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Visual Classification 1
• Object recognition: instance, category

• Image classification vs object detection

• Linear classification, CIFAR10 case study

• 2-class, N-class, linear + softmax regression
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Object Recognition
• Object recognition with SIFT features [Lowe 1999]
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Figure 4: Top row shows model images for 3D objects with
outlines found by background segmentation. Bottom image
shows recognition results for 3D objectswithmodel outlines
and image keys used for matching.

mined by solving the corresponding normal equations,

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].
Outliers can now be removed by checking for agreement

between each image feature and themodel, given the param-
eter solution. Each match must agree within 15 degrees ori-
entation, change in scale, and 0.2 times maximummodel
size in terms of location. If fewer than 3 points remain after
discarding outliers, then thematch is rejected. If any outliers
are discarded, the least-squares solution is re-solvedwith the
remaining points.

Figure5: Examples of 3D object recognitionwith occlusion.

7. Experiments
The affine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
vide a good initial test of the approach. The top row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. The figure also shows a cluttered image contain-
ing the planar objects, and the same image is shown over-
layed with the models following recognition. The model
keys that are displayed are the ones used for recognition and
final least-squares solution. Since only 3 keys are needed
for robust recognition, it can be seen that the solutions are
highly redundant and would survive substantial occlusion.
Also shown are the rectangular borders of themodel images,
projected using the affine transform from the least-square
solution. These closely agree with the true borders of the
planar regions in the image, except for small errors intro-
duced by the perspective projection. Similar experiments
have been performed formany images of planar objects, and
the recognition has proven to be robust to at least a 60 degree
rotation of the object in any direction away from the camera.
Although the model images and affine parameters do not

account for rotation in depth of 3D objects, they are still
sufficient to perform robust recognition of 3D objects over
about a 20 degree range of rotation in depth away from each
model view. An example of three model images is shown in
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What is present? Where? What orientation?



Object Recognition
• PASCAL Visual Object Classes Challenges [2005-2012]
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What is present? Where? What orientation?



Classification and Detection
• Classification: Label per image, e.g., ImageNet
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• Detection: Label per region, e.g., PASCAL VOC4

car : 1.000

dog : 0.997

person : 0.992

person : 0.979

horse : 0.993

conv feature map

intermediate layer
256-d

2k scores 4k coordinates

sliding window

reg layercls layer

k anchor boxes

bus : 0.996

person : 0.736

boat : 0.970

person : 0.989

person : 0.983
person : 0.983

person : 0.925

cat : 0.982

dog : 0.994

Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios.

anchors. An anchor is centered at the sliding window
in question, and is associated with a scale and aspect
ratio (Figure 3, left). By default we use 3 scales and
3 aspect ratios, yielding k = 9 anchors at each sliding
position. For a convolutional feature map of a size
W ⇥H (typically ⇠2,400), there are WHk anchors in
total.

Translation-Invariant Anchors
An important property of our approach is that it

is translation invariant, both in terms of the anchors
and the functions that compute proposals relative to
the anchors. If one translates an object in an image,
the proposal should translate and the same function
should be able to predict the proposal in either lo-
cation. This translation-invariant property is guaran-
teed by our method5. As a comparison, the MultiBox
method [27] uses k-means to generate 800 anchors,
which are not translation invariant. So MultiBox does
not guarantee that the same proposal is generated if
an object is translated.

The translation-invariant property also reduces the
model size. MultiBox has a (4 + 1)⇥ 800-dimensional
fully-connected output layer, whereas our method has
a (4 + 2) ⇥ 9-dimensional convolutional output layer
in the case of k = 9 anchors. As a result, our output
layer has 2.8 ⇥ 104 parameters (512 ⇥ (4 + 2) ⇥ 9
for VGG-16), two orders of magnitude fewer than
MultiBox’s output layer that has 6.1⇥ 106 parameters
(1536 ⇥ (4 + 1) ⇥ 800 for GoogleNet [34] in MultiBox
[27]). If considering the feature projection layers, our
proposal layers still have an order of magnitude fewer
parameters than MultiBox6. We expect our method
to have less risk of overfitting on small datasets, like
PASCAL VOC.

5. As is the case of FCNs [7], our network is translation invariant
up to the network’s total stride.

6. Considering the feature projection layers, our proposal layers’
parameter count is 3 ⇥ 3 ⇥ 512 ⇥ 512 + 512 ⇥ 6 ⇥ 9 = 2.4 ⇥ 106;
MultiBox’s proposal layers’ parameter count is 7⇥ 7⇥ (64 + 96 +
64 + 64)⇥ 1536 + 1536⇥ 5⇥ 800 = 27⇥ 106.

Multi-Scale Anchors as Regression References
Our design of anchors presents a novel scheme

for addressing multiple scales (and aspect ratios). As
shown in Figure 1, there have been two popular ways
for multi-scale predictions. The first way is based on
image/feature pyramids, e.g., in DPM [8] and CNN-
based methods [9], [1], [2]. The images are resized at
multiple scales, and feature maps (HOG [8] or deep
convolutional features [9], [1], [2]) are computed for
each scale (Figure 1(a)). This way is often useful but
is time-consuming. The second way is to use sliding
windows of multiple scales (and/or aspect ratios) on
the feature maps. For example, in DPM [8], models
of different aspect ratios are trained separately using
different filter sizes (such as 5⇥7 and 7⇥5). If this way
is used to address multiple scales, it can be thought
of as a “pyramid of filters” (Figure 1(b)). The second
way is usually adopted jointly with the first way [8].

As a comparison, our anchor-based method is built
on a pyramid of anchors, which is more cost-efficient.
Our method classifies and regresses bounding boxes
with reference to anchor boxes of multiple scales and
aspect ratios. It only relies on images and feature
maps of a single scale, and uses filters (sliding win-
dows on the feature map) of a single size. We show by
experiments the effects of this scheme for addressing
multiple scales and sizes (Table 8).

Because of this multi-scale design based on anchors,
we can simply use the convolutional features com-
puted on a single-scale image, as is also done by
the Fast R-CNN detector [2]. The design of multi-
scale anchors is a key component for sharing features
without extra cost for addressing scales.

3.1.2 Loss Function
For training RPNs, we assign a binary class label
(of being an object or not) to each anchor. We as-
sign a positive label to two kinds of anchors: (i) the
anchor/anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) an
anchor that has an IoU overlap higher than 0.7 with
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[Krizhevsky et al 2011][ Ren et al 2016 ]
Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8

Figure 4: (Left) Eight ILSVRC-2010 test images and the five labels considered most probable by our model.
The correct label is written under each image, and the probability assigned to the correct label is also shown
with a red bar (if it happens to be in the top 5). (Right) Five ILSVRC-2010 test images in the first column. The
remaining columns show the six training images that produce feature vectors in the last hidden layer with the
smallest Euclidean distance from the feature vector for the test image.

In the left panel of Figure 4 we qualitatively assess what the network has learned by computing its
top-5 predictions on eight test images. Notice that even off-center objects, such as the mite in the
top-left, can be recognized by the net. Most of the top-5 labels appear reasonable. For example,
only other types of cat are considered plausible labels for the leopard. In some cases (grille, cherry)
there is genuine ambiguity about the intended focus of the photograph.

Another way to probe the network’s visual knowledge is to consider the feature activations induced
by an image at the last, 4096-dimensional hidden layer. If two images produce feature activation
vectors with a small Euclidean separation, we can say that the higher levels of the neural network
consider them to be similar. Figure 4 shows five images from the test set and the six images from
the training set that are most similar to each of them according to this measure. Notice that at the
pixel level, the retrieved training images are generally not close in L2 to the query images in the first
column. For example, the retrieved dogs and elephants appear in a variety of poses. We present the
results for many more test images in the supplementary material.

Computing similarity by using Euclidean distance between two 4096-dimensional, real-valued vec-
tors is inefficient, but it could be made efficient by training an auto-encoder to compress these vectors
to short binary codes. This should produce a much better image retrieval method than applying auto-
encoders to the raw pixels [14], which does not make use of image labels and hence has a tendency
to retrieve images with similar patterns of edges, whether or not they are semantically similar.

7 Discussion

Our results show that a large, deep convolutional neural network is capable of achieving record-
breaking results on a highly challenging dataset using purely supervised learning. It is notable
that our network’s performance degrades if a single convolutional layer is removed. For example,
removing any of the middle layers results in a loss of about 2% for the top-1 performance of the
network. So the depth really is important for achieving our results.

To simplify our experiments, we did not use any unsupervised pre-training even though we expect
that it will help, especially if we obtain enough computational power to significantly increase the
size of the network without obtaining a corresponding increase in the amount of labeled data. Thus
far, our results have improved as we have made our network larger and trained it longer but we still
have many orders of magnitude to go in order to match the infero-temporal pathway of the human
visual system. Ultimately we would like to use very large and deep convolutional nets on video
sequences where the temporal structure provides very helpful information that is missing or far less
obvious in static images.

8



Segmentation
• Segmentation: Label per pixel, e.g., MS COCO
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mask training data). It can be seen that our model generates reasonable mask predictions on many classes in set B. See §5 for details.

the model does a reasonable job segmenting isolated trees,
but tends to fail at segmentation when the detected ‘tree’ is
more like a forest. Finally, the detector does a reasonable
job at segmenting whole objects and parts of those objects,
such as windows of a trolley car or handles of a refrigera-
tor. Compared to a detector trained on 80 COCO categories,
these results illustrate the exciting potential of systems that
can recognize and segment thousands of concepts.

6. Conclusion

This paper addresses the problem of large-scale instance
segmentation by formulating a partially supervised learn-
ing paradigm in which only a subset of classes have in-
stance masks during training while the rest have box an-

notations. We propose a novel transfer learning approach,
where a learned weight transfer function predicts how each
class should be segmented based on parameters learned
for detecting bounding boxes. Experimental results on the
COCO dataset demonstrate that our method greatly im-
proves the generalization of mask prediction to categories
without mask training data. Using our approach, we build a
large-scale instance segmentation model over 3000 classes
in the Visual Genome dataset. The qualitative results are en-
couraging and illustrate an exciting new research direction
into large-scale instance segmentation. They also reveal that
scaling instance segmentation to thousands of categories,
without full supervision, is an extremely challenging prob-
lem with ample opportunity for improved methods.
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Structured Image Understanding
• “Girl feeding large elephant”

• “A man taking a picture behind girl”

7visualgenome.org [ Krishna et al 2017 ]



Shape + Tracking
• Other vision applications might need shape modelling 

(possibly deformable) and/or tracking in video

8We’ll focus on single image classification today

Figure 9: Fits to real images using manually obtained 2D points and segmentation. Colors indicate animal family. We show
the input image, fit overlaid, views from �45� and 45�. All results except for those in mint colors use the animal specific
shape prior. The SMAL model, learned form toy figurines, generalizes to real animal shapes.

Figure 10: Failure examples due to depth ambiguity in pose
and global rotation.

have focused on a limited set of quadrupeds. A key issue
is dealing with varying numbers of parts (e.g. horns, tusks,
trunks) and parts of widely different shape (e.g. elephant
ears). Moving beyond the class of animals here will involve
creating a vocabulary of reusable shape parts and new ways
of composing them.
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SMPL: A Skinned Multi-Person Linear Model

Matthew Loper ⇤12 Naureen Mahmood†1 Javier Romero†1 Gerard Pons-Moll†1 Michael J. Black†1
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Figure 1: SMPL is a realistic learned model of human body shape and pose that is compatible with existing rendering engines, allows
animator control, and is available for research purposes. (left) SMPL model (orange) fit to ground truth 3D meshes (gray). (right) Unity 5.0
game engine screenshot showing bodies from the CAESAR dataset animated in real time.

Abstract

We present a learned model of human body shape and pose-
dependent shape variation that is more accurate than previous
models and is compatible with existing graphics pipelines. Our
Skinned Multi-Person Linear model (SMPL) is a skinned vertex-
based model that accurately represents a wide variety of body
shapes in natural human poses. The parameters of the model are
learned from data including the rest pose template, blend weights,
pose-dependent blend shapes, identity-dependent blend shapes, and
a regressor from vertices to joint locations. Unlike previous mod-
els, the pose-dependent blend shapes are a linear function of the
elements of the pose rotation matrices. This simple formulation en-
ables training the entire model from a relatively large number of
aligned 3D meshes of different people in different poses. We quan-
titatively evaluate variants of SMPL using linear or dual-quaternion
blend skinning and show that both are more accurate than a Blend-
SCAPE model trained on the same data. We also extend SMPL to
realistically model dynamic soft-tissue deformations. Because it is
based on blend skinning, SMPL is compatible with existing render-
ing engines and we make it available for research purposes.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

Keywords: Body shape, skinning, blendshapes, soft-tissue.

⇤e-mail:mloper@ilm.com
†e-mail:{nmahmood,jromero,gerard.pons.moll,black}@tue.mpg.de

1 Introduction

Our goal is to create realistic animated human bodies that can rep-
resent different body shapes, deform naturally with pose, and ex-
hibit soft-tissue motions like those of real humans. We want such
models to be fast to render, easy to deploy, and compatible with
existing rendering engines. The commercial approach commonly
involves hand rigging a mesh and manually sculpting blend shapes
to correct problems with traditional skinning methods. Many blend
shapes are typically needed and the manual effort required to build
them is large. As an alternative, the research community has fo-
cused on learning statistical body models from example scans of
different bodies in a varied set of poses. While promising, these
approaches are not compatible with existing graphics software and
rendering engines that use standard skinning methods.

Our goal is to automatically learn a model of the body that is both
realistic and compatible with existing graphics software. To that
end, we describe a “Skinned Multi-Person Linear” (SMPL) model
of the human body that can realistically represent a wide range of
human body shapes, can be posed with natural pose-dependent de-
formations, exhibits soft-tissue dynamics, is efficient to animate,
and is compatible with existing rendering engines (Fig. 1).

Traditional methods model how vertices are related to an underly-
ing skeleton structure. Basic linear blend skinning (LBS) models
are the most widely used, are supported by all game engines, and
are efficient to render. Unfortunately they produce unrealistic de-
formations at joints including the well-known “taffy” and “bowtie”
effects (see Fig. 2). Tremendous work has gone into skinning meth-
ods that ameliorate these effects [Lewis et al. 2000; Wang and
Phillips 2002; Kavan and Žára 2005; Merry et al. 2006; Kavan et al.
2008]. There has also been a lot of work on learning highly realis-
tic body models from data [Allen et al. 2006; Anguelov et al. 2005;
Freifeld and Black 2012; Hasler et al. 2010; Chang and Zwicker
2009; Chen et al. 2013]. These methods can capture the body shape
of many people as well as non-rigid deformations due to pose. The
most realistic approaches are arguably based on triangle deforma-
tions [Anguelov et al. 2005; Chen et al. 2013; Hasler et al. 2010;
Pons-Moll et al. 2015]. Despite the above research, existing mod-

2 Bogo, Kanazawa, Lassner, Gehler, Romero, Black

Fig. 1. Example results. 3D pose and shape estimated by our method for two images
from the Leeds Sports Pose Dataset [22]. We show the original image (left), our fitted
model (middle), and the 3D model rendered from a di↵erent viewpoint (right).

from the 2D joints using a 3D generative model called SMPL [30]. The overall
framework, which we call “SMPLify”, fits within a classical paradigm of bottom
up estimation (CNN) followed by top down verification (generative model). A
few examples are shown in Fig. 1.

There is a long literature on estimating 3D pose from 2D joints. Unlike pre-
vious methods, our approach exploits a high-quality 3D human body model that
is trained from thousands of 3D scans and hence captures the statistics of shape
variation in the population as well as how people deform with pose. Here we use
the SMPL body model [30]. The key insight is that such a model can be fit to
very little data because it captures so much information of human body shape.

We define an objective function and optimize pose and shape directly, so
that the projected joints of the 3D model are close to the 2D joints estimated by
the CNN. Remarkably, fitting only 2D joints produces plausible estimates of 3D
body shape. We perform a quantitative evaluation using synthetic data and find
that 2D joint locations contain a surprising amount of 3D shape information.

In addition to capturing shape statistics, there is a second advantage to
using a generative 3D model: it enables us to reason about interpenetration.
Most previous work in the area has estimated 3D stick figures from 2D joints.
With such models, it is easy to find poses that are impossible because the body
parts would intersect in 3D. Such solutions are very common when inferring 3D
from 2D because the loss of depth information makes the solution ambiguous.

Computing interpenetration of a complex, non-convex, articulated object like
the body, however, is expensive. Unlike previous work [14, 15], we provide an
interpenetration term that is di↵erentiable with respect to body shape and pose.
Given a 3D body shape we define a set of “capsules” that approximates the body
shape. Crucially, capsule dimensions are linearly regressed from model shape
parameters. This representation lets us compute interpenetration e�ciently. We
show that this term helps to prevent incorrect poses.

SMPL is gender-specific; i.e. it distinguishes the shape space of females and
males. To make our method fully automatic, we introduce a gender-neutral
model. If we do not know the gender, we fit this model to images. If we know
the gender, then we use a gender-specific model for better results.

[ Zuffi et al 2017 ] [ SMPL Loper et al 2015 ]



Classification: Instance vs Category
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Instance of Aeroplane (Wright Flyer)

Category of Aeroplanes [ Caltech 101 ]



Classification: Instance vs Category
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Instance of a cat

Category of domestic cats



Taxonomy of Cats
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European Wildcat 
[the wasp factory]

Ocelot 
[Jitze Couperus]

Bengal Tiger 
[Omveer Choudhary]

[ inaturalist.org ]

http://inaturalist.org


Taxonomy of Boats

12

vehicle

craft

sailing vessel

watercraft

sailboat

trimaran

mammal placental carnivore canine dog working dog husky

vehicle craft watercraft sailing vessel sailboat trimaran

Figure 1: A snapshot of two root-to-leaf branches of ImageNet: the top row is from the mammal subtree; the bottom row is from the
vehicle subtree. For each synset, 9 randomly sampled images are presented.
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Figure 2: Scale of ImageNet. Red curve: Histogram of number
of images per synset. About 20% of the synsets have very few
images. Over 50% synsets have more than 500 images. Table:
Summary of selected subtrees. For complete and up-to-date statis-
tics visit http://www.image-net.org/about-stats.

images spread over 5247 categories (Fig. 2). On average
over 600 images are collected for each synset. Fig. 2 shows
the distributions of the number of images per synset for the
current ImageNet 1. To our knowledge this is already the
largest clean image dataset available to the vision research
community, in terms of the total number of images, number
of images per category as well as the number of categories 2.

Hierarchy ImageNet organizes the different classes of
images in a densely populated semantic hierarchy. The
main asset of WordNet [9] lies in its semantic structure, i.e.
its ontology of concepts. Similarly to WordNet, synsets of
images in ImageNet are interlinked by several types of re-
lations, the “IS-A” relation being the most comprehensive
and useful. Although one can map any dataset with cate-

1About 20% of the synsets have very few images, because either there
are very few web images available, e.g. “vespertilian bat”, or the synset by
definition is difficult to be illustrated by images, e.g. “two-year-old horse”.

2It is claimed that the ESP game [25] has labeled a very large number
of images, but only a subset of 60K images are publicly available.
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Imagenet Cat SubtreeESP Cat Subtree
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Figure 3: Comparison of the “cat” and “cattle” subtrees between
ESP [25] and ImageNet. Within each tree, the size of a node is
proportional to the number of images it contains. The number of
images for the largest node is shown for each tree. Shared nodes
between an ESP tree and an ImageNet tree are colored in red.

gory labels into a semantic hierarchy by using WordNet, the
density of ImageNet is unmatched by others. For example,
to our knowledge no existing vision dataset offers images of
147 dog categories. Fig. 3 compares the “cat” and “cattle”
subtrees of ImageNet and the ESP dataset [25]. We observe
that ImageNet offers much denser and larger trees.

Accuracy We would like to offer a clean dataset at all
levels of the WordNet hierarchy. Fig. 4 demonstrates the
labeling precision on a total of 80 synsets randomly sam-
pled at different tree depths. An average of 99.7% preci-
sion is achieved on average. Achieving a high precision for
all depths of the ImageNet tree is challenging because the
lower in the hierarchy a synset is, the harder it is to classify,
e.g. Siamese cat versus Burmese cat.

Diversity ImageNet is constructed with the goal that ob-
jects in images should have variable appearances, positions,

mammal placental carnivore canine dog working dog husky
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images spread over 5247 categories (Fig. 2). On average
over 600 images are collected for each synset. Fig. 2 shows
the distributions of the number of images per synset for the
current ImageNet 1. To our knowledge this is already the
largest clean image dataset available to the vision research
community, in terms of the total number of images, number
of images per category as well as the number of categories 2.

Hierarchy ImageNet organizes the different classes of
images in a densely populated semantic hierarchy. The
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and useful. Although one can map any dataset with cate-

1About 20% of the synsets have very few images, because either there
are very few web images available, e.g. “vespertilian bat”, or the synset by
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2It is claimed that the ESP game [25] has labeled a very large number
of images, but only a subset of 60K images are publicly available.
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sion is achieved on average. Achieving a high precision for
all depths of the ImageNet tree is challenging because the
lower in the hierarchy a synset is, the harder it is to classify,
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[ Deng et al 2009 ]



WordNet
• We can use language to organise visual categories

• This is the approach taken in ImageNet [Deng et al 2009], which 
uses the WordNet lexical database [wordnet.princeton.edu]

• As in language, visual categories have complex relationships

• e.g., a “sail” is part of a “sailboat” which is a “watercraft”

13

If we call a “sailboat” a watercraft, is this wrong? What if 
we call it a “sail”?

http://wordnet.princeton.edu


Tiny Image Dataset

14

716 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

(a) (b) (c) (d)

Figure 14.52 Recognition using tiny images (Torralba, Freeman, and Fergus 2008) c� 2008
IEEE: columns (a) and (c) show sample input images and columns (b) and (d) show the
corresponding 16 nearest neighbors in the database of 80 million tiny images.

simultaneous recognition and segmentation (Liu, Yuen, and Torralba 2009).
When the database of images becomes large enough, it is even possible to directly match

complete images with the expectation of finding a good match. Torralba, Freeman, and Fergus
(2008) start with a database of 80 million tiny (32⇥ 32) images and compensate for the poor
accuracy in their image labels, which are collected automatically from the Internet, by using
a semantic taxonomy (Wordnet) to infer the most likely labels for a new image. Somewhere
in the 80 million images, there are enough examples to associate some set of images with
each of the 75,000 non-abstract nouns in Wordnet that they use in their system. Some sample
recognition results are shown in Figure 14.52.

Another example of a large labeled database of images is ImageNet (Deng, Dong, Socher
et al. 2009), which is collecting images for the 80,000 nouns (synonym sets) in WordNet
(Fellbaum 1998). As of April 2010, about 500–1000 carefully vetted examples for 14841

[ Torralba Freeman Fergus 2008 ]

• Precursor to ImageNet and CIFAR10/100

• 80 million images collected via image search using 75,062 
noun synsets from WordNet (labels are noisy)

• Very small images (32x32xRGB) used to minimise storage

• Note human performance is still quite good at this scale! 2
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Fig. 2. a) Human performance on scene recognition as a function of resolution. The green and black curves show the performance on color and grayscale
images respectively. For color 32 × 32 images the performance only drops by 7% relative to full resolution, despite having 1/64th of the pixels. b) Car
detection task on the PASCAL 2006 test dataset. The colored dots show the performance of four human subjects classifying tiny versions of the test data.
The ROC curves of the best vision algorithms (running on full resolution images) are shown for comparison. All lie below the performance of humans on
the tiny images, which rely on none of the high-resolution cues exploited by the computer vision algorithms. c) Humans can correctly recognize and segment
objects at very low resolutions, even when the objects in isolation can not be recognized (d).

magnitude bigger than those typically used in computer vision.
Correspondingly, we introduce, and make available to researchers,
a dataset of 79 million unique 32×32 color images gathered from
the Internet. Each image is loosely labeled with one of 75,062
English nouns, so the dataset covers all visual object classes. This
is in contrast to existing datasets which provide a sparse selection
of object classes.
The paper is divided in three parts. In Section 2 we investigate

the limits of human recognition, establishing the minimal reso-
lution required for scene and object recognition. In Sections 3
and 4 we introduce our dataset of 79 million images and explore
some of its properties. In Section 5 we attempt scene and object
recognition using a variety of nearest-neighbor methods. We
measure performance at a number of semantic levels, obtaining
impressive results for certain object classes.

II. LOW DIMENSIONAL IMAGE REPRESENTATIONS

Non-parametric approaches must cover the input space, and
our scheme relies on the dataset of 79 million images densely
populating the manifold of natural images. We seek a compact
image representation in which the intrinsic dimensionality of the
manifold is a low as possible, since that makes the manifold
easy to cover, while preserving the semantic content. One of
the simplest mechanisms to reduce the dimensionality of an
image is by lowering its resolution. A second benefit of a
low resolution representation is that the images can be indexed
efficiently and provide the storage savings essential for dealing
with very large datasets. However, it is important that the low
dimensional representation not loses important image information.
In this section we study the minimal image resolution which still
retains useful information about the visual world. In order to
do this, we perform a series of human experiments on (i) scene
recognition and (ii) object recognition. Studies on face perception
[1], [19] have shown that only 16×16 pixels are needed for robust
face recognition. This remarkable performance is also found in a
scene recognition task [31].
In this section we provide experimental evidence showing

that 32×32 color images1 contain enough information for scene
recognition, object detection and segmentation (even when the
objects occupy just a few pixels in the image). As we will see
in Fig. 2, a significant drop in performance is observed when
the resolution drops below 322 pixels. Note that this problem is
distinct from studies investigating scene recognition using very
short presentation times [11], [30], [33], [34]. Here, we are
interested in characterizing the amount of information available in
the image as a function of the image resolution (with no constraint
on presentation time).
In cognitive psychology, the gist of the scene [30], [44] refers

to a short summary of the scene (the scene category, and a
description of a few objects that compose the scene). In computer
vision, the term gist is used to refer to a low dimensional
representation of the entire image. Low dimensional global image
representation have been used to for scene recognition [16], [32],
[22], for providing context for object detection [38], [40], depth
estimation [41] and image retrieval for computer graphics [20].
In this section, we show that this low dimensional representation
can rely on very low-resolution information and, therefore, can
be computed very efficiently.

A. Scene recognition

We evaluate the scene recognition performance of humans as
the image resolution is decreased. We used a dataset of 15 scenes
was taken from [12], [22], [32]. Each image was shown at one
of 5 possible resolutions (82, 162, 322, 642 and 2562 pixels)
and the participant task was to assign the low-resolution picture
to one of the 15 different scene categories (bedroom, suburban,
industrial, kitchen, living room, coast, forest, highway, inside city,

132×32 is very very small. For reference, typical thumbnail sizes are:
Google images (130× 100), Flikr (180× 150), default Windows thumbnails
(90 × 90).



CIFAR10 Dataset
• Hand labelled set of 10 categories from Tiny Images dataset

• 60,000 32x32 images in 10 classes (50k train, 10k test)

15
Good test set for visual recognition problems



CIFAR10 Classification
• Let’s build an image classifier!

16

32 x 32 x RGB (8 bit) image → 

x = [65 102 33 57 54 … ]

• Start by vectorizing the image data

• x = 3072 element vector of 0-255

• Note this throws away spatial structure, we’ll bring it back
later when we look at feature extraction and CNNs



Nearest Neighbour Classification

17

• Find nearest neighbour in training set

iNN = argmin
i

|xq � xi|

• Assign class to class of the nearest neighbour

ŷ(xq) = y(xiNN )

xqQuery

Result = 3

Calculate |xq � xi|
for all training data

1

2

3

4

5



Nearest Neighbour Classification
• We can view each image as a point in a high dimensional space

18

plane

bird
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x1
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Query:

?



Nearest Neighbour Classifier

19

x1

x2

(a)
x1

x2

(b)

• What is the decision boundary for a nearest-neighbour
classifier?



k-NN Classifier
• Identify k nearest neighbours of the query

• Assign class as most common class in set

• k-NN decision boundaries:

20
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Good performance depends on suitable choice of k
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What do nearest neighbours 
look like with 80 million images?

[ Torralba, Fergus, Freeman ‘08]
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Fig. 8. As we increase the size of the dataset, the quality of the retrieved set
increases dramatically. However, note that we need to increase the size of the
dataset logarithmically in order to have an effect. These results are obtained
using Dshift as a similarity measure between images.

more complex representations than pixels (e.g., Berg and
Malik [5]). In our case, the minimum can be found by
exhaustive evaluation of all shifts, only possible due to the
low resolution of the images.

D2
shift = min

|Dx,y|≤w

X

x,y,c

(I1(x, y, c) − Î2(x + Dx, y + Dy, c))2

In order to get better matches, we initialize I2 with the
warping parameters obtained after optimization of Dwarp,
Î2 = Tθ[I2].

Fig. 6 shows a pair of images being matched using the 3 metrics
and shows the resulting neighbor images transformed by the
optimal parameters that minimize each similarity measure. The
figure shows two candidate neighbors: one matching the target
semantic category and another one that corresponds to a wrong
match. For Dwarp and Dshift we show the closest manipulated
image to the target. Dwarp looks for the best translation, scaling
and horizontal mirror of the candidate neighbor in order to match
the target. Dshift further optimizes the warping provided by Dwarp
by allowing pixels to move independently in order to minimize
the distance with the target. Fig. 7 shows two examples of
query images and the retrieved sibling set, out of 79,302,017
images, using Dssd and Dshift. Both measures provide very good
matches, but Dshift returns closer images at the semantic level.
This observation will be quantified in Section V.
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Fig. 9. This figure shows two examples. (a) Query image. (b) First 16 of 80

neighbors found using Dshift. (c) Ground truth Wordnet branch describing the
content of the query image at multiple semantic levels. (d) Sub-tree formed
by accumulating branches from all 80 neighbors. The number in each node
denotes the accumulated votes. The red branch shows the nodes with the most
votes. Note that this branch substantially agrees with the branch for vise and
for person in the first and second examples respectively.

Fig. 1 shows examples of query images and sets of neighboring
images, from our dataset of 79,302,017 images, found using Dshift.
In the rest of the paper we will call the set of neighboring images
a sibling set. Fig. 8 shows the effects of increasing the dataset
size on the quality of the sibling set. As we increase the size of
the dataset, the quality of the retrieved set increases dramatically.
Specifically, note the change in performance when using only
around 10,000 images (a typical number used in image retrieval
research) compared to 108. Despite the simplicity of the similarity
measures used in these experiments, due to the large size of our
dataset, the retrieved images are very similar (hence siblings) to
the target image. We will now quantify this observation in the
next section.

V. RECOGNITION
A. Wordnet voting scheme
We now attempt to use our dataset for object and scene

recognition. While an existing computer vision algorithm could
be adapted to work on 32× 32 images, we prefer to use a simple
nearest-neighbor scheme based on one of the distance metrics
Dssd, Dwarp or Dshift. Instead of relying on the complexity of
the matching scheme, we let the data to do the work for us:
the hope is that there will always be images close to a given

7900

790,000

79,000,000

Query



Tiny Image Recognition
• Recognition performance (categories vary in semantic level)
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Fig. 20. Test images assigned to words at each semantic level. The images are ordered by voting confidence. The number indicates the total number of
positive examples in the test set out of the 1148 images. The color of the bounding box indicates if the image was correctly assigned (black) or not (red).
The middle row shows the ROC curves for three dataset sizes (red = 7,900 image training set; yellow = 790,000 images; blue = 79,000,000 images). The
bottom row shows the corresponding precision-recall graphs.

Gray scale
input

Gray level 
32x32 siblings

High resolution
color siblings

Avage color

Avage 
colorization

Proposed
colorizations

Fig. 21. Automatic image colorization. From top to bottom, first row, gray scale input image, second row, 32×32 gray scale siblings, third row, corresponding
high resolution color siblings, fourth row, average of the color siblings, fifth row, input image with color from the average, sixth row, candidate colorizations
by taking the color information from four different siblings.

yellow = 7900, red = 790,000, blue = 79,000,000

Nearest neighbour becomes increasingly accurate as N increases,
but do we need to store a dataset of 80 million images?



Nearest Mean Classification
• How about a single template per class
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Nearest Mean Classification
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• Find nearest mean and assign class

cq = argmin
i

|xq �mi|2
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• CIFAR 10 class means

• Can we do better?

• What is the best template for L2 matching?



Linear Classification
• Linear classification, 2-class, N-class

• Regularization, softmax, cross entropy

• SGD, learning rate, momentum

26



• Let’s start by using 2 classes, e.g., bird and plane

• Apply labels (y) to training set:

27

• Use a linear model to regress y from x

Linear Classification

y = +1

y = -1



2-class Linear Classification
• Separating hyperplane, projection to a line defined by w
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N-class Linear Classification
• We could construct O(n2) 1 vs 1 classifiers
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N-class Linear Classification
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plane

bird

car

cat

• We could regress directly to integer class id, y = {0,1,2,3…9}

0 1 2 3 4 5 6 7
8 9



One-Hot Regression
• A better solution is to regress to one-hot targets = 1 vs all

classifiers
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One-Hot Regression
• Stack into matrix form
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One-Hot Regression
• Notation changed to transposed matrix/vector
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• Solve regression problem by Least Squares



N-class Linear Classification
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• One hot regression = 1 vs all classifiers



One-Hot Regression
• Visualise class templates for the least squares solution

35

What is happening here?

• Classifier accuracy = 35% (not bad, c.f., nearest mean = 27%)



Polynomial Fitting
• Consider fitting a polynomial to some data by linear

regression

36



Polynomial Fitting
• Multiple data points

37

(yi, xi)

y2 = a0 + a1x2 + a2x
2
2 + a3x

3
2

y1 = a0 + a1x1 + a2x
2
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3
1

y3 = a0 + a1x3 + a2x
2
3 + a3x

3
3

...

• In matrix form
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• Solve linear system by Gaussian elimination (if square) or
Least Squares (if overconstrained)



Polynomial Fitting

38

• Fit Nth order polynomial by least squares

• Overfitting



Cross Validation
• Fit the model to a subset of data, and evaluate the fit on a held

out validation set
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• Calculate rms error erms =
1

N

X

i

(yi � ŷi)
2

! 1
2



Cross Validation
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Polynomial Order (N)

rm
s 

er
ro

r

training

validation

• Training error always decreases, but validation error has a
minimum for the best model order



Polynomial Fitting
• For large N, coefficients become HUGE!

41

N=1 N=2 N=4 N=10
a0 0.90 2.03 -2.88 48.50
a1 -1.54 29.76 -1294.90
a2 -57.43 14891.41
a3 31.86 -95161.10
a4 367736.84
a5 -885436.68
a6 1331063.41
a7 -1212056.89
a8 610930.32
a9 -130727.39

1



Regularization
• L2 penalty on polynomial coefficients

42



Regularized Linear Regression

43

�

• Over-smoothing...

• 10th order polynomial, prior on the coefficients weight



Under/Overfitting

44

• Training error always decreases as lambda is reduced

• Test error reaches a minimum, then increases ⇒ overfitting

• Test error vs lambda



Regularized Classification
• Add regularization to CIFAR10 linear classifier

45

• Row 1 = overfitting, Row 3 = oversmoothing?



Non-Linear Optimisation
• With a linear predictor and L2 loss, we have a closed form

solution for model weights W

• How about this (non-linear) function

46

h = W2 max(0,W1x)

h = (WTx + b)

h1 (1)
h2 (2)
h3 (3)
h4 (4)

h = max(W
Tx)

1

• Previously (e.g., bundle adjustment), we locally linearised the
error function and iteratively solved linear problems

Does this look like a promising approach?

e =
X

i

|hi�ti|2 ⇡ |J�W+r|2

W = �(JTJ)�1JTr

h = W2 max(0,W1x)

h = (WTx + b)

1

e =
X

i

|hi�ti|2 ⇡ |J W+r|2

�W = �(JTJ)�1JTr

h = W2 max(0,W1x)

h = (WTx + b)

1



Gradient Descent
• Let’s try 1st order optimization instead

• Even though we can solve our Linear L2 model in closed form,
we’ll try it out with gradient descent

• In stochastic gradient descent (SGD), we select a random
batch of data, compute the gradient, and take a step

• L2 loss for a single example x

47



Learning Rate
• Controls the size of the gradient descent step

48

↵ = 0.02 ↵ = 0.05 ↵ = 0.2

Too slow Too fast



Loss and Activation Functions

49



Softmax + Logistic Outputs
• Linear regression to one-hot targets is a bit strange..

• Output could be very large, and scores >>1 are penalised
even for the correct class, ditto scores << 1 for incorrect

• How about restricting output scores to 0-1?

50



Softmax + Cross Entropy
• What is the gradient of the softmax linear classifier?

• We could use L2 loss, but we’ll use cross entropy instead

• This has a sound motivation — it is a measure of the
difference between probability distributions

• It also leads to a simple update rule

51



Linear + Softmax Regression
• We found the following gradient descent update rule
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Wt+1 = Wt � ↵(h� t)xT
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cross-entropy loss

Linear regression

Softmax regression

• The same update rule with a binary prediction function

h = max(W
Tx)

h = WTx

h = �(WTx)

Wt+1 = Wt ↵(h t)xT

h = wTxq

ŷ = sign h = sign wTxq
1

implements the multiclass Perceptron learning rule



History of the Perceptron
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• This machine (IBM 704) was used by Frank Rosenblatt to
implement the perceptron in 1958

• Based on his statements, the New York Times reported it as:
"the embryo of an electronic computer that [the Navy]
expects will be able to walk, talk, see, write, reproduce itself
and be conscious of its existence.”

[ I.B.M. Italia ]



2-class Perceptron Classifier
• Classification function is

54

• Linear function of the data (x) followed by 0/1 activation

ŷ = sign(wTx)

• Update rule:  present data x

- if correctly classified, do nothing

- if incorrectly classified, update the weight vector

wn+1 = wn + yixi



Example of Perceptron Learning
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Example of Perceptron Learning

56



Example of Perceptron Learning
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Example of Perceptron Learning
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Example of Perceptron Learning
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Example of Perceptron Learning
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Two-class, linearly separable data

• Which linear decision boundary is better?
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Perceptron Limitations
• Perceptrons + linear + softmax regressors are limited to data

that are linearly separable, e.g., 

61

Not linearly separableLinearly separable

How could we transform the RHS to be linearly separable?



CIFAR10 Feature Extraction
• So far, we used RGB pixels as the input to our classifier

• Feature extraction can improve results by a lot

• e.g., Coates et al. achieve 79.6% accuracy on CIFAR10 with a
features based on k-means of whitened image patches

62

An Analysis of Single-Layer Networks in Unsupervised Feature Learning

(a) K-means (with and without whitening) (b) GMM (with and without whitening)

(c) Sparse Autoencoder (with and without whitening) (d) Sparse RBM (with and without whitening)

Figure 2: Randomly selected bases (or centroids) trained on CIFAR-10 images using di↵erent learning algorithms.
Best viewed in color.
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Figure 4: E↵ect of stride.

Clustering algorithms have been applied successfully
to raw pixel inputs in the past [6, 29] but these appli-
cations did not use whitened input data. Our results
suggest that improved performance might be obtained
by incorporating whitening.

4.3 Number of features

Our experiments considered feature representations
with 100, 200, 400, 800, 1200, and 1600 learned fea-
tures.8 Figure 3 clearly shows the e↵ect of increasing

and K-means uses Euclidean distance.
8We found that training Gaussian mixture models with

more than 800 components was often di cult and always
extremely slow. Thus we only ran this algorithm with up
to 800 components.
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the number of learned features: all algorithms gen-
erally achieved higher performance by learning more
features as expected.

Surprisingly, K-means clustering coupled with the “tri-
angle” activation function and whitening achieves the
highest performance. This is particularly notable since
K-means requires no tuning whatsoever, unlike the
sparse auto-encoder and sparse RBMs which require
us to choose several hyper-parameters for best results.

4.4 E↵ect of stride

The “stride” s used in our framework is the spacing
between patches where feature values will be extracted
(see Figure 1). Frequently, learning systems will use

k-means, whitened 
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Clustering algorithms have been applied successfully
to raw pixel inputs in the past [6, 29] but these appli-
cations did not use whitened input data. Our results
suggest that improved performance might be obtained
by incorporating whitening.

4.3 Number of features

Our experiments considered feature representations
with 100, 200, 400, 800, 1200, and 1600 learned fea-
tures.8 Figure 3 clearly shows the e↵ect of increasing

and K-means uses Euclidean distance.
8We found that training Gaussian mixture models with

more than 800 components was often di cult and always
extremely slow. Thus we only ran this algorithm with up
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the number of learned features: all algorithms gen-
erally achieved higher performance by learning more
features as expected.

Surprisingly, K-means clustering coupled with the “tri-
angle” activation function and whitening achieves the
highest performance. This is particularly notable since
K-means requires no tuning whatsoever, unlike the
sparse auto-encoder and sparse RBMs which require
us to choose several hyper-parameters for best results.

4.4 E↵ect of stride

The “stride” s used in our framework is the spacing
between patches where feature values will be extracted
(see Figure 1). Frequently, learning systems will use

k-means, raw RGB
[ Coates et al. 2011 ]



Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is

equivalent to a fully connected layer in a neural network
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Linear = Fully Connected Layer
• Note that our linear matrix multiplication classifier is

equivalent to a fully connected layer in a neural network
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• Note that our linear matrix multiplication classifier is

equivalent to a fully connected layer in a neural network
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Next Lecture
• Visual Classification 2: Fundamentals + Pre-deep learning
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