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Lecture Outline

May 19
e Part 1: Advanced CNNs (Focusing on classification)
o Reusable higher level building blocks of modern convnet architectures
m Dropout, Batch Norm, Factorized Convolutions, Residual Connections, etc.
o  Tour through “popular” classification architectures
m E.g., AlexNet, VGG, GoogLeNet, Resnet, MobileNet, SE-Net
e Part 2: Object Detection
o Motivation, Applications
Anchor based detection methodology:
Single stage and Two stage meta-architectures
Evaluation metrics
Practical Tips

O O O O



LeNet-5 Review

Input 32x32

Conv(5x5, 1->6) -> Tanh
MaxPool(2, 2)

Conv(5x5, 6->16) -> Tanh
MaxPool(2, 2)

Flatten

FC(400 -> 120) -> Tanh
FC(120 -> 84) -> Tanh
FC(84 ->10)

Two Convs w/valid padding, Three FCs
Params: 25%6 + 25%6*16 + 400*120 +
120*84+84*10 = 61470

FLOPS:
2872 * 5*5*6+1472 * 4 * 20+1072*5*5 *
6*16+5"2 * 4 *
16+400*120+120*84+84*10
=433800

eur gézfggtztge maps S 16@10)(1304; f. maps 16@5x5

S2: f. maps
6@14x14

Full conr‘ection | Gaussian connections

Convolutions Subsampling Convolutions ~ Subsampling Full connection



Timeline of Events EEE
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1958 Perceptron (Rosenblatt et al) 3
1985 Backprop (Hinton et al) S S —
1989 LeNet (LeCUn et al) Number of Classiﬁ(cation)
Entries Errors (top-5

S~
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2014

2015

2016

1998 LeNet-5 (LeCun et al)
Late aughts - rekindled interest in neural nets, deep learning
2009 - Imagenet

2012 - AlexNet - a turning point!
Post-AlexNet = Deep Learning revolution }

Focus of Today’s
lecture




Our focus today

e AlexNet and LeNet (from 1980s) very similar; What’s changed?
o More data...
o Deeper models
o More efficient

e Example details that will be covered today
o RelLU
Batch Normalization
Factored convolutions
Residual connections
Squeeze-and-excitation layers
e We won't cover efficiency coming from hardware advances over the years

O O O O



Let’s take a tour through the AlexNet paper...

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Tlya Sutskever Geoffrey E. Hinton

e wmivine st o |nfluential over many many later papers w/over
60K cites on Google Scholar (as of May 2020):

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-

ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The R L
neural network, which has 60 million parameters and 650,000 neurons, cor e
of five convolutional layers, some of which are followed by max-pooling layers,
Multi-GPU
Data augmentation

and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-

tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.

1 Introduction

Current approaches to object recognition make essential use of machine learning methods. To im-
prove their performance, we can collect larger datasets, learn more powerful models, and use bet-
ter techniques for preventing overfitting. Until recently, datasets of labeled images were relatively
small — on the order of tens of thousands of images (e.g., NORB [16], Caltech-101/256 [8, 9], and
CIFAR-10/100 [12]). Simple recognition tasks can be solved qulte well with datasets of this size,

especially if they are with label-preserving transf . For example, the current-
best error rate on the MNIST digit ition task (<0.3%) human performance [4].

But objects in realistic settings exhibit considerable variability, so to learn to recognize them it is
necessary to use much larger training sets. And indeed, the shortcomings of small image datasets
have been widely recognized (e.g., Pinto et al. [21]), but it has only recently become possible to col-
lect labeled datasets with millions of images. The new larger datasets include LabelMe [23], which
consists of hundreds of thousands of fully-segmented images, and ImageNet [6], which consists of
over 15 million labeled high-resolution images in over 22,000 categories.

To learn about thousands of objects from millions of images, we need a model with a large learning
capacity. However, the immense complexity of the object recognition task means that this prob-
lem cannot be specified even by a dataset as large as ImageNet, so our model should also have lots
of prior knowledge to compensate for all the data we don’t have. Convolutional neural networks
(CNNs) constitute one such class of models [16, 11, 13, 18, 15, 22, 26]. Their capacity can be con-
trolled by varying their depth and breadth, and they also make strong and mostly correct assumptions
about the nature of images (namely, stationarity of statistics and locality of pixel dependencies).
Thus, compared to standard feedforward neural networks with similarly-sized layers, CNNs have
‘much fewer connections and parameters and so they are easier to train, while their theoretically-best
performance s likely to be only slightly worse.



AIeXNet ArChIteCture Much bigger input than LeNet!

Important design consideration;
Too small, hard to recognize;
Too large, computational challenges

Input 224x224 (or 227x227) \
Conv(11x11, 3->96, stride 4) -> ReLU -> LRN
Pool (3, 2)
Conv(5x5, R6->256, stride 1) -> ReLU -> LRN
Pool (3, 2)
Conv(3x3, 2
Conv(3x3, 38
Conv(3x3, 384>

Pool(3, 2) Overlapping pooling - about it

FC(9216 ->4096)  \ye also won't cover
FC(4096 -> 4096) this J

FC(4096 -> 1000)

Deeper than LeNet
> 5Convs, 3FC

->384, stride 1) -> ReLU
84, stride 1) -> ReLU '-R': ’T1°St'Yd“°t
6-, stride 1) -> ReLU used these days;

we won't talk

o o o o o o o o o o o o



Multi GPU training

] GPU 1
27
i 13 13 13
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This is model parallelism --- these days data parallelism more common

See AlexNet paper for details; also One weird trick for parallelizing convolutional neural networks
(also by Alex Krizhevsky)




RelLU vs Tanh nonlinearities

tanh
tanh(x) = g

1

Problem with tanh is that signal saturates
easily (w/gradient magnitudes becoming
extremely small) leading to slow training

10

RelLU
max (0, x)

-10 10

In positive region, ReLU doesn’t saturate
(constant gradient!)

Training error rate

0.75

\
0.51 \
~
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~
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S~ —_
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0.25 41 ==~
0 T T T T T T T
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Epochs

Example on CIFAR-10 (this is not with AlexNet)



RelLU vs Tanh nonlinearities

e Almost universally adopted
e \ery fast computationally

e Still saturates in negative region
o Needs good initialization (or batch norm,
as we will discuss later)
e Competitors:
o PRelU, ELU, Leaky ReLU, SELU, Swish

- . ) e Canlead to overconfident
RelL U predictions far away from training
max (0, ) data

-10 10

In positive region, ReLU doesn’t saturate
€ (constant gradient!) y




Data Augmentation - Training time

227

224x224 random crops (from 256x256 inputs) Random horizontal flips

c'
Random color distortions based on

PCA applied to RGB pixels

Figure credit: https://www.learnopencv.com/understanding-alexnet/,
https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html




Dropout Regularization
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Idea: (a) Standard Neural Net
e Training time:
o  Scale layer by (1/p)

(b) After applying dropout.

o Seteach neuron in layer to zero with probability p

o Testtime:
o Don’t do dropout

Dropout: A Simple Way to Prevent Neural Networks from Overfitting by Srivastava et al

“Drop” neurons
w/probability p



Dropout Regularization

{ )

“Drop” neurons
w/probability p
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Idea: (a) Standard Neural Net (b) After applying dropout.

e Training time:
o  Scale layer by (1/p) Why scale by 1/p?

o Set each neuron in layer to zero with probability p | If x is value of neuron and w is its

weight, under Dropout, we have:

o Testtime:
o Don’t do dropout

Elw* (x/p)] = w * x

Dropout: A Simple Way to Prevent Neural Networks from Overfitting by Srivastava et al




Dropout Regularization

e Reduces “co-adaptation” of neurons and leads to more robust/redundant
features
e Tends to be used with large FC layers

e Usually requires longer training

e Less ubiquitous these days (but still used) --- the idea of randomly
perturbing something at training time and averaging over the randomness at
test time is *very* common



Pa rameter cou nting Note: 60 M parameters trained on ~1 M images!

4 Y4 N/ )
Memory (KB) Params (K) MFLOP
900 40000 250
800 35000
700 30000 200
600
» 25000 150
: 20000
400
- 15000 100
200 I 10000 “© I
100 5000
0 am__ - ____ 0 N
s o L 5 0 P & VIR R
A Q C (J Q Q Q Q N Q Q N N N C (, 0
(’O (’O 00 (’0 QOQ = s (’OQ (JOQ (’OQ (‘00 (,O(\ K K (JOQ (JOQ (JOQ (’OQ (‘Oo & < b
Most memory in early convs Most parameters in FC layers Most compute in mid conv layers
We will see a move not to use FC We will see factored conv layers
and bottleneck layers as a
solution to this in later papers

N U\ J\
But mostly... we will see that things will just get more compute intensive :)

Figure credit: Justin Johnson



ImageNet experiments
Model Top-1 | Top-5

Sparse coding [2] | 47.1% | 28.2%
SIFT + FVs [24] | 45.7% | 25.7%
CNN 37.5% | 17.0%

Preprocessing; Comparison against ImageNet SOTA at the time

e Subtract mean RGB from each pixel

Optimization:

mii:e — container ship motor scooter leopard

mite iner s motor ledpard

black widow lifeboat go-kart jaguar

. S G D I I IO' I le nt u I I l cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard

starfish drilling platform golfcart Egyptian cat

e Batch size 128 | .
e 5-6days of training Tl Nk,

grille mushroom cherry Madagascar cat

vertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey




What are those layers doing?

Softmax
FC 1000
FC 4096
FC 4096

Pool




What are those layers doing?

Softmax

FC 1000

FC 4096

FC 4096

Pool

Pool

Poo

| Input

Rich feature hierarchies for accurate object detection and semantic segmentation by Girshick et al.



AlexNet Recap

Deeper than LeNet-5!

o 5Conv,3FCvs2Conv+3FC
o 60 M vs 60K parameters

ReLU (vs Tanh)
DropOut regularization
224x224-ish inputs
Multi GPU training

Data Augmentation



Case Study (2014): VGG

1409.1556v6 [cs.CV] 10 Apr 2015

arXiv

Published as a conference paper at ICLR 2015

VERY DEEP CONVOLUTIONAL NETWORKS
FOR LARGE-SCALE IMAGE RECOGNITION

Karen Simonyan® & Andrew Zisserman*
Visual Geometry Group, Department of Engineering Science, University of Oxford
{karen, az}@robots.ox.ac.uk

ABSTRACT

In this work we investigate the effect of the convolutional network depth on its
accuracy in the large-scale image recognition setting. Our main contribution is
a thorough evaluation of networks of increasing depth using an architecture with
very small (3 x 3) convolution filters, which shows that a significant improvement
on the prior-art configurations can be achieved by pushing the depth to 16-19
weight layers. These findings were the basis of our ImageNet Challenge 2014
submission, where our team secured the first and the second places in the localisa-
tion and classification tracks respectively. We also show that our representations
generalise well to other datasets, where they achieve state-of-the-art results. We
have made our two best-performing ConvNet models publicly available to facili-
tate further research on the use of deep visual representations in computer vision.

1 INTRODUCTION

Convolutional networks (ConvNets) have recently enjoyed a great success in large-scale im-
age and video recognition (Krizhevsky et al., 2012; Zeiler & Fergus, 2013; Sermanet et al., 2014;
Simonyan & Zisserman, 2014) which has become possible due to the large public image reposito-
ries, such as ImageNet (Deng ct al., 2009), and high-performance computing systems, such as GPUs
or large-scale distributed clusters (Dean et al., 2012). In particular, an important role in the advance
of deep visual recognition architectures has been played by the ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) (Russakovsky et l., 2014), which has served as a testbed for a fow
generations of large-scale image systems, from hi shallow feature en-
codings (Perronnin et al., 2010) (the winner of ILSVRC-2011) to decp ConvNets (Krizhevsky et al.,
2012) (the winner of ILSVRC-2012).

With ConvNets becoming more of a commodity in the computer vision field, a number of at-
tempts have been made to improve the original architecture of Krizhevsky etal. (2012) in a
bid to achieve better accuracy. For instance, the best-performing submissions to the ILSVRC-

2013 (Zeiler & Fergus, 2013; Sermanet et al., 2014) utilised smaller receptive window size and
smaller stride of the first convolutional layer. Another line of improvements dealt with training
and testing the networks densely over the whole image and over multiple scales (Sermanet et al.,

2014; Howard, 2014). In this paper, we address another important aspect of ConvNet architecture
design — its depth. To this end, we fix other parameters of the architecture, and steadily increase the
depth of the network by adding more convolutional layers, which is feasible due to the use of very
small (3 x 3) convolution filters in all layers.

As a result, we come up with significantly more accurate ConvNet architectures, which not only
achicve the state-of-the-art accuracy on ILSVRC classificaion and localisation tasks, but are alsn
applicable to other image , where they

used as a part of a relatively simple p|pelmes (e.g. deep features classified by a lincar SVM wmmm
fine-tuning). We have released our two best-performing models' to facilitate further rescarch.

The rest of the paper is organised as follows. In Sect. 2, we describe our ConvNet configurations.
The details of the image classification training and evaluation are then presented in Sect. 3, and the

“current affliation: Google DeepMind *current affiliation: University of Oxford and Google DeepMind
'http://www.robots.ox.ac.uk/-vgg/research/very_deep/

From 8 layers to
~20 layers!

Softmax
FC 1000
FC 4096
FC 4096

Input |

AlexNet

Softmax

FC 1000

Softmax

FC 4096

FC 1000

FC 4096

FC 4096

Pool

FC 4096

Poo

Poo

Pool

Pool

Pool

Pool

Pool

Pool

Pool

Input

Input

VGG 16

VGG 19




VGG Design Pattern

(Influential on many upcoming networks)

3x3 convs, stride 1, pad 1
2Xx2 pool, stride 2
After pool, double channels (until 512)

Softmax

l |

l FC 1000 |
[ Softmax | FC 4096 |
| FC 1000 | FC 4096 |
| FC 4096 | Pool ]
| FC 4096 |
| Pool |

I Pool |
| Pool |
| Pool | Pool |
| Pool | Pool |
| Pool | | Pool |
| Input | Input |
VGG 16 VGG 19



VGG Design Pattern

(Influential on many upcoming networks)

e 3x3 convs, stride 1, pad 1
e 2x2 pool, stride 2

e After pool, double channels (until 512)

Let’s think about two stacked 3x3

Convs vs one 5x5 Conv:
e Same receptive field;

e With intermediate RelLU, stacked version is

“deeper”;

e Stacked version is more efficient

Jon’s note: By FLOPS in this slide deck, |
actually mean mult-add :P

(&

3x3 Conv
[ T T T T TTT]

3x3 Conv
[T T T 11 T[]
Stacked 3x3 Convs

Parameters:2*3*3*C*2=18 C"2
FLOPS:18*C"2*H*W

.

G

5x5 Conv

5x5 Conv

Parameters:5*5*C"2=25C"2
FLOPS:25*C"2*H*W

=
|




224x224x3
224x224%64

VGG Design Pattern g2

56%56%256

(Influential on many upcoming networks) A WS 1414x512 7x7xs12

1x1x4096 1x1x4096 1x1x1000 1x1x1000

e 3x3 convs, stride 1, pad 1
e 2x2 pool, stride 2
e After pool, double channels (until 512)

' e Memory usage halves i
| o 2xsmaller in {height, width}, 2x larger in depth
e Parameters quadruples ;
| o Independent of spatial resolution ;
. o FLOPS stays the same! i




224x224x3
224x224%64

VGG Design Pattern g2

56%56%256

(Influential on many upcoming networks) (¢ 2284512

14x14x512

e 3x3 convs, stride 1, pad 1
e 2x2 pool, stride 2
e After pool, double channels (until 512)

Tx7x512

1x1x4096 1x1x4096 1x1x1000 1x1x1000

e Memory usage halves

o 2xsmaller in {height, width}, 2x larger in depth

o Independent of spatial resolution

e Parameters quadruples
e FLOPS stays the same!

3x3 conv, 128 112x112x128 64*112*3*3 = 64512
Soo | Pool 112x112x64
3x3 conv, 64 224x224x64 64*64*3*3 = 36864
3x3 conv, 64 224x224x64 3*64*3*3 = 1728
| B | Operation Output shape # parameters

224x224 Bottom part of VGG



Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256 56x56x256 294912
B0 Pool 56x56x128
Sx3 conv, 128 3x3 conv, 128 112x112x128 147456
3x3 conv, 128 3x3 conv, 128 112x112x128 64*112*3*3 = 64512
Pool Pool 112x112x64
3x3 conv, 64 3x3 conv, 64 224x224x64 64*64*3*3 = 36864
3x3 conv, 64 3x3 conv, 64 224x224x64 3*64*3*3 = 1728
Input Operation Output shape # parameters

224x224




Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512 28x28x512 1179648
Foo) Pool 28x28x256
3 conv, 290 3x3 conv, 256 56x56x256 589824
SEiee o 3x3 conv, 256 56x56x256 294912
Bool Pool 56x56x128
3x3 conv, 128 3x3 conv, 128 112x112x128 147456
3x3 conv, 128 3x3 conv, 128 112x112x128 64*112*3*3 = 64512
Pool Pool 112x112x64
3x3 conv, 64 3x3 conv, 64 224x224x64 64*64*3*3 = 36864
3x3 conv, 64 3x3 conv, 64 224x224x64 3*64*3*3 = 1728
Input Operation Output shape # parameters

224x224




Softmax

FC 1000

FC 4096

FC 4096

Pool

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

224x224

l |
l ]
l |
l ]
| |
I |
| |
| ]
I = | 3x3 conv, 512 14x14x512 2359296
T Pool 14x14x512
3o 5121 3x3 cony, 512 28x28x512 2359296
3x3 conv, 512 28x28x512 2359296
I 3x3 conv, 512 |
3x3 conv, 512 28x28x512 1179648
I Foo) I Pool 28x28x256
L 33con.256 | 53y 256 56x56x256 589824
_38conv.286 | ™ 3,3 conv, 256 56x56x256 294912
| Pool | Pool 56x56x128
[_3x3conv, 128 | 3x3 conv, 128 112x112x128 147456
[_3x3conv, 128 | 3x3 conv, 128 112x112x128 64*112*3*3 = 64512
| Pool | Pool 112x112x64
[_3x3conv, 64 | 3x3 conv, 64 224x224x64 64*64*3*3 = 36864
[ 3x3conv, 64 | 3x3 conv, 64 224x224x64 3*64*3*3 = 1728
| Input | Operation Output shape # parameters




Softmax

224x224

l |
l FC 1000 ]
L FC 4096 |
l FC 4096 ]
| Pool | Flatten 25088
[ 3x3conv,512 | Pool 7X7x512
[ 3x3conv, 512 | 3x3 conv, 512 14x14x512 2359296
[ 3x3conv. 512 | 3x3 cony, 512 14x14x512 2359296
I e | 3x3 conv, 512 14x14x512 2359296
e Pool 14x14x512
3o 5121 3x3 cony, 512 28x28x512 2359296
3x3 conv, 512 28x28x512 2359296
I 3x3 conv, 512 l
3x3 conv, 512 28x28x512 1179648
I o I Pool 28x28x256
L 33con.256 | 53y 256 56x56x256 589824
33 conv, 256 3x3 conv, 256 56x56x256 294912
' Pool | Pool 56x56x128
L Sconv 125 1 3x3cony, 128 112x112x128 147456
[ 3x3conv, 128 | 3x3 conv, 128 112x112x128 64*112%3*3 = 64512
I Pool | Pool 112x112x64
[_Sx3conv, 64 | 3x3 conv, 64 224x224x64 64*64*3*3 = 36864
[__3x3conv,64 | 3x3 conv, 64 224x224x64 3*64*3*3 = 1728
l Input | Operation Output shape # parameters




Softmax

224x224

l |
[_Fciooo ] FC 1000 4096*1000 = 4,096,000
L FC 4096 | FC 4096 4096*4096 = 16,777,216
[ Fcaos ] FC 4096 25088*4096 = 102,760,448
| Pool | Flatten 25088
[ 3x3conv, 512 | Pool 7Xx7x512
I 3x3 conv, 512 I 3x3 conv, 512 14x14x512 2359296
[ 3x3conv. 512 ] 3x3 conv, 512 14x14x512 2359296
I = | 3x3 conv, 512 14x14x512 2359296
T T Pool 14x14x512
3G oomv 512 ] 3x3 cony, 512 28x28x512 2359296
3x3 conv, 512 28x28x512 2359296
[ 3x3conv,512 |
3x3 conv, 512 28x28x512 1179648
I Foo) I Pool 28x28x256
L 33con.256 | 53y 256 56x56x256 589824
33 conv. 266 | 3x3 conv, 256 56x56x256 294912
| Pool | Pool 56x56x128
L Sxdconv. 125 1 3x3 cony, 128 112x112x128 147456
[ 3x3conv, 128 | 3x3 conv, 128 112x112x128 64*112*3*3 = 64512
I Pool | Pool 112x112x64
[_3x3conv, 64 | 3x3 conv, 64 224x224x64 64*64*3*3 = 36864
[ 3x3conv, 64 | 3x3 conv, 64 224x224x64 3*64*3*3 = 1728
| Input | Operation Output shape # parameters

Even larger FC
layers! Largest FC:
25088 -> 4096)



I mage N et expen m ents VGG Stronger “single-net”

performance than GooglLeNet, but
GoogleNet (next) more efficient

GooglLeNet : Winner of ILSVRC 2014

Method - top-T-val. erro;(%) top-5 val. error (%) [toR-5 test error (%)
. . R . R VGG (2 nets, multi-crop & dense eval.) 23. 6.8 \ 6.8
[ ] Tra NI ng deta | |S SiMmi |a r to VGG (1 net, multi-crop & dense eval.) 24.4 7.1 7.0
[VGG (ILSVRC submission, 7 nets, dense eval.) | 24.7 | 75 | 73
AlexNet GoogLeNet (Szegedy ct al,, 2014) (1 net) : 79
GoogLeNet (Szegedy et al., 2014) (7 nets) - = 6.7
1 MSRA (He et al., 2014) (11 nets) - - 8.1
o BatCh Slze 256 MSRA (He et al., 2014) (1 net) 27.9 9.1 9.1
. Clarifai (Russakovsky et al., 2014) (multiple nets) - - 11.7
[ 2—3 wee ks(') of tra|n|ng Clarifai (Russakovsky et al., 2014) (1 net) P . 125
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 36.0 14.7 14.8
1 Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net) 37.5 16.0 16.1
* 4 GPUS’ data para”ellsm OverFeat (Sermanet et al., 2014) (7 nets) 34.0 13.2 13.6
OverFeat (Sermanet et al., 2014) (1 net) 35.7 14.2 -
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets) 38.1 16.4 16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net) 40.7 18.2 -




After VGG: Trend is to go even deeper...

But to do so requires computational efficiency.

Next: “Factored” Convolutions -- rewrite convs as a (series or parallel) network of
more efficient convs (think of low rank matrix factorizations!).

Examples:

e Sequence of (spatially) smaller convolutional kernels

o Already saw this a bit with VGG
e Lower dimension then raise again (like low rank decomposition)
e Separable Convolutions



Case Study (2014): GooglLeNet

{szegedy, jiayq, t

This CVPR2015 paper is the Open Access version, provided by the Compu

Vision Foundatior

The authoritative version of this paper is available in IEEE Xplore

Going Deeper with Convolutions

Christian Szegedy', Wei Liu?, Yangqing Jia', Pierre Sermanet’, Scott Reed?,
Dragomir Anguelov’, Dumitru Erhan', Vincent Vanhoucke’, Andrew Rabinovich®
1Google Inc. University of North Carolina, Chapel Hill
SUniversity of Michigan, Ann Arbor “Magic Leap Inc.

dumitru, } .com

Abstract

We propose a deep convolutional neural network ar-
chitecture codenamed Inception that achieves the new
state of the art for classification and detection in the Im-
ageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRCI4). The main hallmark of this architecture is the
improved utilization of the computing resources inside the
network. By a carefully crafted design, we increased the
depth and width of the network while keeping the compu-
tational budget constant. To optimize quality, the architec-
tural decisions were based on the Hebbian principle and
the intuition of multi-scale processing. One particular in-
carnation used in our submission for ILSVRCI4 is called
GoogLeNet, a 22 layers deep network, the quality of which
is assessed in the context of classification and detection.

1. Introduction

In the last three years, our object classification and de-
tection capabilities have dramatically improved due to ad-
vances in deep learning and convolutional networks [10].
One encouraging news is that most of this progress is not
just the result of more powerful hardware, larger datasets
and bigger models, but mainly a consequence of new ideas,
algorithms and improved network architectures. No new
data sources were used, for example, by the top entries
in the ILSVRC 2014 competition besides the classification
dataset of the same competition for detection purposes.

GoogLeNet submission to ILSVRC 2014 actually uses 12
times fewer parameters than the winning architecture of
Krizhevsky et al [9] from two years ago, while being sig-
nificantly more accurate. On the object detection front, the
biggest gains have not come from naive application of big-
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ger and bigger deep networks, but from the synergy of deep
architectures and classical computer vision, like the R-CNN
algorithm by Girshick et al [6].

Another notable factor is that with the ongoing traction
of mobile and embedded computing, the efficiency of our
algorithms — especially their power and memory use — gains
importance. It is noteworthy that the considerations leading
to the design of the deep architecture presented in this paper
included this factor rather than having a sheer fixation on
accuracy numbers. For most of the experiments, the models
were designed to keep a computational budget of 1.5 billion
multiply-adds at inference time, so that the they do not end
up to be a purely academic curiosity, but could be put to real
world use, even on large datasets, at a reasonable cost.

In this paper, we will focus on an efficient decp neural
network architecture for computer vision, codenamed In-
ception, which derives its name from the Network in net-
work paper by Lin et al [12] in conjunction with the famous
“we need to go deeper” internet meme [1]. In our case, the
word “deep” is used in two different meanings: first of all,
in the sense that we introduce a new level of organization
in the form of the “Inception module” and also in the more
direct sense of increased network depth. In general, one can
view the Inception model as a logical culmination of [12]
while taking inspiration and guidance from the theoretical
work by Arora et al [2]. The benefits of the architecture are
experimentally verified on the ILSVRC 2014 classification

dd challenges, where it signi
the current state of the art.

2. Related Work

Starting with LeNet-5 [10], convolutional neural net-
works (CNN) have typically had a standard structure —
stacked convolutional layers (optionally followed by con-
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Abstract

We propose a deep convolutional neural network ar-
chitecture codenamed Inception that achieves the new
state of the art for classification and detection in the Im-
ageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRCI4). The main hallmark of this architecture is the
improved utilization of the computing resources inside the
network. By a carefully crafted design, we increased the
depth and width of the network while keeping the compu-
tational budget constant. To optimize quality, the architec-
tural decisions were based on the Hebbian principle and
the intuition of multi-scale processing. One particular in-
carnation used in our submission for ILSVRCI4 is called
GoogLeNet, a 22 layers deep network, the quality of which
is assessed in the context of classification and detection.

1. Introduction

In the last three years, our object classification and de-
tection capabilities have dramatically improved due to ad-
vances in deep learning and convolutional networks [10].
One encouraging news is that most of this progress is not
just the result of more powerful hardware, larger datasets
and bigger models, but mainly a consequence of new ideas,
algorithms and improved network architectures. No new
data sources were used, for example, by the top entries
in the ILSVRC 2014 competition besides the classification
dataset of the same competition for detection purposes. Our
GoogLeNet submission to ILSVRC 2014 actually uses 12
times fewer parameters than the winning architecture of
Krizhevsky et al [9] from two years ago, while being sig-
nificantly more accurate. On the object detection front, the
biggest gains have not come from naive application of big-
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ger and bigger deep networks, but from the synergy of deep
architectures and classical computer vision, like the R-CNN
algorithm by Girshick et al [6].

Another notable factor is that with the ongoing traction
of mobile and embedded computing, the efficiency of our
algorithms — especially their power and memory use — gains
importance. It is noteworthy that the considerations leading
to the design of the deep architecture presented in this paper
included this factor rather than having a sheer fixation on
accuracy numbers. For most of the experiments, the models
were designed to keep a computational budget of 1.5 billion
multiply-adds at inference time, so that the they do not end
up to be a purely academic curiosity, but could be put to real
world use, even on large datasets, at a reasonable cost.

In this paper, we will focus on an efficient decp neural
network architecture for computer vision, codenamed In-
ception, which derives its name from the Network in net-
work paper by Lin et al [12] in conjunction with the famous
“we need to go deeper” internet meme [1]. In our case, the
word “deep” is used in two different meanings: first of all,
in the sense that we introduce a new level of organization
in the form of the “Inception module” and also in the more
direct sense of increased network depth. In general, one can
view the Inception model as a logical culmination of [12]
while taking inspiration and guidance from the theoretical
work by Arora et al [2). The benefits of the architecture are
experimentally verified on the ILSVRC 2014 classification

dd challenges, where it signi
the current state of the art.

2. Related Work

Starting with LeNet-5 [10], convolutional neural net-
works (CNN) have typically had a standard structure —
stacked convolutional layers (optionally followed by con-

Inception Blocks
Repeated Local Structure
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Abstract

We propose a deep convolutional neural network ar-
chitecture codenamed Inception that achieves the new
state of the art for classification and detection in the Im-
ageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRCI4). The main hallmark of this architecture is the
improved utilization of the computing resources inside the
network. By a carefully crafted design, we increased the
depth and width of the network while keeping the compu-
tational budget constant. To optimize quality, the architec-
tural decisions were based on the Hebbian principle and
the intuition of multi-scale processing. One particular in-
carnation used in our submission for ILSVRCI4 is called
GoogLeNet, a 22 layers deep network, the quality of which
is assessed in the context of classification and detection.

1. Introduction

In the last three years, our object classification and de-
tection capabilities have dramatically improved due to ad-
vances in deep learning and convolutional networks [10].
One encouraging news is that most of this progress is not
just the result of more powerful hardware, larger datasets
and bigger models, but mainly a consequence of new ideas,
algorithms and improved network architectures. No new
data sources were used, for example, by the top entries
in the ILSVRC 2014 competition besides the classification
dataset of the same competition for detection purposes. Our
GoogLeNet submission to ILSVRC 2014 actually uses 12
times fewer parameters than the winning architecture of
Krizhevsky et al [9] from two years ago, while being sig-
nificantly more accurate. On the object detection front, the
biggest gains have not come from naive application of big-
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ger and bigger deep networks, but from the synergy of deep
architectures and classical computer vision, like the R-CNN
algorithm by Girshick et al [6].

Another notable factor is that with the ongoing traction
of mobile and embedded computing, the efficiency of our
algorithms — especially their power and memory use — gains
importance. It is noteworthy that the considerations leading
to the design of the deep architecture presented in this paper
included this factor rather than having a sheer fixation on
accuracy numbers. For most of the experiments, the models
were designed to keep a computational budget of 1.5 billion
multiply-adds at inference time, so that the they do not end
up to be a purely academic curiosity, but could be put to real
world use, even on large datasets, at a reasonable cost.

In this paper, we will focus on an efficient decp neural
network architecture for computer vision, codenamed In-
ception, which derives its name from the Network in net-
work paper by Lin et al [12] in conjunction with the famous
“we need to go deeper” internet meme [1]. In our case, the
word “deep” is used in two different meanings: first of all,
in the sense that we introduce a new level of organization
in the form of the “Inception module” and also in the more
direct sense of increased network depth. In general, one can
view the Inception model as a logical culmination of [12]
while taking inspiration and guidance from the theoretical
work by Arora et al [2). The benefits of the architecture are
experimentally verified on the ILSVRC 2014 classification

dd challenges, where it signi
the current state of the art.

2. Related Work

Starting with LeNet-5 [10], convolutional neural net-
works (CNN) have typically had a standard structure —
stacked convolutional layers (optionally followed by con-
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Abstract

We propose a deep convolutional neural network ar-
chitecture codenamed Inception that achieves the new
state of the art for classification and detection in the Im-
ageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRCI4). The main hallmark of this architecture is the
improved utilization of the computing resources inside the
network. By a carefully crafied design, we increased the
depth and width of the network while keeping the compu-
tational budget constant. To optimize quality, the architec-
tural decisions were based on the Hebbian principle and
the intuition of multi-scale processing. One particular in-
carnation used in our submission for ILSVRCI4 is called
GoogLeNet, a 22 layers deep network, the quality of which
is assessed in the context of classification and detection.

1. Introduction

In the last three years, our object classification and de-
tection capabilities have dramatically improved due to ad-
vances in deep learning and convolutional networks [10].
One encouraging news is that most of this progress is not
just the result of more powerful hardware, larger datasets
and bigger models, but mainly a consequence of new ideas,
algorithms and improved network architectures. No new
data sources were used, for example, by the top entries
in the ILSVRC 2014 competition besides the classification
dataset of the same competition for detection purposes. Our
GoogLeNet submission to ILSVRC 2014 actually uses 12
times fewer parameters than the winning architecture of
Krizhevsky et al [9] from two years ago, while being sig-
nificantly more accurate. On the object detection front, the
biggest gains have not come from naive application of big-
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ger and bigger deep networks, but from the synergy of deep
architectures and classical computer vision, like the R-CNN
algorithm by Girshick et al [6].

Another notable factor is that with the ongoing traction
of mobile and embedded computing, the efficiency of our
algorithms — especially their power and memory use — gains
importance. It is noteworthy that the considerations leading
to the design of the deep architecture presented in this paper
included this factor rather than having a sheer fixation on
accuracy numbers. For most of the experiments, the models
were designed to keep a computational budget of 1.5 billion
multiply-adds at inference time, so that the they do not end
up to be a purely academic curiosity, but could be put to real
world use, even on large datasets, at a reasonable cost.

In this paper, we will focus on an efficient decp neural
network architecture for computer vision, codenamed In-
ception, which derives its name from the Network in net-
work paper by Lin et al [12] in conjunction with the famous
“we need to go deeper” internet meme [1]. In our case, the
word “deep” is used in two different meanings: first of all,
in the sense that we introduce a new level of organization
in the form of the “Inception module” and also in the more
direct sense of increased network depth. In general, one can
view the Inception model as a logical culmination of [12]
while taking inspiration and guidance from the theoretical
work by Arora et al [2). The benefits of the architecture are
experimentally verified on the ILSVRC 2014 classification

d detection challenges, where it signi
the current state of the art.

2. Related Work

Starting with LeNet-S  [10], convolutional neural net-
works (CNN) have typically had a standard structure —
stacked convolutional layers (optionally followed by con-
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Abstract

We propose a deep convolutional neural network ar-
chitecture codenamed Inception that achieves the new
state of the art for classification and detection in the Im-
ageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRCI4). The main hallmark of this architecture is the
improved utilization of the computing resources inside the
network. By a carefully crafied design, we increased the
depth and width of the network while keeping the compu-
tational budget constant. To optimize quality, the architec-
tural decisions were based on the Hebbian principle and
the intuition of multi-scale processing. One particular in-
carnation used in our submission for ILSVRCI4 is called
GoogLeNet, a 22 layers deep network, the quality of which
is assessed in the context of classification and detection.

1. Introduction

In the last three years, our object classification and de-
tection capabilities have dramatically improved due to ad-
vances in deep learning and convolutional networks [10].
One encouraging news is that most of this progress is not
just the result of more powerful hardware, larger datasets
and bigger models, but mainly a consequence of new ideas,
algorithms and improved network architectures. No new
data sources were used, for example, by the top entries
in the ILSVRC 2014 competition besides the classification
dataset of the same competition for detection purposes. Our
GoogLeNet submission to ILSVRC 2014 actually uses 12
times fewer parameters than the winning architecture of
Krizhevsky et al [9] from two years ago, while being sig-
nificantly more accurate. On the object detection front, the
biggest gains have not come from naive application of big-
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ger and bigger deep networks, but from the synergy of deep
architectures and classical computer vision, like the R-CNN
algorithm by Girshick et al [6].

Another notable factor is that with the ongoing traction
of mobile and embedded computing, the efficiency of our
algorithms — especially their power and memory use — gains
importance. It is noteworthy that the considerations leading
to the design of the deep architecture presented in this paper
included this factor rather than having a sheer fixation on
accuracy numbers. For most of the experiments, the models
were designed to keep a computational budget of 1.5 billion
multiply-adds at inference time, so that the they do not end
up to be a purely academic curiosity, but could be put to real
world use, even on large datasets, at a reasonable cost.

In this paper, we will focus on an efficient decp neural
network architecture for computer vision, codenamed In-
ception, which derives its name from the Network in net-
work paper by Lin et al [12] in conjunction with the famous
“we need to go deeper” internet meme [1]. In our case, the
word “deep” is used in two different meanings: first of all,
in the sense that we introduce a new level of organization
in the form of the “Inception module” and also in the more
direct sense of increased network depth. In general, one can
view the Inception model as a logical culmination of [12]
while taking inspiration and guidance from the theoretical
work by Arora et al [2). The benefits of the architecture are
experimentally verified on the ILSVRC 2014 classification

d detection challenges, where it signi
the current state of the art.

2. Related Work

Starting with LeNet-S  [10], convolutional neural net-
works (CNN) have typically had a standard structure —
stacked convolutional layers (optionally followed by con-
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Global pool +
Lightweight FC
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GooglLeNet Stem

3x3 Conv 192 2 28x28x192
3x3 Conv 192 1 56x56x192
3x3 Pool 2 56x56x64
7x7 Conv 64 2 112x112x64
Operation # filters stride Output shape

Aggressively reduce resolution in early layers (224x224
to 28x28 in first 4 layers) --- we will see later networks
also do this




Global pool +
== Lightweight FC

Global Pool + Lightweight FC

Softmax

1x1x1000

1024x1000 FC
FC VS
[ 1x1x1024 VGG's largest 25088x4096 FC
7x7 Avg Pool (~1OOX sma”er!)

T

7x7x1024




Inception Blocks

4

1x1 Conv

Two tricks:

Concat

D —

5x5 Conv

1x1 Conv

t

t

t

e Parallel convolutions paths
e Bottleneck layers

To understand these tricks, let’s look at some simplifications

1x1 Conv 1x1 Conv 3x3 MaxPool

Previous
Layer




Inception Blocks

Simplified Inception Block

Concat

1x1 Conv

3x3 Conv

5x5 Conv

Previous
Layer




Simplified Inception Block
Concat Concat
1x1 Conv 3x3 Conv 5x5 Conv VS 5x5 Conv
Previous Previous
Layer Layer

Same receptive field as 5x5: think of replacing 5x5 conv with a

“mini-network” with same receptive field
o Butin this “mini-network”, not all channels of output need to
depend on full extent of receptive field




Simplified Inception Block
Concat 28x28x256 o
64
128 .

1x1 Conv 3x3 Conv 5x5 Conv VS 5x5 Conv
Previous | 5 gx28x192 Previous

Layer Layer

28x28x192

This mini-network (our Inception Block) ends up being more
efficient --- let’s verify this by counting parameters/ops




Inception Blocks

Simplified Inception Block
Concat 28x28x256
64
128 64
1x1 Conv 3x3 Conv 5x5 Conv
P'Ir_e"i°”3 28x28x192
ayer
X1 3x3 5x5 Total
Params 192x64 9x192x128 25x192x64

FLOPS

VS

Concat

Previous
Layer

28x28x192




Inception Blocks

Simplified Inception Block

Concat 28x28x256
64
128 .
1x1 Conv 3x3 Conv 5x5 Conv
Previous | 5 g 28x192
Layer
X1 3x3 5x5 Total
Params 192x64 9x192x128 25x192x64
FLOPS 28x28x192x64 9x28x28x192x128 25x28x28x192x64

VS

Concat

Previous
Layer

28x28x192




Inception Blocks

Simplified Inception Block

Concat 28x28x256
64
128 .
1x1 Conv 3x3 Conv 5x5 Conv
Previous | 5 g 28x192
Layer

X1 3x3 5x5 Total
Params 192x64 9x192x128 25x192x64 540K
FLOPS 28x28x192x64 9x28x28x192x128 25x28x28x192x64 423M

VS

Concat

Previous
Layer

28x28x192




Inception Blocks

Simplified Inception Block

Concat 28x28x256
64
128 64
1x1 Conv 3x3 Conv 5x5 Conv
Previous | 5. 28x192
Layer

X1 3x3 5x5 Total
Params 192x64 9x192x128 25x192x64 540K
FLOPS 28x28x192x64 9x28x28x192x128 25x28x28x192x64 423M

VS

Concat

A

5x5 Conv

Previous
Layer
28x28x192

5x5

Total

Params

25*192x256

1.2M

FLOPS

25*28x28x192x256

963M




Inception Blocks

Expensive branches: ~9x, ~12x

FLOPS of 1x1 branch

/]

Simplified Inception Block
Concat 28x28 6
64
128 64
1x1 Conv 3x3 Conv 5x5 Conv
Previous | 5. 28x192
Layer
X1 3x3 5x5 Total
Params 192x64 9x192x128 25x192x64 540K
FLOPS 28x28x192x64 9x28x28x192x128 25x28x28x192x64 423M

VS

Concat

A

5x5 Conv

Previous
Layer

28x28x192

5x5

Total

Params

25*192x256

1.2M

FLOPS

25*28x28x192x256

963M




Inception Blocks - “Bottleneck Trick”

Concat

28x28x256

64 12;\4

3x3 Conv 5x5 Conv

| 96

1x1 Conv

“16

1x1 Conv 1x1 Conv

Previous
Layer

28x28x192

Idea: Reduce dimensions prior to
expensive convolutions (to 96 and 16
dimensions, resp)




Inception Blocks - “Bottleneck Trick”

Concat 28x28x256

12;\4 Idea: Reduce dimensions prior to
64 expensive convolutions (to 96 and 16

3x3 Conv 5x5 Conv dimensions, resp)

1x1 Conv 96 16
1x1 Conv 1x1 Conv
Previous | 28x28x192
Layer
1x1 3x3 5x5 Total

Params 192x64

FLOPS 28x28x192x64




Inception Blocks - “Bottleneck Trick”

Concat 28x28x256

12;\4 Idea: Reduce dimensions prior to

64 expensive convolutions (to 96 and 16
3x3 Conv 5x5 Conv dimensions, resp)

1x1 Conv A 96 16

1x1 Conv 1x1 Conv

Previous | 28x28x192
Layer

X1 3x3 5x5 Total

Params 192x64 192x96+ 9x96x128

FLOPS 28x28x192x64 28x28x192x96 + 9x28x28x96x128




Inception Blocks - “Bottleneck Trick”

Concat 28x28x256

12:\4 Idea: Reduce dimensions prior to

64 expensive convolutions (to 96 and 16
3x3 Conv 5x5 Conv dimensions, resp)

1x1 Conv 96 A“’

1x1 Conv 1x1 Conv

Previous | 28x28x192
Layer

X1 3x3 5x5 Total

Params 192x64 192x96+ 9x96x128 192x16 + 25x16x64

FLOPS 28x28x192x64 28x28x192x96 + 9x28x28x96x128 28x28x192x16 + 25x28x28x16x64




Inception Blocks - “Bottleneck Trick”

Concat 28x28x256

12;\4 Idea: Reduce dimensions prior to

64 expensive convolutions (to 96 and 16
3x3 Conv 5x5 Conv dimensions, resp)

1x1 Conv 96 16

1x1 Conv 1x1 Conv

Previous | 28x28x192
Layer

X1 3x3 5x5 Total

Params 192x64 192x96+ 9x96x128 192x16 + 25x16x64 170K

FLOPS 28x28x192x64 28x28x192x96 + 9x28x28x96x128 28x28x192x16 + 25x28x28x16x64 133M




. Add pooling layer “since pooling operations
I nce pt 10N B I OC kS have been essential for the success of current

convolutional networks”

Note: (we will see pooling operators play a
reduced role in later networks)

Concat 28x28x256

128 32 32

64 3x3 Conv 5x5 Conv 1x1 Conv

1x1 Conv 96 16 192

1x1 Conv 1x1 Conv 3x3 MaxPool

Previous | 5g,28x192
Layer

X1 3x3 5x5 Pool
Params 192x64 192x96+ 9x96x128 192x16 + 25x16X32 192x32

FLOPS 28x28x192x64 | 28x28x192x96 + 9x28x28x96x128 | 28x28x192x16 + 25x28x28x16x32 | 9*28*28*192+ 28x28x192*32




Auxiliary Losses

\CTT =| “Auxiliary

e Vanishing gradients a big problem in deeper nets wras | LOsses”
e Idea:
o Training time: Add auxiliary classification layers at training
time to provide a stronger gradient signal to early layers

o Test time: discard additional layers

e Laterinventions provide better solutions to vanishing gradient:
o Batch norm
o Residual connections

e Some papers still use these auxiliary losses



Speed/Accuracy balance

VGG is yuuuge; slightly
better on Imagenet
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An Analysis of Deep Neural Network Models for Practical Applications by Canziani et al




Neural Network Generated Art with Inception
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Variations on a Theme: Let’s play the “VGG” Trick

Concat

N

1x1 Conv

3x3 Conv

5x5 Conv

f

f

1x1 Conv 1x1 Conv

Previous

No Large
Filters at
all

Concat

N

1x1 Conv

3x3 Conv
f

3x3 Conv 3x3 Conv
t t

1x1 Conv 1x1 Conv

Layer

Previous
Layer

Rethinking the Inception Architecture for Computer Vision by Szegedy et al




Variations on a Theme: Let’s play the “VGG” Trick

1x1 Conv

Concat

N

3x3 Conv

5x5 Conv

f

f

1x1 Conv 1x1 Conv

Previous

No Large
Filters at
all

Concat

N

1x1 Conv

3x3 Conv
f

3x3 Conv 3x3 Conv
t t

1x1 Conv 1x1 Conv

Layer

Previous
Layer

Can we go smaller than 3x3?

Rethinking the Inception Architecture for Computer Vision by Szegedy et al




Spatial Factorization into (non-square) asymmetric convolutions

i P -
f 22 Conv (T I 11 I I O
33 TConv i 2x2 Conv
2x2 Conv [T T T T 1111
t
A little smaller 2x2 Conv
[ T T T T T T
Params: 9*C"2 Params: 2*4*C"2 = 8C"2
FLOPS: 9*C"2*H*W  FLOPS: 2*4*C"2*H*W = 8*C"2*H*W Covers 3x3 receptive field
G .

Rethinking the Inception Architecture for Computer Vision by Szegedy et al




Spatial Factorization into (non-square) asymmetric convolutions

t s ™
f 22 Conv [T T 1] I O N N
33 TConv i 3x3 Conv
2x2 Conv [T T T T 1111
i
A little smaller 3x3 Conv
[ T T T T T T
Params: 9*C"2 Params: 2*4*C"2 = 8C"2
FLOPS: 9*C"2*H*W  FLOPS: 2*4*C"2*H*W = 8*C"2*H*W Covers 3x3 receptive field
G .

But... we can do even better:)

Rethinking the Inception Architecture for Computer Vision by Szegedy et al




Spatial Factorization into (non-square) asymmetric convolutions

t
3x3 Conv

f

Params: 9*C"2
FLOPS: 9*C*2*H*W

t

jl> 2x2 Conv
i

2x2 Conv

t
A little smaller

Params: 8C*2
FLOPS: 8*C*"2*H*W

Params: 2*3*C"2 = 6C"2

FLOPS: 2*3*C*"2*H*W = 6*C"2*H*W

-

t

3x1 Conv

i

1x3 Conv

t

3x1Conv

N

Rethinking the Inception Architecture for Computer Vision by Szegedy et al

1x3 Conv

Covers 3x3
receptive field!



Spatial Factorization into (non-square) asymmetric convolutions
!

T : Concat
i 2%2 Conv 3x1 Conv —
3x3 Conv > ; —> ¥ 3x1 Conv 1x3 Conv
t 2%2 Conv 1x3 Conv \/
: !
A little smaller Series Convs Parallel Convs
Even smaller!
Params: 9*C"2 Params: 8C"2 Params: 6C"2
FLOPS: 9*C*"2*H*W FLOPS: 8*C*"2*H*W FLOPS: 6*C*2*H*W

Rethinking the Inception Architecture for Computer Vision by Szegedy et al




Spatial Factorization into (non-square) asymmetric convolutions
!

T , Concat
t 2%2 Conv 3x1 Conv —
3x3 Conv :> ; 4> ; 3x1 Conv 1x3 Conv
f 2%2 Conv 1x3 Conv \/
i f
Series Convs Parallel Convs
T
f Concat
T nx1 Conv _— T~
nxn Conv > i nx1 Conv 1xn Conv
! 1xn Conv \/
f
Params: N*2 * C"2 Params: 2 * N * C"2
FLOPS: N*"2*C"2*H*W FLOPS:2*N*C"2*H*W

Rethinking the Inception Architecture for Computer Vision by Szegedy et al




Concat

Inception v2 Block Types

1x1 Conv

E- ______________________________________________ : 3x3 Conv 3x3 Conv
1 1
i Concat : \/
| : 3x3 Conv 3x3 Conv
i | 3x3 Conv
1
i : ~_ :
! L el 1x1 Pool
: 3x3 Conv 1x1 Conv : 1| 1 Conv X1 Conv 1x1 Conv
1 ? : Concat :
: i . !
: 3x3 Conv 3x3 Conv non) i :
! 00
: 3 3 : i Previous
1
i 1x1Conv 1x1Conv 1x1Conv ! 7x1 Conv \ ! Layes ;
1 7 A it e e L e
1 1 1
: W : f 1x1 Conv :
i Previous ! 1x7 Conv |
i Layer ! T )
1
e ________ A 7x1Conv f )
i T 7x1Conv Pool ;
1
e ! ] i
i 7 Conv 1x7 Conv :
1
: 1x1 Conv T f :
1
1
i 1x1 Conv 1x1 Conv 1
i \/ :
1
1 1
1 1
! i ! . . . .
i Pj_e"'°“3 I Rethinking the Inception Architecture for
: e | Computer Vision by Szegedy et al
__________________________________________________________ | Y geay




Another variation: Taking bottleneck trick to
extreme limit

HxWxC e C parallel convolution paths
Coneat e Each 1x1conv yields 1-d output

| 3x3 Conv | | 3x3 Conv | | 3x3 Conv | | 3x3 Conv | 3x3 Conv

[Ticom | [wacow | [acow | [[acow | Parameters
C*C+C*3*3
Previous Layer F Lo PS
HxWxC C*C+C*H*W*3*3

Compare with “full” 3x3 Conv:
e Parameters:3*3*C*C
e FLOPS:3*3*H*W*C*C



Another variation: Taking bottleneck trick to
extreme limit

HxWxC e C parallel convolution paths
Cxre e Each 1x1 conv yields 1-d output

7

3x3 Conv 3x3 Conv 3x3 Conv
Y

1x1Conv 1x1Conv 1x1Conv 1x1Conv 1x1 Conv Pa ra mete rs
C*C+C*3*3

Previous Layer F L O P S
HxWxC C*C+C*H*W*3*3

3x3 Conv

3x3 Conv

Compare with “full” 3x3 Conv:

Also known as a “separable convolution” or “depthwise ~ ® Farameters:373*C*C
separable” convolution e FLOPS:3*3*H*W*C*C



Separable Convolutions

HxWxC
Concat
| 3x3 Conv | | 3x3 Conv | | 3x3 Conv | | 3x3 Conv | 3x3 Conv } Eac.:h 3X3 Conv Operates Independently On
a single channel
| 1x1Conv |
Previous Layer
HxWxC

Equivalent:
e Firstapply 1x1Conv (C->C)
e Then apply 3x3 Convs (1->1) along each channel
e (Concatenate results



Separable Convolutions

HxWxC

Concat

: } This grouping of independent
! single-channel convolutions sometimes
called a depthwise convolution

Previous Layer

HxWxC

Equivalent:
e Firstapply 1x1Conv (C->C)
e Then apply 3x3 Convs (1->1) along each channel
e (Concatenate results



Separable Convolutions

HxWxC

Concat

| 3 Depthwise Conv | } Diagonal Matrix

SvD

| 1x1 Conv |

Previous Layer

HxWxC

Separable Convs factor channel dependence from spatial dependence!



Separable Convolutions

HxWxC HxWxC
Concat Concat
| 3x3 Depthwise Conv | | 1x1Conv
| 1x1Conv | | 3x3 Depthwise Conv
Previous Layer Previous Layer
HxWxC HxWxC
Note: conventionally, Separable Convs are Depthwise Conv followed by

1x1 Conv:
o Not quite equivalent, but same computational properties, difference
goes away if you stack many separable convs together



Case Study (2017): MobileNet v1 (Howard et al)
/

Early reduction in

Separable

convolutions w/VGG

like structure

<

Type Output Depth Output Resolution

Convolution 32 112
Separable Convolution 64 112

Separable Convolution 128 56

\—*—l Separable Convolution 128 56
\_*_f Separable Convolution 256 28
Separable Convolution 256 28

§ Separable Convolution 512 14
Separable Convolution 512 14

,—*—\ Separable Convolution 512 14
,—*—‘ Separable Convolution 512 14
Separable Convolution 512 14

Separable Convolution 512 14

Separable Convolution 1024
Separable Convolution 1024 7
Avg Pool + FC 1000 1

e 95% of computation is 1x1 convolutions efficiently implemented with GEMMs.
Slide credit: Andrew Howard

“Full first
convolution’

i

resolution (like
GooglLeNet

> Noheavy FC



MobileNet Performance

100% MobileNet 224 Resolution

50% MobileNet 160 Resolution

Imagenet Million
Model Accuracy Million MACs Parameters
MobileNet 70.6 568 4.2
Inception V1 TF
(GoogleNet) 69.8 1550 6.8
VGG 16 715 15300 138

Imagenet Million
Model Accuracy Million MACs Parameters
50% MobileNet
160 Resolution 60.2 76 1.32
Squeezenet 57.5 850 1.25
Alexnet 57.2 720 60

27X Less Computation than VGG16

32X Smaller than VGG16

Nearly Same Accuracy as VGG16

Slide credit: Andrew Howard

9.4X Less Computation than Alexnet

45X Smaller than Alexnet

3% Better than Alexnet







Generalization: Temporal Separability

Next Layer

Next Layer

Next Layer

~

S RN

S
—

gl

I

I

I

\LA

|

I

I

I

I

I

|

7/
~
~

w\

O

El

S

I

I

\:A

|

I

I

I

I

I

/

7/
-
-~
£

K|

U |

21

1

1

/7
-

p
Conv Conv Conv Conv
1x1x1 3x3x3 3x3x3 1x1x1

P11

-
Conv Conv 3x3x3
1x1x1 Ix1x1 Max-Pool

Previous Layer

- = ——

Previous Layer Previous Layer

Carreira and Zisserman. Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset. CVPR 2017.

Xie et al. "Rethinking Spatiotemporal Feature Learning For Video Understanding."



Another Generalization: “Grouped” Convolutions

ﬁ Not to be confused w/"Group Convolutions” ]

AN

Parallel/Independent convolution
pathways:

e Each Conv operates independently on a
“group” of K input channels and produces
its own “group” of L output channels

e Grouped Conv (with G groups) Op:
o Input: GK channels
o  Output: LK channels

3x3 Conv 3x3 Conv 3x3 Conv 3x3 Conv
64|

Input: (4*64 = 256 channels)




Grouped Convs in AlexNet

- GPU 1
27
7 13 13 13
55
—t - e i
| - I 3 P —— 1
T 5 — o NEE aVhIN.___ 3 13 >
K Ay ¢
1 i\l 27 3% = 13 4 s
5 | 3[ -\ 3
3 ’
) 48 Ny L 192 192 128 2048
- 27 128 N 2048
i\ 1% \13 13 13
. [} s \
28 | ]l [\ = [ J N 3] 1000
\ o7 3 3 LN EANL A 3147 [ 13 »| |Dense
1\l s X 11 13—’ 7 >
¥ L P 27 SN\ (LR DEnse| [Dense
2 T S\ |7/ 3]
J 5 [ 192 192 128 . —
224 \!lstrig 128 z"a"m 2048 2048
Uof4 Max Max e
3 48  Pooling Pooling G P U 2
Local Response Local Response
Normalization Normalization

(Earlier we ignored this detail in the AlexNet paper)



Quick Recap

Spent a lot of time focusing on computation via Factored Convolutions:

Inception Blocks

Bottleneck layers

Spatial Factorization

Separable Convolutions (Bottleneck trick to the extreme)
MobileNet, GooglLeNet, Inception V2

Group Convolution (as a generalization of Separable Convolutions)

Let’s turn to optimization issues. Next up:

e Batch norm
e Residual networks



Motivation: Internal Covariance Shift

Layer i+1

Layeri

During training, Layer i+1 needs to keep adapting

to Layer i's shifting input distribution :(

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

Sergey Ioffe
Google Inc., sioffe@google.com

Abstract

Christian Szegedy
Google Inc., szegedy@google.com

Using mini-batches of examples, as opposed to one exam-
ple at a time, is helpful in several ways. First, the gradient

ke Training Deep Neural Networks is complicated by the fact  of the loss over a mini-batch is an estimate of the gradient
S that the distribution of each layer’s inputs changes during over the training set, whose quality improves as the batch
N ua%ning, as the parametg s of the pre\fi?us layers chmge_ size increases. Second, computation over a batch can be
— This slows down the training by requiring lower learning much more efficient than m computations for individual
< rates and careful parameter initialization, and makes itno-  examples, due to the parallelism afforded by the modern
2 toriously hard to train models with saturating nonlineari- computing platforms.
ties. We refer to this phenomenon as internal covariate  While stochastic gradient is simple and effective, it
(q\] shift, and address the problem by normalizing layer in- requires careful tuning of the model hyper-parameters,
— puts. Our method draws its strength from making normal-  specifically the learning rate used in optimization, as well
O ization a part of the model architecture and performingthe  as the initial values for the model parameters. The train-
| normalization for each training mini-batch. Batch Nor- ing is complicated by the fact that the inputs to each layer
. malization allows us to use much higher learning rates and  are affected by the parameters of all preceding layers — so
8 be less careful about initialization. It also acts as a regu-  that small changes to the network parameters amplify as
[ larizer, in some cases eliminating the need for Dropout. the network becomes deeper.
o épplLie\dV toa ; state-of- "‘L_ rt iniage lassification U_l(id‘el; The change in the distributions of layers’ inputs




Motivation: Internal Covariance Shift

‘ During training, Layer i+1 needs to keep adapting

Lay‘?r i to Layer i's shifting input distribution :(

f
Layer i Idea of batch norm: Add intermediate layer that

‘ normalizes Layer i's output distribution to zero mean,
unit variance.

Desiderata: Want this new layer to be:

e Differentiable
e Computationally efficient



Batch Normalization (for FC layers)

]_ m
— — @ // mini-batch mean
% [20%] _— Zl )
A Input X / i l;
fi last | - '
(f,c; (from last layer) e 0% — — Z(xz — pg)? // mini-batch variance
0 Shape: [1, C] i=1
C channels T; —\/027_'_6 // normalize
B
Approach:

e Ideally, normalize by entire training dataset
--- but if we need to do this every step,
too expensive. Normalize by minibatch
stats instead.

e Normalize features independently.




Batch Normalization (for FC layers) Training

1 & .

- UB — — E T // mini-batch mean
o 1=1
R Input X / Lo
f_.’ (from last layer) e 0123, — — E (z; — pg)? // mini-batch variance
© m
@ Shape: [1, C] i=1

5 o TiT KB /) i

C channels Z; \/% normalize
Yi < 7Z; + B = BN, g(z;) // scale and shift
Approach: AN

. . . . I
e Ideally, normalize by entire training dataset Gamma, beta, learnable parameters!

--- but if we need to do this every step,
too expensive. Normalize by minibatch
stats instead.

Relax hard zero mean,
unit variance constraint;

Allows BN to recover identity

e Normalize features independently. function (if that were the optimal
thing to do)




Getting the Batch Norm Statistics Right

1 « .
UB — — Z T // mini-batch mean
. . m
e If minibatch size m too small: o
batch norm statistics” will be 0 — — 2:(3:Z — pB)? // mini-batch variance
. m
very noisy =
- . - Ty — UB .
O  When training on multiple GPUs, Ti & —F—— // normalize
typically estimate per-device BN Vg TE€
statistics; but for small batch Yi — VT + B = BN, ,3(3%) // scale and shift

sizes, often better to sync
statistics across devices

e At test time, estimate batch
norm statistics by averaging
over very large set (using
moving averages)



Typical Batch Norm Usage

Situates layer outputs in ReLU’s “elbow”

_\ _\
e
BN
| com —|
For Convs, use same
batch norm parameters
___ for all spatial locations S

({Conv, FC} -> Batch Norm -> ReLU) is the typical pattern for most modern
convnets (except at the last layer)

e Note: can remove bias parameter from previous layer when using BN

We will assume (henceforth) that BN and ReLU are present when we use “Conv”



Batch Norm Folding/Fusing

Train

BN

Test

Conv
w/new
weights

f

Since Batch Norm is linear w.rt input, at test
time (you can think of it as a 1x1 Conv if you
want), the operation can be merged into the
previous Conv/FC

So adding BN to a ConvNet does not
introduce additional computation at
inference time



Example: Inception-BN on ImageNet

e Simpler variant of Inception v2; a whopping ~30 layers (by my count)
e Batch norm before every nonlinearity

0.8
O
O
@©
c K 2 L R -
O 07F 5/ i -~
+— - _ -
© g +4F’ -
2 {« ;7
© s 7
> 06, ,~
i) b
q) l: J
GCJ - = = =Inception
o - |i=— BN-Baseline
@ osd4 ! e BN-x5
£ g BN-x30
! 4+ BN-x5-Sigmoid
-l € Steps to match Inception
04 1 I 1 I 1 T T
5M 10M 15M 20M 25M 30M

Training iterations



Batch Norm Benefits/Gotchas

e Reduces Internal Covariate Shift (maybe, not really?)

e Smooths optimization landscape,

e Helps stabilize, regularize, speed up training

e No added computation at test time

e Reduces need to do dropout

e Hard to debug sometimes - different train/test modes

e Batch norm “wants” a large batch size

e Output for a given example now has a strange dependency on everything in

minibatch



Quick Recap

e Batch Normalization motivation: “internal covariate shift”

e Batch Normalization update equations

e Folded Batch Normalization parameters

e Many successor to Batch Norm: e.g., GroupNorm, Batch Renorm, Filter

Response Normalization... but Batch Norm is still king :)

So far, we skipped around a bit - but now we return back to end of 2015...



1512.03385v1 [cs.CV] 10 Dec 2015

arXiv

Residual Networks (2015)

Deep Residual Learning for Image Recognition

Kaiming He Xiangyu Zhang

Microsoft Research

{kahe, v-xiangz, v-shren, jiansun} @microsoft.com

Abstract

Deeper neural networks are more difficult to train. We
present a residual learning framework to ease the training
of networks that are substantially deeper than those used
previously. We explicitly reformulate the layers as learn-
ing residual functions with reference to the layer inputs, in-
stead of learning unreferenced functions. We provide com-
prehensive empirical evidence showing that these residual
networks are easier to optimize, and can gain accuracy from
considerably increased depth. On the ImageNet dataset we
evaluate residual nets with a depth of up to 152 layers—8x
deeper than VGG nets [41] but still having lower complex-
ity. An ensemble of these residual nets achieves 3.57% error
on the ImageNet test set. This result won the 1st place on the
ILSVRC 2015 classification task. We also present analysis
on CIFAR-10 with 100 and 1000 layers.

Shaoqing Ren Jian Sun
= g V\/\\M
& | 2 St-layer
] M sedayer S
£ e 8
£

20-layer

*ter (1e4) *ter (1e)

Figure 1. Training error (left) and test error (right) on CIFAR-10
with 20-layer and 56-layer “plain” networks. The deeper network
has higher training error, and thus test error. Similar phenomena
on ImageNet is presented in Fig. 4.

greatly benefited from very deep models.

Driven by the significance of depth, a question arises: Is
learning better networks as easy as stacking more layers?
An obstacle to answering this question was the notorious
problem of vanishing/exploding gradients [1, 9], which

The depth of representations is of central imy
for many visual recognition tasks. Solely due to our ex-
tremely deep representations, we obtain a 28% relative im-
provement on the COCO object detection dataset. Deep
residual nets are foundations of our submissions to ILSVRC
& COCO 2015 competitions', where we also won the Ist
places on the tasks of ImageNet detection, ImageNet local-
ization, COCO detection, and COCO i

hamper g from the This problem,
however, has been largely addressed by normalized initial-
ization [23, 9, 37, 13] and intermediate normalization layers
[16], which enable networks with tens of layers to start con-
verging for stochastic gradient descent (SGD) with back-
propagation [22].

‘When deeper networks are able to start converging, a

1. Introduction

Deep convolutional neural networks [22, 21] have led
to a series of for image i ion [21,
50, 40]. Deep networks naturally integrate low/mid/high-
level features [50] and classifiers in an end-to-end multi-
layer fashion, and the “levels” of features can be enriched
by the number of stacked layers (depth). Recent evidence
[41, 44] reveals that network depth is of crucial importance,
and the leading results [41, 44, 13, 16] on the challenging
ImageNet dataset [36] all exploit “very deep” [41] models,
with a depth of sixteen [41] to thirty [16]. Many other non-
trivial visual recognition tasks [8, 12, 7, 32, 27] have also

Inttp://image-net.org/challenges/LSVRC/2015/  and
http://mscoco.org/dataset/#detections-challenge2015.

de problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be
unsurprising) and then degrades rapidly. Unexpectedly,
such degradation is not caused by overfitting, and adding
‘more layers to a suitably deep model leads to higher train-
ing error, as reported in [11, 42] and thoroughly verified by
our experiments. Fig. 1 shows a typical example.
The degradation (of training accuracy) indicates that not
all systems are similarly easy to optimize. Let us consider a
shallower i and its deeper t that adds
more layers onto it. There exists a solution by construction
to the deeper model: the added layers are identity mapping,
and the other layers are copied from the learned shallower
model. The existence of this constructed solution indicates
that a deeper model should produce no higher training error
than its shallower counterpart. But experiments show that
our current solvers on hand are unable to find solutions that

ResNets @ ILSVRC & COCO 2015 Competitions

From ~20 layers to >100 layers!

* 1st places in all five main tracks

ImageNet Classification: “Ultra-deep” 152-layer nets
ImageNet Detection: 16% better than 2nd

ImageNet Localization: 27% better than 2nd

COCO Detection: 11% better than 2nd

COCO Segmentation: 12% better than 2nd



What would happen if we could just add more layers?

(if compute weren’t an issue)

20r

56-layer

20-layer

test error (%)

1 L 1 1
0 1 2 S5 6

3 4
iter. (1e4)

CIFAR dataset (32x32 inputs)

Deep Residual Learning for Image Recognition
by He et al

Lower is better

Observation: Deep 56 layer net
underperforms shallower 20
layer net.

Hypothesis: Overfitting?? Let’s
check train error



What would happen if we could just add more layers?
(if compute weren’t an issue)

56-layer

20r

33
S
1

e
= S
X e
~ g
—
S 1o 20-layer S 1o
- g 56-layer
@ =
] £

B

20-layer

(=}
(=}

1 2 5 6

S

1 L 1 1
0 1 2 S5 6

3 4
iter. (1e4)
Observation: Deep 56 layer net still underperforms
shallower 20 layer net in training error!!

3 4
iter. (1e4)

Deep Residual Learning for Image Recognition Next Hypothesis: Optimization issue? Is SGD is harder for
by He et al . . .
deeper models (e.g. due to vanishing gradients?)




ldea: Let’'s make it “easy” for optimizer to learn
identity transforms in extra layers

e Why would this help?
o If so, then we can always set additional layers of a deep network to be identity
and mimic performance of a shallow model
o Inthis case, performance of deep network should always be equal or better to
shallow network on training loss



ldentity mapping with shortcuts

H(X)
H(X)=F(X)+X RelU
ReLU _— N
Conv F(X) is a “residual” Comy
RelLU RelU
Conv Conv
Setting either Conv to
X y O

zeros will recover

identity ) X )
“Plain unit” “Residual unit”



e Use Conv wi/stride 2 instead of Pool

ReS|d ual N etworks e Like VGG - extremely simple structure

e Like inception, aggressively reduce resolution in early
layers, Pool at top with no heavy FC

e

N

7x7 conv, 64, /2
pool, /2
3x3 conv, 64
3x3 conv, 64
3x3 conv, 64
3x3 convy, 64
3x3 conv, 64
3x3 conv, 64
3x3 conv, 128, /2
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 128
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
3x3 conv, 256
avg pool

34-layer residual
image

3x3 conv, 256, /2
3x3 conv, 512, /2

~
—
wn
>
=
<]
o
™
<
()

3x3 conv, 512
3x3 conv, 512
3x3 conv, 512
3x3 conv, 512

N J\_
Y Y Y Y
Block 1, Block 2, Block 3, Block 4,
c=64 c=128 c=256 c=512
3 residual units 4 residual units 6 residual units 3 residual units

Special case residual units when we change resolution (use 1x1 Conv(X) instead of X in shortcut w/o ReLU)

(3+4+6+3 residual units) * (2 convs per residual unit) + First conv + Last FC
= 34 layers



Residual Networks solve the optimization problem

SO NG TR o v e s s s s s s
50 _________________________
5 40 )
E 5
A /
30 g s swes sk SSELEAETR [ N R
~A
ResNet-18 YWSANAAMMANNAAA,
—ResNet-34 34-layer
2GO 10 20 30 40 50 200 10 20 30 40 50
iter. (1le4) iter. (1e4)

Residual Connections allow deeper network to outperform shallower network!



Bottleneck Units

H(X)

Conv

RelLU

Conv

X

“Plain unit”

RelLU

Conv

RelLU

Conv

X
“Basic Residual unit”

RelLU

E)\
1x1 Conv (C->4C)
RelLU

3x3 Conv (C->C)

RelLU

1x1 Conv (4C->C)

X
“Bottleneck Residual unit”

Deeper for less compute



Resnet 18/34/50/101/152

Input size:  Basic Res)icdual Units Bottleneck RJeksiduaI Units
224x224 Ve N/ N\
layer name | output size 18-layer 34-layer I 50-layer [ 101-layer 152-layer
convl 112x112 Tx7, 64, stride 2
3 %3 max pool, stride 2
[ 1x1,64 7 [ 1x1,64 ] [ 1x1,64 ]
2 56x56 3 . :
Block 1 convax X g:gz ]xZ g’;gg ]x3 3x3,64 | x3 3x3,64 | x3 3x3,64 |x3
4 : | 1x1,256 | | 131,256 | | 151,256 |
- - - . [ 1x1,128 [ F561,128 | [ 1x1,128 ]
Block 2 < conv3x | 28x28 g;‘g i;g x2 ;ig gg x4 | | 3x3,128 | x4 3x3, 128 | x4 3x3,128 |x8
L 27 240 L 27 1e0 | 1x1,512 | | 11,512 | | 1x1,512 |
A ; - - [ 1x1,256 ] 1x1,256 ] 1x1,256 ]
Block 3 convd x | 14x14 gzg §§2 x2 g:g gzg x6 | | 3x3,256 |x6 || 3x3,256 |x23 || 3x3,256 |x36
L 27 A S | 1x1, 1024 | 1x1,1024 | 1x1,1024 |
: 5 : 3 [ 1x1,512 ] 1x1, 512 1x1, 512
Block 4 { convSx | 77 g:;gg x2 §:§§i§ x3 || 3x3,512 |x3 || 3x3,512 [x3 3x3,512 | x3
L 2720 L 27 0e | 1x1,2048 | 1x1, 2048 1x1,2048
1x1 average pool, 1000-d fc, softmax
FLOPs 1.8x10° | 3.6x10° | 3.8x10° | 7.6x10° |  11.3x10°

FLOPS for comparison: MobileNet (v1): 2.5x108

VGG: 19.6x10°7

Often see ablations done with a smaller Resnet, then experiments that “pull out

all the stops” with a heavier variant



Total World Dominance (on ImageNet and COCO)

method top-1 err. top-5 err.
VGG [41] (ILSVRC’14) - 8.431
GoogleNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 .1
PReLU-net [13] 21.59 5.71
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 571
ResNet-34 C 21.53 5.60
ResNet-50 20.74 3.25
ResNet-101 19.87 460
ResNet-152 19.38 4.49

Single Model Results

After 5 years, Resnet still ubiquitously used!

We will cover COCO later

Human top-5 error ~5%



Resnet v2 w/Pre-activation residual units

- N\ I
“Pre-activation
Residual Unit”

Original Residual unit

IE Allows for entire

network to recover
identity function (if we
ignore downsampling
layers)

/

Can’t recover identity
function from stacked
original Residual Units
because of RelLU

Better for backprop;
allows deeper models
to be trained (e.g.
1001-layer Resnet on

QI FAR) /<

Remember: before, we were implicitly assuming Batch Norm as part of the Conv

|dentity Mappings in Deep Residual Networks by He et al




What are all those layers doing!!?!

Answer: being very redundant! Let’s discuss a few ways to think about these
layers.

“While depth of representation has been posited as a primary reason for their
success, there are indications that these architectures defy a popular view of
deep learning as a hierarchical computation of increasingly abstract features at
each layer.”

Highway and Residual Networks Learn Unrolled Iterative Estimation, Greff et al




Dropping blocks from ResNet

Error when deleting layers

Test error when dropping any single block 68 I
Lo from residual network vs. VGG on CIFAR-10 osl :“
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dropped layer index Number of layers deleted

Weird but true fact: you can delete blocks from Resnet (even after training)
and expect performance to be roughly the same (!)

Residual Networks Behave Like Ensembles of Relatively Shallow Networks by Veit et al




Permuting Blocks from Resnet
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Residual Networks Behave Like Ensembles of Relatively Shallow Networks by Veit et al




Multipath Ensembling Interpretation

4 e )

Building block

Skip
connection

Residual
module

Simple Resnet with 3 residual units Equivalent “Unraveled View”

\—
Resnet behaves like an ensemble over an exponential collection of networks

consisting of paths through this unraveled view --- (though note that it is not
actually an ensemble.)
Residual Networks Behave Like Ensembles of Relatively Shallow Networks by Veit et al




lterative Estimation interpretation of Resnets

RESIDUAL CONNECTIONS ENCOURAGE ITERATIVE IN-

) ) . FERENCE
e Residual Connections Encourage lterative
. Stanistaw Jast bkil’z’*,D h A 'tz’*,N' las Ball: 3,V'k Ve o,
Inference by Jastrzebski et al Tong Che’ & Yoshua Bengio®®

! Jagiellonian University, Cracow, Poland
2 MILA, Université de Montréal, Canada
3 Facebook, Montreal, Canada

4 University of Bonn, Bonn, Germany

5 Aalto University, Finland

. . 6 CIFAR Senior Fell
e Highway and Residual Networks Learn - Equal Contribution

Unrolled Iterative Estimation by Greff et al

ABSTRACT

Residual networks (Resnets) have become a prominent architecture in deep learn-
ing. However, a comprehensive understanding of Resnets is still a topic of ongoing
research. A recent view argues that Resnets perform iterative refinement of fea-

Resnets both analytically and empirically. We formalize the notion of iterative re-
ly encourage fea-

We formalize the notion of iterative re- pssas wego from

s that Resnets are

finement in Resnets by showing that residual connections naturally encourage fea- [rer meemenr

havior in the first

tures of residual blocks to move along the negative gradient of loss as we go from [ Tt

ntation explosion

one blOCk to the next. ing strategies can




Quick Recap

e Residual Connections as a way to “easily” learn identity transformation
e Resnet Architectures with Basic and Bottleneck residual units

e Pre-activation residual units

e Layer redundancy, ensemble-like behavior and other theoretical

interpretations of Resnets



ImageNet since Residual Networks

e 2016: Ensembles of Inception and Resnet based models

e 2017: Squeeze and Excitation networks
Post 2017

e More emphasis on automating architecture design



Squeeze and Excitation

X

Residual

~

X

Idea: Use global image ResNet Module

context to selectively
emphasize/suppress channels

SE modules + Resnet variant
won Imagenet 2017

Squeeze-and-Excitation Networks by Hu et al
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called self-gating



Neural Architecture Search (NAS)

NAS circa 2017, 2018
EfficientNet-B7
841 moebaNet-C
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EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks by Tan & Le




Neural Architecture Search (NAS)

Input Block _| Block _| Block Block _| Block _| Block _| Block

— output

image — | 1 2 | 7| s 4 5 | | 6 | | 7

#Layers: N,

O il e /x.': .......................... ) :I.‘:::.‘\ Blocks are predefined Skeletons.

Search Space Per Block i:
ConvOp: dconv, conv, ...
KernelSize: 3x3, 5x5
SERatio: 0, 0.25, ...
SkipOp: identity, pool, ...
FilterSize: F,

T — ! ! : Contents in blue are searched

Three ingredients of a NAS system:
e Search space
e Search strategy
e Performance Estimation

Neural architecture search with reinforcement learning by Zoph et al

Learning transferable architectures for scalable image recognition by Zoph et al
Progressive Neural Architecture Search by Liu et al
MnasNet: Platform-Aware Neural Architecture Search for Mobile by Tan et al

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks by Tan et al

DARTS: Differentiable architecture search by Liu et al
Neural Architecture Search: A Survey by Elsken et al

Fig from MnasNet: Platform-Aware Neural Architecture Search for Mobile by Tan et al




ImageNet Coda

After 8 years (2017), ImageNet team declared victory, moved competition to

Kaggle

2010 2011

Number of
Entries

-

Ss

2012 2013

Classification
Errors (top-5)

\*s

2014

~ .

2015

=0

2016

Impact:

e 10x reduction of image classification error,
beating human level performance

e >15K citations (major underestimate of
impact)

e “Made neural nets cool again”

e Inspired many datasets --- “ImageNet of X"

ImageNet: Where have we been? Where are we going? by Fei Fei Li and Jia Deng




“This is not the end. It is not even the
beginning of the end. But it is, perhaps,
the end of the beginning.”

WINSTON CHURCHILL

(Quote from Fei Fei Li and Jia Deng, quoting Winston Churchill)



So what’s next?

Person
Scale




Next: Boxes, Segments, Human Pose

He Whil g

Based on a figure from Jia Deng and Kevin Murphy



