Point

- Estimate camera pose from unmatched point clouds

- Assign points in the scan yellow to closest model point red
- Compute pose (R, t) of the scanner using correspondences
- Re-assign closest points and iterate until converged

2-view Rigid Matching

- ID search, points constrained to lie along epipolar lines

2-view Non-Rigid Matching

- 2D search, points can move anywhere in the image

[vision.middlebury.edu/flow]

2-view Non-Rigid Matching

- 2D search, points can move anywhere in the image

[vision.middlebury.edu/flow]

2-view Non-Rigid Matching

- 2D search, points can move anywhere in the image

[vision.middlebury.edu/flow]

2-view Non-Rigid Matching

- 2D search, points can move anywhere in the image

[vision.middlebury.edu/flow]

Optical Flow: Example I

Optical Flow: Example 2

[Brox Malik 20II] 24

Lucas Kanade

- The previous algorithm performed a discrete search over displacements/flow vectors \mathbf{u}
- We can do better by looking at the structure of the error surface:

$$
I_{0}(\mathrm{x})
$$

$I_{1}(\mathrm{x})$

$$
e=\left|\mathbf{I}_{1}(\mathbf{x}+\mathbf{u})-\mathbf{I}_{0}(\mathbf{x})\right|^{2}
$$

Lucas Kanade

- This is the Lucas-Kanade algorithm for 2D image flow

$?$Try out LucasKanade.ipynb from the course webpage

Lucas-Kanade Jupyter Notebook

Putting it together: Track the Sequence

[11]: \# Run patch tracking on whole sequence
\# Starting location
p = offset 0
track $=[p]$
\# Run Lukas Kanade tracking on each frame
for i in range(1, len(images)):
\# Coarse to fine (for efficiency, you would normally downsample in a pyramid. Here we just blur)
p,_,_,_ = LucasKanade2d(images[0], images[i], offset0, guess_p1 = p, its=20, blur_sigma=2.0)
p, , $^{\prime},-=$ LucasKanade2d(images [0], images[i], offset0, guess_p1 = p, its=10, blur_sigma=0.0) track. append(tuple(p))

Flow at a pixel

- Look at previous equation at a single pixel:

$$
{\frac{\partial I_{1}}{\partial \mathbf{x}}}^{T} \Delta \mathbf{u}=I_{0}(\mathbf{x})-I_{1}(\mathbf{x})
$$

Flow Ambiguity

- Optical Flow Constraint:

$$
\frac{\partial I}{\partial t}+\nabla I^{T} \mathbf{v}=0
$$

- The stripes can be interpreted as moving vertically, horizontally (rotation), or somewhere in between!
- The component of velocity parallel to the edge is unknown

Horn-Schunk

- The optical flow constraint gives I equation per pixel to solve for the velocity field (2 parameters per pixel)

We can use other considerations, such as smoothness, to find a plausible velocity field, e.g.,

$$
e_{H S}=\sum\left(\frac{\partial I}{\partial t}+\nabla I^{T} \mathbf{v}\right)^{2}+\alpha|\Delta \mathbf{v}|^{2}
$$

Brightness Constancy

- All the methods presented in this lecture have relied on the assumption that

$$
I_{1}(\mathrm{x}+\mathbf{u}) \approx I_{0}(\mathbf{x})
$$

- This is called the brightness constancy assumption
- Taylor expansion for small motion at a single pixel = optical flow constraint
- Horn-Schunk = optical flow constraint + smoothing over u
- Lucas-Kanade = brightness constancy over patches with gradient based search for \mathbf{u}

Next Lecture

- Visual Recognition, Linear Classification

