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Visual Classification 2
• Fundamentals and Pre-Deep Learning

• Bayesian classifiers, Gaussian distributions, PCA, LDA

• Decision Forests, Visual words, SVMs
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Nearest Mean Classification
• How about a single template per class
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Nearest Mean Classification
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• Find nearest mean and assign class

cq = argmin
i

|xq �mi|2
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• CIFAR 10 class means

• Can we do better? 



Nearest Mean Classifier
• Suppose we have 2 classes of 2-dimensional data that are not 

linearly separable

5

• A simple approach could be 
to assign to the class of the 
nearest mean

• Can we do better if we 
know about the data 
distribution?

?



Bayesian Classificaion
• A probabilistic view of classification models the likelihood of 

observing the data given a class/parameters
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e.g., we might assume that the 
distribution of data given the 
class is Gaussian

?



Multi-dimensional Gaussian
• The Gaussian probability density is given by
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Multivariate Gaussian distributions

• Gaussian distribution of a random vector x in Rd:

N (x; µ,�) =
1

(2⇥)d/2|�|1/2
exp

�
�1

2
(x� µ)T��1(x� µ)

⇥

• The 1
(2�)d/2|�|1/2 factor ensures it’s a

pdf (integrates to one).
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• To estimate from data (x)
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1
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• These estimates maximise the probability of the data x 
given parameters m, Σ



2-Class Gaussian Classifier
• Simple classification rule: choose class #1 if 
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p(x|c1) > p(x|c2)

• taking -2 x ln of both sides (reverses sign)
�2 ln p(x|c1) < �2 ln p(x|c2)

• decision rule becomes (class #1 if...)
ln�1 + (x�m1)

T��1
1 (x�m1) < ln�2 + (x�m2)

T��1
2 (x�m2)

• negative log of Gaussian density

�2 ln p(x) = �2 ln
1

|2��| 12
exp�1

2
(x�m)T��1(x�m)

= ln(2⇡d) + ln |�|+ (x�mT )��1(x�m)



2-Class Gaussian Classifier
• Suppose we’ve modelled our 2 classes with Gaussian 

distributions
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p(x|c1) = N(x;m1,�1)

p(x|c2) = N(x;m2,�2)

• Our decision rule, class #1 if

? p(x|c1) > p(x|c2)

is called a maximum likelihood 
classifier



Incorporating Prior Knowledge
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• What if red is more common than blue?

• Decision rule (MAP classifier) choose class #1 if:
p(x|c1)p(c1) > p(x|c2)p(c2)

• Weight each likelihood by prior probabilities p(c1), p(c2)

p(c1) = 0.5

p(c2) = 0.5

p(c1) = 0.6

p(c2) = 0.4

p(c1) = 0.7

p(c2) = 0.3

p(c1) = 0.8

p(c2) = 0.2

p(c1) = 0.9

p(c2) = 0.1

p(c1) = 0.95

p(c2) = 0.05

p(c1) = 0.99

p(c2) = 0.01

?



Principal Components
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• We can visualise the major modes of variation in data by 
looking at the eigenvectors of the covariance matrix

⇥̂ = U�UT

U = [u1u2...]• The eigenvectors                       are directions of max 
variance, they are mutually orthogonal
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• e.g., the principal components (covariance eigenvectors) of a 
set of faces can be visualised as images14.2 Face recognition 671

(a) (b) (c) (d)

Figure 14.13 Face modeling and compression using eigenfaces (Moghaddam and Pentland
1997) c⇥ 1997 IEEE: (a) input image; (b) the first eight eigenfaces; (c) image reconstructed
by projecting onto this basis and compressing the image to 85 bytes; (d) image reconstructed
using JPEG (530 bytes).

14.2.1 Eigenfaces

Eigenfaces rely on the observation first made by Kirby and Sirovich (1990) that an arbitrary
face image x can be compressed and reconstructed by starting with a mean image m (Fig-
ure 14.1b) and adding a small number of scaled signed images ui,7

x̃ = m +
M�1�

i=0

aiui, (14.8)

where the signed basis images (Figure 14.13b) can be derived from an ensemble of train-
ing images using principal component analysis (also known as eigenvalue analysis or the
Karhunen–Loève transform). Turk and Pentland (1991a) recognized that the coefficients ai

in the eigenface expansion could themselves be used to construct a fast image matching algo-
rithm.

In more detail, let us start with a collection of training images {xj}, from which we can
compute the mean image m and a scatter or covariance matrix

C =
1
N

N�1�

j=0

(xj �m)(xj �m)T . (14.9)

We can apply the eigenvalue decomposition (A.6) to represent this matrix as

C = U�UT =
N�1�

i=0

�iuiu
T
i , (14.10)

where the �i are the eigenvalues of C and the ui are the eigenvectors. For general im-
ages, Kirby and Sirovich (1990) call these vectors eigenpictures; for faces, Turk and Pentland

7 In previous chapters, we used I to indicate images; in this chapter, we use the more abstract quantities x and u

to indicate collections of pixels in an image turned into a vector.

[Moghaddam et al 2000]

u1

u2

Principal Components
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674 Computer Vision: Algorithms and Applications (September 3, 2010 draft)

Figure 14.15 Images from the Harvard database used by Belhumeur, Hespanha, and Krieg-
man (1997) c⇥ 1997 IEEE. Note the wide range of illumination variation, which can be more
dramatic than inter-personal variations.

One of the biggest advantages of using eigenfaces is that they reduce the comparison
of a new face image x to a prototype (training) face image xk (one of the colored xs in
Figure 14.14) from a P -dimensional difference in pixel space to an M -dimensional difference
in face space,

⇤x� xk⇤ = ⇤a� ak⇤, (14.16)

where a = UT (x � m) (14.11) involves computing a dot product between the signed
difference-from-mean image (x �m) and each of the eigenfaces ui. Once again, however,
this Euclidean distance ignores the fact that we have more information about face likelihoods
available in the distribution of training images.

Consider the set of images of one person taken under a wide range of illuminations shown
in Figure 14.15. As you can see, the intrapersonal variability within these images is much
greater than the typical extrapersonal variability between any two people taken under the
same illumination. Regular PCA analysis fails to distinguish between these two sources of
variability and may, in fact, devote most of its principal components to modeling the intrap-
ersonal variability.

If we are going to approximate faces by a linear subspace, it is more useful to have a
space that discriminates between different classes (people) and is less sensitive to within-class
variations (Belhumeur, Hespanha, and Kriegman 1997). Consider the three classes shown as
different colors in Figure 14.16. As you can see, the distributions within a class (indicated
by the tilted colored axes) are elongated and tilted with respect to the main face space PCA,
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u(1)
PCAuLDA

Poor 
discrimination

Good 
discrimination

Discriminative Projection
• PCA directions are not generally discriminative 

• Intuitively, we’d like to project to a direction that separates the 
classes without too much overlap



Fisher’s Linear Discriminant

14

• Maximise the ratio of between class variance to within class 
variance, in the projected direction u

• Can be generalised to multi-dimensions, e.g.,

• An example of Linear Discriminant Analysis (LDA)

14.2 Face recognition 675
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Figure 14.16 Simple example of Fisher linear discriminant analysis. The samples come
from three different classes, shown in different colors along with their principal axes, which
are scaled to 2�i. (The intersections of the tilted axes are the class means mk.) The dashed
line is the (dominant) Fisher linear discriminant direction and the dotted lines are the linear
discriminants between the classes. Note how the discriminant direction is a blend between
the principal directions of the between-class and within-class scatter matrices.

which is aligned with the black x and y axes. We can compute the total within-class scatter
matrix as

SW =
K�1⇤

k=0

Sk =
K�1⇤

k=0

⇤

i⇥Ck

(xi �mk)(xi �mk)T , (14.17)

where mk is the mean of class k and Sk is its within-class scatter matrix.11 Similarly, we
can compute the between-class scatter as

SB =
K�1⇤

k=0

Nk(mk �m)(mk �m)T , (14.18)

where Nk are the number of exemplars in each class and m is the overall mean. For the three
distributions shown in Figure 14.16, we have

SW = 3N

�
0.246 0.183
0.183 0.457

⇥
and SB = N

�
6.125 0

0 0.375

⇥
, (14.19)

11 To be consistent with Belhumeur, Hespanha, and Kriegman (1997), we use SW and SB to denote the scatter
matrices, even though we use C elsewhere (14.9).

u⇤ = argmax
u

J(u) =
uTSBu

uTSWu
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⇥
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0 0.375

⇥
, (14.19)

11 To be consistent with Belhumeur, Hespanha, and Kriegman (1997), we use SW and SB to denote the scatter
matrices, even though we use C elsewhere (14.9).

u⇤ = argmax
u

J(u) =
uTSBu

uTSWu
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Figure 14.16 Simple example of Fisher linear discriminant analysis. The samples come
from three different classes, shown in different colors along with their principal axes, which
are scaled to 2�i. (The intersections of the tilted axes are the class means mk.) The dashed
line is the (dominant) Fisher linear discriminant direction and the dotted lines are the linear
discriminants between the classes. Note how the discriminant direction is a blend between
the principal directions of the between-class and within-class scatter matrices.
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• PCA : maximise projected variance

• LDA : maximise between class, minimise within class variance
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Figure 14.15 Images from the Harvard database used by Belhumeur, Hespanha, and Krieg-
man (1997) c⇥ 1997 IEEE. Note the wide range of illumination variation, which can be more
dramatic than inter-personal variations.

One of the biggest advantages of using eigenfaces is that they reduce the comparison
of a new face image x to a prototype (training) face image xk (one of the colored xs in
Figure 14.14) from a P -dimensional difference in pixel space to an M -dimensional difference
in face space,

⇤x� xk⇤ = ⇤a� ak⇤, (14.16)

where a = UT (x � m) (14.11) involves computing a dot product between the signed
difference-from-mean image (x �m) and each of the eigenfaces ui. Once again, however,
this Euclidean distance ignores the fact that we have more information about face likelihoods
available in the distribution of training images.

Consider the set of images of one person taken under a wide range of illuminations shown
in Figure 14.15. As you can see, the intrapersonal variability within these images is much
greater than the typical extrapersonal variability between any two people taken under the
same illumination. Regular PCA analysis fails to distinguish between these two sources of
variability and may, in fact, devote most of its principal components to modeling the intrap-
ersonal variability.

If we are going to approximate faces by a linear subspace, it is more useful to have a
space that discriminates between different classes (people) and is less sensitive to within-class
variations (Belhumeur, Hespanha, and Kriegman 1997). Consider the three classes shown as
different colors in Figure 14.16. As you can see, the distributions within a class (indicated
by the tilted colored axes) are elongated and tilted with respect to the main face space PCA,
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Figure 14.13 Face modeling and compression using eigenfaces (Moghaddam and Pentland
1997) c⇥ 1997 IEEE: (a) input image; (b) the first eight eigenfaces; (c) image reconstructed
by projecting onto this basis and compressing the image to 85 bytes; (d) image reconstructed
using JPEG (530 bytes).

14.2.1 Eigenfaces

Eigenfaces rely on the observation first made by Kirby and Sirovich (1990) that an arbitrary
face image x can be compressed and reconstructed by starting with a mean image m (Fig-
ure 14.1b) and adding a small number of scaled signed images ui,7

x̃ = m +
M�1�

i=0

aiui, (14.8)

where the signed basis images (Figure 14.13b) can be derived from an ensemble of train-
ing images using principal component analysis (also known as eigenvalue analysis or the
Karhunen–Loève transform). Turk and Pentland (1991a) recognized that the coefficients ai

in the eigenface expansion could themselves be used to construct a fast image matching algo-
rithm.

In more detail, let us start with a collection of training images {xj}, from which we can
compute the mean image m and a scatter or covariance matrix

C =
1
N

N�1�

j=0

(xj �m)(xj �m)T . (14.9)

We can apply the eigenvalue decomposition (A.6) to represent this matrix as

C = U�UT =
N�1�

i=0

�iuiu
T
i , (14.10)

where the �i are the eigenvalues of C and the ui are the eigenvectors. For general im-
ages, Kirby and Sirovich (1990) call these vectors eigenpictures; for faces, Turk and Pentland

7 In previous chapters, we used I to indicate images; in this chapter, we use the more abstract quantities x and u

to indicate collections of pixels in an image turned into a vector.

[ A. Martinez ]



Decision Forests
• A decision tree organises a hierarchical set of feature splits
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6 The random decision forest model

Fig. 2.1:Decision tree. (a) A tree is a set of nodes and edges organized
in a hierarchical fashion. In contrast to a graph, in a tree there are no
loops. Internal nodes are denoted with circles and terminal nodes with
squares. (b) A decision tree is a tree where each split node stores a test
function to be applied to the incoming data. Each leaf stores the final
answer (predictor). This figure shows an illustrative decision tree used
to figure out whether a photo represents and indoor or outdoor scene.

A tree is a collection of nodes and edges organized in a hierarchical
structure (fig. 2.1a). Nodes are divided into internal (or split) nodes
and terminal (or leaf) nodes. We denote internal nodes with circles
and terminal ones with squares. All nodes have exactly one incoming
edge. Thus, in contrast to graphs a tree does not contain loops. Also, in
this document we focus only on binary trees where each internal node
has exactly two outgoing edges.

A decision tree is a tree used for making decisions. For instance,
imagine we have a photograph and we need to construct an algorithm
for figuring out whether it represents an indoor scene or an outdoor
one. We can start by looking at the top part of the image. If it is blue
then that probably corresponds to a sky region. However, if also the

[ Criminisi et al 2011 ]

Nodes in the tree split the data 
based on parametrized, typically 
simple features (weak learners):
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Classification Tree Training
• To train a tree for classification, parameters for the split nodes 

are optimised based on an information gain criterion, e.g., 
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22 Classification forests

Fig. 3.1: Classification: training data and tree training. (a) In-
put data points. The ground-truth label of training points is denoted
with di↵erent colours. Grey circles indicate unlabelled, previously un-
seen test data. (b) A binary classification tree. During training a set of
labelled training points {v} is used to optimize the parameters of the
tree. In a classification tree the entropy of the class distributions asso-
ciated with di↵erent nodes decreases (the confidence increases) when
going from the root towards the leaves.

Given a labelled training set learn a general mapping which as-
sociates previously unseen test data with their correct classes.

The need for a general rule that can be applied to “not-yet-
available” test data is typical of inductive tasks.1 In classification the
desired output is of discrete, categorical, unordered type. Consequently,
so is the nature of the training labels. In fig. 3.1a data points are de-
noted with circles, with di↵erent colours indicating di↵erent training
labels. Testing points (not available during training) are indicated in
grey.

More formally, during testing we are given an input test data v
and we wish to infer a class label c such that c 2 C, with C = {ck}.
More generally we wish to compute the whole distribution p(c|v). As

1As opposed to transductive tasks. The distinction will become clearer later.

3.2. Specializing the decision forest model for classification 23

usual the input is represented as a multi-dimensional vector of feature
responses v = (x1, · · · , xd) 2 Rd. Training happens by optimizing an
energy over a training set S0 of data and associated ground-truth labels.
Next we specify the precise nature of this energy.

The training objective function. Forest training happens by op-
timizing the parameters of the weak learner at each split node j via:

✓⇤
j = arg max

✓j2Tj
Ij . (3.1)

For classification the objective function Ij takes the form of a classical
information gain defined for discrete distributions:

Ij = H(Sj)�
X

i2{L,R}

|Si
j |

|Sj |
H(Si

j)

with i indexing the two child nodes. The entropy for a generic set S of
training points is defined as:

H(S) = �
X

c2C
p(c) log p(c)

where p(c) is calculated as normalized empirical histogram of labels
corresponding to the training points in S. As illustrated in fig. 3.1b
training a classification tree by maximizing the information gain has
the tendency to produce trees where the entropy of the class distri-
butions associated with the nodes decreases (the prediction confidence
increases) when going from the root towards the leaves. In turn, this
yields increasing confidence of prediction.

Although the information gain is a very popular choice of objective
function it is not the only one. However, as shown in later chapters,
using an information-gain-like objective function aids unification of di-
verse tasks under the same forest framework.

Randomness. In (3.1) randomness is injected via randomized node
optimization, with as before ⇢ = |Tj | indicating the amount of random-
ness. For instance, before starting training node j we can randomly
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responses v = (x1, · · · , xd) 2 Rd. Training happens by optimizing an
energy over a training set S0 of data and associated ground-truth labels.
Next we specify the precise nature of this energy.

The training objective function. Forest training happens by op-
timizing the parameters of the weak learner at each split node j via:

✓⇤
j = arg max

✓j2Tj
Ij . (3.1)

For classification the objective function Ij takes the form of a classical
information gain defined for discrete distributions:

Ij = H(Sj)�
X

i2{L,R}

|Si
j |

|Sj |
H(Si

j)

with i indexing the two child nodes. The entropy for a generic set S of
training points is defined as:

H(S) = �
X

c2C
p(c) log p(c)

where p(c) is calculated as normalized empirical histogram of labels
corresponding to the training points in S. As illustrated in fig. 3.1b
training a classification tree by maximizing the information gain has
the tendency to produce trees where the entropy of the class distri-
butions associated with the nodes decreases (the prediction confidence
increases) when going from the root towards the leaves. In turn, this
yields increasing confidence of prediction.

Although the information gain is a very popular choice of objective
function it is not the only one. However, as shown in later chapters,
using an information-gain-like objective function aids unification of di-
verse tasks under the same forest framework.

Randomness. In (3.1) randomness is injected via randomized node
optimization, with as before ⇢ = |Tj | indicating the amount of random-
ness. For instance, before starting training node j we can randomly

Leaves store a probability distribution over class c



Classification Forest 
• A set of trees (forest) is trained with different random features
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24 Classification forests

Fig. 3.2: Classification forest testing. During testing the same un-
labelled test input data v is pushed through each component tree. At
each internal node a test is applied and the data point sent to the ap-
propriate child. The process is repeated until a leaf is reached. At the
leaf the stored posterior pt(c|v) is read o↵. The forest class posterior
p(c|v) is simply the average of all tree posteriors.

sample ⇢ = 1000 parameter values out of possibly billions or even infi-
nite possibilities. It is important to point out that it is not necessary to
have the entire set T pre-computed and stored. We can generate each
random subset Tj as needed before starting training the corresponding
node.

The leaf and ensemble prediction models. Classification forests
produce probabilistic output as they return not just a single class point
prediction but an entire class distribution. In fact, during testing, each
tree leaf yields the posterior pt(c|v) and the forest output is simply:

p(c|v) = 1

T

TX

t

pt(c|v).

This is illustrated with a small, three-tree forest in fig. 3.2.
The choices made above in terms of the form of the objective func-

tion and that of the prediction model characterize a classification forest.
In later chapter we will discuss how di↵erent choices lead to di↵erent
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produce probabilistic output as they return not just a single class point
prediction but an entire class distribution. In fact, during testing, each
tree leaf yields the posterior pt(c|v) and the forest output is simply:

p(c|v) = 1

T

TX
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This is illustrated with a small, three-tree forest in fig. 3.2.
The choices made above in terms of the form of the objective func-

tion and that of the prediction model characterize a classification forest.
In later chapter we will discuss how di↵erent choices lead to di↵erent

• At test time the query v is put through all trees and the class 
probability distributions at the leaves are averaged:



Classification Forests
• By ensembling a large collection of weak features we can 

model complex decision boundaries, e.g., 400 trees
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3.3. E↵ect of model parameters 31

Fig. 3.6: The e↵ect of weak learner model. The same set of 4-class
training data is used to train 6 di↵erent forests, for 2 di↵erent values
of D and 3 di↵erent weak learners. For fixed weak learner deeper trees
produce larger confidence. For constant D non-linear weak learners
produce the best results. In fact, an axis-aligned weak learner model
produces blocky artifacts while the curvilinear model tends to extrap-
olate the shape of the spiral arms in a more natural way. Training has
been achieved with ⇢ = 500 for all split nodes. The forest size is kept
fixed at T = 400.

3.3.5 The e↵ect of randomness

Figure 3.7 shows the same experiment as in fig. 3.6 with the only dif-
ference that now ⇢ = 5 as opposed to ⇢ = 500. Thus, much fewer pa-
rameter values were made available to each node during training. This
increases the randomness of each tree and reduces their correlation.

Larger randomness helps reduce a little the blocky artifacts of the
axis-aligned weak-learner as it produces more rounded decision bound-
aries (first column in fig. 3.7). Furthermore, larger randomness yields a

depth = 13

depth = 5



Application: Body Pose Estimation
• Classification Forests have been used for body pose 

estimation using the Kinect depth scanner
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Fig. 3.15: Classification forests in Microsoft Kinect for XBox
360. (a) An input frame as acquired by the Kinect depth camera.
(b) Synthetically generated ground-truth labeling of 31 di↵erent body
parts [82]. (c) One of the many features of a “reference” point p. Given
p computing the feature amounts to looking up the depth at a “probe”
position p+ r and comparing it with the depth of p.

recently they have been adapted to work with multiple classes. Fig-
ure 3.14c shows how the sequentiality of the one-v-all SVM approach
may lead to asymmetries which are not really justified by the training
data.

3.6 Human body tracking in Microsoft Kinect for XBox 360

This section describes the application of classification forests for the
real-time tracking of humans, as employed in the Microsoft Kinect gam-
ing system [100]. Here we present a summary of the algorithm in [82]
and show how the forest employed within is readily interpreted as an
instantiation of our generic decision forest model.

Given a depth image such as the one shown in fig. 3.15a
we wish to say which body part each pixel belongs to.
This is a typical job for a classification forest. In this ap-
plication there are thirtyone di↵erent body part classes:
c 2 {left hand, right hand, head, l. shoulder, r. shoulder, · · · }.
The unit of computation is a single pixel in position p 2 R2 and with
associated feature vector v(p) 2 Rd.

During testing, given a pixel p in a previously unseen test image we

• Features (weak learners) are simple depth differences, 
parametrized by an offset and threshold

• The model was trained using a large dataset of CG generated 
human poses

• At test time, every pixel is classified into 1 of 31 body parts
[ Shotton et al 2011]
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Fig. 3.16: Classification forests in Kinect for XBox 360. (a) An
input depth frame with background removed. (b) The body part clas-
sification posterior. Di↵erent colours corresponding to di↵erent body
parts, out of 31 di↵erent classes.

wish to estimate the posterior p(c|v). Visual features are simple depth
comparisons between pairs of pixel locations. So, for pixel p its feature
vector v = (x1, . . . , xi, . . . , xd) 2 Rd is a collection of depth di↵erences:

xi = J(p)� J

✓
p+

ri
J(p)

◆
(3.2)

where J(.) denotes a pixel depth in mm (distance from camera plane).
The 2D vector ri denotes a displacement from the reference point p
(see fig. 3.15c). Since for each pixel we can look around at an infinite
number of possible displacements (8 r 2 R2) we have d = 1.

During training we are given a large number of pixel-wise labelled
training image pairs as in fig 3.15b. Training happens by maximizing
the information gain for discrete distributions (3.1). For a split node j

its parameters are

✓j = (rj , ⌧j)

with rj a randomly chosen displacement. The quantity ⌧j is a learned
scalar threshold. If d = 1 then also the whole set of possible split
parameters has infinite cardinality, i.e. |T | = 1.

An axis-aligned weak learner model is used here with the node split



Recognition using Local Features
• Feature-based object instance recognition is similar to image 

registration (2D) or camera pose estimation (3D):
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Figure 4: Top row shows model images for 3D objects with
outlines found by background segmentation. Bottom image
shows recognition results for 3D objectswithmodel outlines
and image keys used for matching.

mined by solving the corresponding normal equations,

which minimizes the sum of the squares of the distances
from the projected model locations to the corresponding im-
age locations. This least-squares approach could readily be
extended to solving for 3D pose and internal parameters of
articulated and flexible objects [12].
Outliers can now be removed by checking for agreement

between each image feature and themodel, given the param-
eter solution. Each match must agree within 15 degrees ori-
entation, change in scale, and 0.2 times maximummodel
size in terms of location. If fewer than 3 points remain after
discarding outliers, then thematch is rejected. If any outliers
are discarded, the least-squares solution is re-solvedwith the
remaining points.

Figure5: Examples of 3D object recognitionwith occlusion.

7. Experiments
The affine solution provides a good approximation to per-
spective projection of planar objects, so planar models pro-
vide a good initial test of the approach. The top row of Fig-
ure 3 shows three model images of rectangular planar faces
of objects. The figure also shows a cluttered image contain-
ing the planar objects, and the same image is shown over-
layed with the models following recognition. The model
keys that are displayed are the ones used for recognition and
final least-squares solution. Since only 3 keys are needed
for robust recognition, it can be seen that the solutions are
highly redundant and would survive substantial occlusion.
Also shown are the rectangular borders of themodel images,
projected using the affine transform from the least-square
solution. These closely agree with the true borders of the
planar regions in the image, except for small errors intro-
duced by the perspective projection. Similar experiments
have been performed formany images of planar objects, and
the recognition has proven to be robust to at least a 60 degree
rotation of the object in any direction away from the camera.
Although the model images and affine parameters do not

account for rotation in depth of 3D objects, they are still
sufficient to perform robust recognition of 3D objects over
about a 20 degree range of rotation in depth away from each
model view. An example of three model images is shown in
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1. Detect Local Features (e.g., SIFT) in all images
2. Match Features using Nearest Neighbours
3. Find geometrically consistent matches using RANSAC 
(with Affine/Homography or Fundamental matrix)

• The final stage is to verify the match, e.g., require that # 
consistent matches > threshold



Scaling Local Feature Recognition
• To avoid performing all pairwise comparisons O(n2):

• Match query descriptors to entire database using k-d tree

• Select subset with max # raw matches and check geometry
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k-d tree
match

raw matches

geometrical
consistency
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Application: Location Recognition 
• Find photo in streetside imagery

23

14.3 Instance recognition 693

Figure 14.31 Location or building recognition using randomized trees (Philbin, Chum, Isard
et al. 2007) c� 2007 IEEE. The left image is the query, the other images are the highest-ranked
results.

query expansion, which involves re-submitting top-ranked images from the initial query as
additional queries to generate additional candidate results, to further improve recognition
rates for difficult (occluded or oblique) examples. Philbin, Chum, Sivic et al. (2008) show
how to mitigate quantization problems in visual words selection using soft assignment, where
each feature descriptor is mapped to a number of visual words based on its distance from the
cluster prototypes. The soft weights derived from these distances are used, in turn, to weight
the counts used in the tf-idf vectors and to retrieve additional images for later verification.
Taken together, these recent advances hold the promise of extending current instance recog-
nition algorithms to performing Web-scale retrieval and matching tasks (Agarwal, Snavely,
Simon et al. 2009; Agarwal, Furukawa, Snavely et al. 2010; Snavely, Simon, Goesele et al.
2010).

14.3.3 Application: Location recognition

One of the most exciting applications of instance recognition today is in the area of location
recognition, which can be used both in desktop applications (where did I take this holiday
snap?) and in mobile (cell-phone) applications. The latter case includes not only finding out
your current location based on a cell-phone image but also providing you with navigation
directions or annotating your images with useful information, such as building names and
restaurant reviews (i.e., a portable form of augmented reality).

Some approaches to location recognition assume that the photos consist of architectural
scenes for which vanishing directions can be used to pre-rectify the images for easier match-
ing (Robertson and Cipolla 2004). Other approaches use general affine covariant interest
points to perform wide baseline matching (Schaffalitzky and Zisserman 2002). The Photo
Tourism system of Snavely, Seitz, and Szeliski (2006) (Section 13.1.2) was the first to apply
these kinds of ideas to large-scale image matching and (implicit) location recognition from

[ Philbin et al 2007 ]
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(a) (b) (c)

Figure 14.32 Feature-based location recognition (Schindler, Brown, and Szeliski 2007) c�
2007 IEEE: (a) three typical series of overlapping street photos; (b) handheld camera shots
and (c) their corresponding database photos.

Internet photo collections taken under a wide variety of viewing conditions.

The main difficulty in location recognition is in dealing with the extremely large commu-
nity (user-generated) photo collections on Web sites such as Flickr (Philbin, Chum, Isard et
al. 2007; Chum, Philbin, Sivic et al. 2007; Philbin, Chum, Sivic et al. 2008; Turcot and Lowe
2009) or commercially captured databases (Schindler, Brown, and Szeliski 2007). The preva-
lence of commonly appearing elements such as foliage, signs, and common architectural ele-
ments further complicates the task. Figure 14.31 shows some results on location recognition
from community photo collections, while Figure 14.32 shows sample results from denser
commercially acquired datasets. In the latter case, the overlap between adjacent database
images can be used to verify and prune potential matches using “temporal” filtering, i.e., re-
quiring the query image to match nearby overlapping database images before accepting the
match.

Another variant on location recognition is the automatic discovery of landmarks, i.e.,
frequently photographed objects and locations. Simon, Snavely, and Seitz (2007) show how
these kinds of objects can be discovered simply by analyzing the matching graph constructed
as part of the 3D modeling process in Photo Tourism. More recent work has extended this
approach to larger data sets using efficient clustering techniques (Philbin and Zisserman 2008;
Li, Wu, Zach et al. 2008; Chum, Philbin, and Zisserman 2008; Chum and Matas 2010) as well
as combining meta-data such as GPS and textual tags with visual search (Quack, Leibe, and
Van Gool 2008; Crandall, Backstrom, Huttenlocher et al. 2009), as shown in Figure 14.33.
It is now even possible to automatically associate object tags with images based on their co-
occurrence in multiple loosely tagged images (Simon and Seitz 2008; Gammeter, Bossard,
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[ Schindler Brown Szeliski 2007 ]



Local Feature Recognition Failures
• Features + RANSAC fails with large appearance variation, e.g.,  

most object categories and some instance problems

24Few correct matches



Local Feature Recognition Failures
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• Features + RANSAC fails with large appearance variation, e.g.,  
most object categories and some instance problems

No correct matches



Visual Words
• The amorphous appearance of visual categories can be 

modelled using regions of feature space

• A common method is to quantise feature descriptors to a 
codebook of “visual words” using k-means clustering
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Visual Word Histogram + SVM

• A popular category recognition method was to use 
histograms of visual word frequencies to represent each image

• Given a labelled image dataset, a Support Vector Machine 
(SVM) could be trained to perform image classification, with 
per-image visual word histograms as input

• Variants on this theme were state-of-the-art for image 
classification up to around 2011 (deep learning + AlexNet)
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Support Vector Machines
• Which decision boundary is best?

28

Two-class, linearly separable data

• Which linear decision boundary is better?

CS195-5 2006 – Lecture 14 13



Max-Margin Classifier
• Separation between classes is called the margin

29

The classification margin

margin

w0 + wTx < �1
w0 + wTx > 1

w0 + wTx = 0

• Since the data are separable, we can
find w such that

⇤i = 1, . . . , N yi(w0+wTxi) > 0.

• We can even guarantee (by increasing
⌅w⌅ if necessary)

⇤i = 1, . . . , N yi(w0+wTxi) ⇥ 1.

CS195-5 2006 – Lecture 14 14

[ Figure credits: 
G. Shakhnarovich ]

Note that di could be 
arbitrarily large for large w 

• Distance from boundary
di = yi(w

Txi + w0)

• Maximise the minimum distance for fixed |w|

w⇤ = argmax
w

min
i

yi(w
Txi + w0) s.t. |w|2 = 1

(quadaratic programming)



SVM classification

� > 0 w

1/�w�

� > 0

� = 0

� = 0

� > 0

� > 0

CS195-5 2006 – Lecture 15 17

Support Vectors
• The active constraints are due to the data that define the 

classification boundary, these are called support vectors
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SVM: summary so far

• Assuming linearly separable case, we set up a quadratic program

max

⇤
⌥

⇧

N↵

i=1

�i �
1
2

N↵

i,j=1

�i�jyiyjxT
i xj

⌅
�

⌃

subject to
N↵

i=1

�iyi = 0, �i ⇤ 0 for all i = 1, . . . , N.

• Solving it for � we get the SVM classifier

ŷ = sign

�

 ŵ0 +
↵

�i>0

�iyixT
i x

⇥

⌦ .
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Final classifier can be 
written in terms of the 
support vectors:



Non-Linear SVM
• Replace inner product with kernel

31

SVM with RBF (Gaussian) kernels

• Why are some SV here not close to the boundary?..

CS195-5 2006 – Lecture 16 16

h(.) (1)
x (2)

✓, ⌧ (3)

xT
i x ! �(xi)

T�(x) ! k(xi,x)

h(✓, ⌧ ) = [⌧1 < ✓T [x, 1] < ⌧2]

e =
X

i

|hi�ti|2 ⇡ |J�W+r|2

�W = �(JTJ)�1JTr
1

• Data are (ideally) linearly 
separable in ɸ(x)

• But we don’t need to know 
ɸ(x), we just specify k(x,y)

• Points with ⍺>0 (circled) 
are support vectors

• Other data can be removed 
without affecting classifier



Bag of Words

32

• Images are represented as collections of local visual words 
(discarding spatial relationships), before SVM classification

• There is some evidence that similar features are effective in 
CNNs, e.g., pooling of learned small receptive field (17x17) 
features gives good performance on ImageNet [“BagNets” 
Brendel Bethge 19]



ILSVRC 2012
• For the ImageNet Large Scale Visual Recognition Challenge 

2012 competitors had to classify 100K unseen test images 
into one of 1000 categories

• Alex Krizhevsky and Geoff Hinton used an 8-layer, 60M 
parameter convolutional neural network trained on two 
GPUs for 1 week

•  This beat all other approaches (visual word/SVM based) by a 
large margin:
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Alexnet
• Won the Imagenet Large Scale Visual Recognition Challenge 

(ILSVRC) in 2012 by a large margin

• Some ingredients: Deep neural net (Alexnet), Large dataset 
(Imagenet), Lots of compute (2 GPU weeks), non-saturating 
activation functions (ReLU)
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Next Lecture
• Neural Nets
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