Visual Classification 2

CSE P576
Vitaly Ablavsky

These slides were developed by Dr. Matthew Brown for CSEP576 Spring 2020 and adapted (slightly) for Fall 2021
credit — Matt
blame — Vitaly



Visual Classification 2

® Fundamentals and Pre-Deep Learning
® Bayesian classifiers, Gaussian distributions, PCA, LDA
® Decision Forests,Visual words, SVMs



Nearest Mean Classification

® How about a single template per class
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Nearest Mean Classification

® Find nearest mean and assign class

¢, = arg min |x, — my|’
(

® C|FAR 10 class means

® (Can we do better?



Nearest Mean Classifier

® Suppose we have 2 classes of 2-dimensional data that are not
linearly separable

® A simple approach could be
to assign to the class of the
nearest mean

® Can we do better if we

® ? know about the data

' distribution!?



Bayesian Classificaion

® A probabilistic view of classification models the likelihood of
observing the data given a class/parameters

e.g., we might assume that the
distribution of data given the
class is Gaussian



Multi-dimensional Gaussian

® The Gaussian probability density is given by

1 1 Ts1—1
—eXp——=(x—m) X (X —m
orsh &P 5 ) ( )

p(X‘m, 2) —
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® These estimates maximise the probability of the data x
given parameters m, 2



2-Class Gaussian Classifier

Simple classification rule: choose class #1 if
p(x|c1) > p(x|es)
taking -2 x In of both sides (reverses sign)
—2Inp(x|c1) < —21Inp(x|cs)

negative log of Gaussian density

1 1
—2Inp(x) = —2In ERSIE exp —§(X —m)' Y Hx —m)

= In(27) +In|Z| + (x —m" )X} (x — m)

decision rule becomes (class #1 if...)

N+ (x—m)'E 7 (x—my) <InXp + (x —my)' 35 (x — my)



2-Class Gaussian Classifier

® Suppose we've modelled our 2 classes with Gaussian
distributions

p(x|c1) = N(x;my, 3)
p(x|c2) = N(x;mo, X»)

® Qur decision rule, class #1 if

) p(x|c1) > p(x|e2)

is called 2 maximum likelihood
classifier



Incorporating Prior Knowledge

® What if red is more common than blue!?
® Weight each likelihood by prior probabilities p(c1),p(cz)
® Decision rule (MAP classifier) choose class #1 if:

p(x|er)p(cr) > p(x|ez)p(ca)

p(c1) = 0.89
p(ce) = 0.85
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Principal Components
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® We can visualise the major modes of variation in data by
looking at the eigenvectors of the covariance matrix

3 = UAUT

® The eigenvectors U = [ujuy...] are directions of max
variance, they are mutually orthogonal



Principal Components
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® e.g,the principal components (covariance eigenvectors) of a
set of faces can be visualised as images [Moghaddam et al 2000]
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Discriminative Projection

® PCA directions are not generally discriminative

Intuitively, we'd like to project to a direction that separates the
classes without too much overlap
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Fisher’s Linear Discriminant
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® Maximise the ratio of between class variance to within class
variance, in the projected direction u

® (Can be generalised to multi-dimensions, e.g., J(U) =
® An example of Linear Discriminant Analysis (LDA)
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PCA vs LDA

® PCA : maximise projected variance
® | DA : maximise between class, minimise within class variance
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[ A. Martinez ]



Decision Forests

® A decision tree organises a hierarchical set of feature splits

Nodes in the tree split the data
based on parametrized, typically
simple features (weak learners):

h(O,7)=[r < 0'x,1] < 7

h(6, T) = binary split function
X = input data

0,7 = trainable parameters

[ Criminisi et al 2011 ] |



Classification Tree Training

® To train a tree for classification, parameters for the split nodes
are optimised based on an information gain criterion, e.g.,

0 = arg max I; = H(S;) — Z

0,cT; H(5;) Zp ) log p(c)

i€{L,R} Sj ceC

Leaves store a probability distribution over class c 17



Classification Forest

® A set of trees (forest) is trained with different random features

® At test time the query v is put through all trees and the class
probability distributions at the leaves are averaged:

S pilelv)

~| —



Classification Forests

® By ensembling a large collection of weak features we can
model complex decision boundaries, e.g., 400 trees

depth =5

depth = 13
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Application: Body Pose Estimation

® C(lassification Forests have been used for body pose
estimation using the Kinect depth scanner

® Features (weak learners) are simple depth differences,
parametrized by an offset and threshold 6; = (r;,7;)

® The model was trained using a large dataset of CG generated
human poses

® At test time, every pixel is classified into | of 31 body parts

[ Shotton et al 201 1] 20



Recognition using Local Features

® Feature-based object instance recognition is similar to image
registration (2D) or camera pose estimation (3D):

—>

|. Detect Local Features (e.g., SIFT) in all images

2. Match Features using Nearest Neighbours

3. Find geometrically consistent matches using RANSAC
(with Affine/Homography or Fundamental matrix)

® The final stage is to verify the match, e.g., require that #
consistent matches > threshold
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Scaling Local Feature Recognition

® To avoid performing all pairwise comparisons O(n?2):
® Match query descriptors to entire database using k-d tree
® Select subset with max # raw matches and check geometry

o
o

o .9 —
O
O k-dtree
O o match

raw matches

geometrical
consistency
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Application: Location Recognition

® Find photo in streetside imagery

[ Schindler Brown Szeliski 2007 ]

[ Philbin et al 2007 ] 23



Local Feature Recognition Failures

® Features + RANSAC fails with large appearance variation, e.g.,
most object categories and some instance problems

Few correct matches 24



Local Feature Recognition Failures

® Features + RANSAC fails with large appearance variation, e.g.,
most object categories and some instance problems

No correct matches
25



Visual VWords

® The amorphous appearance of visual categories can be
modelled using regions of feature space

® A common method is to quantise feature descriptors to a
codebook of “visual words™ using k-means clustering

O X (query)
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Visual Word Histogram + SVM
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® A popular category recognition method was to use
histograms of visual word frequencies to represent each image

® Given a labelled image dataset, a Support Vector Machine
(SVM) could be trained to perform image classification, with
per-image visual word histograms as input

® Variants on this theme were state-of-the-art for image
classification up to around 2011 (deep learning + AlexNet)

27



Support Vector Machines

® Which decision boundary is best?
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Max-Margin Classifier

® Separation between classes is called the margin

® Distance from boundary

T

di — yZ(W X3 -+ w())

Note that d; could be
arbitrarily large for large w

® Maximise the minimum distance for fixed |w|

w* = arg maxmin y;(w' x; +wp)  s.t. w|* =1
(quadaratic programming) [ Figure credits:

G. Shakhnarovich ] 79



Support Vectors

® T[he active constraints are due to the data that define the
classification boundary, these are called support vectors

Final classifier can be
written in terms of the
support vectors:

y = sign (u}o + Z aiiniTX)

a; >0

30



Non-Linear SVYM

® Replace inner product with kernel

x; x — ¢(x;) (%) = k(x;, x)

® Data are (ideally) linearly
separable in ¢(x)

® But we don’t need to know
d(x), we just specify k(x,y)

® Points with >0 (circled)
are support vectors

® (Other data can be removed
without affecting classifier
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Bag of Words

® |mages are represented as collections of local visual words
(discarding spatial relationships), before SVM classification

® There is some evidence that similar features are effective in
CNN:s, e.g., pooling of learned small receptive field (1 7x17)

features gives good performance on ImageNet [“BagNets”
Brendel Bethge |9]
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ILSVRC 2012

® For the ImageNet Large Scale Visual Recognition Challenge
2012 competitors had to classify 00K unseen test images
into one of 1000 categories

® Alex Krizhevsky and Geoff Hinton used an 8-layer, 60M
parameter convolutional neural network trained on two
GPUs for | week

® This beat all other approaches (visual word/SVM based) by a
large margin:
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Top 5 error rate
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Alexnet

® Won the Imagenet Large Scale Visual Recognition Challenge
(ILSVRC) in 2012 by a large margin
® Some ingredients: Deep neural net (Alexnet), Large dataset

(Imagenet), Lots of compute (2 GPU weeks), non-saturating
activation functions (ReLU)

Enter Deep Learning

l

top 5
error

[ ]. Johnson ] 34



® Neural Nets

Next Lecture

35





