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What Is Tracking?



 



Tracking Implies Prediction
● Tracking a weather system:

not just telling you it’s raining
outside your house, but
whether it will rain tomorrow
(easy to guess if you’re in
Seattle)

● Tracking an airplane: an
estimate where it is currently
and where it will be delta-T
seconds from now

https://en.wikipedia.org/wiki/Floatplane

https://www.wunderground.com/forecast/us/wa/seattle/KWASEATT2713



Tracking Applications: Parameters

• Number of objects

• Types of objects

• Number of sensors

• Types of sensors

• Distance to sensor



Tracking Applications: Examples

body
motion

analysis

foot 
traffic 

analysis

bat census

1 object, articulated, 300 pixels tall

10 objects, articulated, 150 pixels tall

100 objects, 15 – 30 pixels tall



Factors that Make Tracking Hard

● (unknown) target dynamics:
how fast does the state
change?

● target observations/
measurements: how noisy and
(in)frequent?

vs.



Tracking Research circa 1975



Probabilistic Formulation



Probability Space

credit: https://en.wikipedia.org/wiki/Probability_space

sample space, 
all possible 
outcomes
e.g., {1, 2, 3, 4, 5, 6}

event space, e.g.,
set of all subsets of Ω 
including 
“die lands even” {2, 4, 6}

probability function
P(A) ≥ 0, A ∈
P(Ω) = 1, P(∅) = 0

triplet



Random variable X: a function

X: Ω → ℝ
For every Borel subset B of the 

real line X-1(B) in

Random Variables

DiscreteDiscrete Continuous



Stochastic Processes
Stochastic process is an indexed collection of random variables

discrete time continuous time

discrete time Markov process

https://en.wikipedia.org/wiki/Markov_chain 

ex. 1: Xt = Z * t2, Z ~ N(0,1)

t →X(t, ω) called sample path

ex. 2: Wiener process
a Gaussian process;
limit of random walk

 https://en.wikipedia.org/wiki/Wiener_process

https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Wiener_process


Probabilistic Formulation

[ K. Smith, “Bayesian methods for visual multi-object tracking with applications to human activity recognition,” 
2007. ]



Probabilistic Formulation

[ K. Smith, “Bayesian methods for visual multi-object tracking with applications to human activity recognition,” 
2007. ]

Graphical model for the multi-object tracking problem with T time steps



Probabilistic Formulation

[ K. Smith, “Bayesian methods for visual multi-object tracking with applications to human activity recognition,” 
2007. ]



Target Dynamics



Discrete Time LDS 

 Continuous model are difficult to realize
 Algorithms work at discrete time steps
 Measurements are acquired with certain rates

 In practice, discrete models are employed

 Discrete-time LDS are governed by

  is the state transition matrix 
  is the discrete-time input gain 

 Same observation function of continuous models

[ G. Grisetti, C. Stachniss, K. Arras, and W. Burgard, Univ. of Freiburg Course on Robotics & Target Tracking ]



Discrete Time LDS 

  Continuous model are difficult to realize 
  Algorithms work at discrete time steps 
  Measurements are acquired with certain rates 

  In practice, discrete models are employed 

  Discrete-time LDS are governed by 

                    is the state transition matrix 
                    is the discrete-time input gain 

  Same observation function of continuous models 

In target tracking, the input is unknown! 

[ G. Grisetti, C. Stachniss, K. Arras, and W. Burgard, Univ. of Freiburg Course on Robotics & Target Tracking ]



LDS Example – Throwing ball 

  We want to throw a ball and compute 
its trajectory 

  This can be easily done with an LDS 

  The ball‘s state shall be represented as 

  We ignore winds but consider the gravity force g 

  No floor constraints 

  We observe the ball with a noise-free position sensor 

[ G. Grisetti, C. Stachniss, K. Arras, and W. Burgard, Univ. of Freiburg Course on Robotics & Target Tracking ]



LDS Example – Throwing ball 

  Throwing a ball from s 
with initial velocity v 

  Consider only the gravity 
force, g, of the ball 

  State vector 

  Initial state 

  Input vector (scalar) 

  Measurement vector 

  Process matrices 

  Measurement matrix 

y 

s 

v 

x o 

[ G. Grisetti, C. Stachniss, K. Arras, and W. Burgard, Univ. of Freiburg Course on Robotics & Target Tracking ]



LDS Example – Throwing ball 

  Initial State 

  No noise 

[ G. Grisetti, C. Stachniss, K. Arras, and W. Burgard, Univ. of Freiburg Course on Robotics & Target Tracking ]



LDS Example – Throwing ball 

System evolution       Observations 

[ G. Grisetti, C. Stachniss, K. Arras, and W. Burgard, Univ. of Freiburg Course on Robotics & Target Tracking ]
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LDS Example – Throwing ball 

  Initial State 

  It’s windy and our sensor 
is imperfect: let’s add 
Gaussian process and 
observation noise 

[ G. Grisetti, C. Stachniss, K. Arras, and W. Burgard, Univ. of Freiburg Course on Robotics & Target Tracking ]
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[ G. Grisetti, C. Stachniss, K. Arras, and W. Burgard, Univ. of Freiburg Course on Robotics & Target Tracking ]



Tracking Is Filtering

Tracking Is Filtering



Tracking Is Filtering

Kalman Filter

source: https://en.wikipedia.org/wiki/Kalman_filter

https://en.wikipedia.org/wiki/Kalman_filter


Tracking Is Filtering

CONDENSATION

Figure 1. Kalman filter as density propagation: in the case of Gaussian prior, process and observation densities, and assuming linear dynamics,
the propagation process of Fig. 2 reduces to a diffusing Gaussian state density, represented completely by its evolving (multivariate) mean and
variance—precisely what a Kalman filter computes.

[ M. Isard and A. Blake, “CONDENSATION: Conditional Density Propagation for
Visual Tracking,” International Journal of Computer Vision, 1998 ]



Tracking Is Filtering

CONDENSATION

Figure 2. Probability density propagation: propagation is depicted here as it occurs over a discrete time-step. There are three phases: drift due
to the deterministic component of object dynamics; diffusion due to the random component; reactive reinforcement due to observations.

[ M. Isard and A. Blake, “CONDENSATION: Conditional Density Propagation for
Visual Tracking,” International Journal of Computer Vision, 1998 ]



Tracking Is Filtering

CONDENSATION

10 Isard and Blake

Figure 5. One time-step in theCondensation algorithm: Each of the three steps—drift-diffuse-measure—of the probabilistic propagation
process of Fig. 2 is represented by steps in theCondensation algorithm.

[ M. Isard and A. Blake, “CONDENSATION: Conditional Density Propagation for
Visual Tracking,” International Journal of Computer Vision, 1998 ]



Tracking Is Filtering

CONDENSATION

[ M. Isard and A. Blake, “CONDENSATION: Conditional Density Propagation for
Visual Tracking,” International Journal of Computer Vision, 1998 ]



Tracking Is Filtering

CONDENSATION

[ M. Isard and A. Blake, “CONDENSATION: Conditional Density Propagation for
Visual Tracking,” International Journal of Computer Vision, 1998 ]



Multiple-Hypothesis Tracking (MHT)
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Problem: 
• data association

(partitioning of observations)

• estimation of target tracks

{ }(1), , ( )kZ Z Z k= K

{ }0 , , Mt tw@ K

1 2

3

partition

seek most probable partition

Assumptions
• A1: one observation comes

from one target or clutter
• A2: one target yields zero or

one observation

• A3: one target yields zero or
several observations

frame 1
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frame 2

frame 3

         all obs.             obs. current frame            false alarms          track mkZ @ ( )Z k @ 0t @ mt @

Multiple-Hypothesis Tracking (MHT)



{ }1
( ) , ( )k
l l kq-

Ã= Q

Multiple-Hypothesis Tracking (MHT)

MHT integrates
– Track initiation and termination
– Track update with (or without) observation
– Accounting for false alarms
– Enforcement of assumptions (A1, A2)
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Hypothesis Probability

( )|k k
lP ZQ µ

Given N frames, enumerate finite set of hypotheses

Compute probability for each element of this set

P( parent hypothesis |  prior obs.)

P( current obs. |  current assignment)

P(current assignment |  parent hypothesis)´

´
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V @         num obs. frame k       1 if obs. from track, 0 otherwise         image size 

Probability of Observations given 
Assignment
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Probability of Assignment (1)

1

2

3

Hypothesis 1 Hypothesis 2

similarities:

2tno assignment for

 2 false alarms

We can sum probabilities for these hypotheses !

1track 2track
1track 2track
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2

3

2

1
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Probability of Assignment (2)
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Multi-Target Tracking
as Bayesian Clustering



Bayesian Clustering
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Modeling Infinitely Many Clusters

 How to model infinite mixture ?

Via Dirichlet process mixture: ( ) ( )1 2
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Key Densities

( ) ( )
1

1
, 1 ,

1

K
i

i k i
k

z K N z k
N

ad d
a

-

=

æ ö÷ç + + ÷ç ÷ç ÷+ - è øå

p (      |      ,     ) =iz \iz

new cluster num. obs. for cluster k

obs.   all assignments, other obs.    obs.     { obs. in cluster k } )

\ \( | , , , )i i i ip x z k z x l= { }( )| | , ,i j jp x x z k j i l= = ¹

a
assignment   all other assignments



Sampling the Posterior Distribution

p ( assignment | all other assignments,      ) 

p ( obs. | all obs. assignments,     )

p ( assignment | all other assignments, obs. ,           ) ,a l µ
´a

l

Algorithm:  Rao-Blackwellized Gibbs Sampler 

1. sample random permutation   { 1,…,N }

(a) For each obs. sample its cluster assignment

Given prior cluster assignments and cluster statistics

(b) Update that cluster’s statistics

2. delete empty clusters



Data Association as Clustering
( ) ( 1) ( 1)k k kx t Ax t Bu t= - + -

( ) ( ) ( )k k ky t Cx t w t= +
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cluster parameters

p ( obs | { obs in cluster k} ) =

p ( obs | { smoothed track k} )

time
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Assessment

true tracks

20,000 
iterations

7th most 
frequent 
assignment
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Pfinder: Real-Time Tracking
of the Human Body

Christopher Richard Wren, Ali Azarbayejani,

Trevor Darrell, and Alex Paul Pentland

Abstract —Pfinder is a real-time system for tracking people and
interpreting their behavior. It runs at 10Hz on a standard SGI Indy
computer, and has performed reliably on thousands of people in many
different physical locations. The system uses a multiclass statistical
model of color and shape to obtain a 2D representation of head and
hands in a wide range of viewing conditions. Pfinder has been
successfully used in a wide range of applications including wireless
interfaces, video databases, and low-bandwidth coding.

Index Terms —Blobs, blob tracking, real-time, person tracking, 3D
person tracking, segmentation, gesture recognition, mixture model,
MDL.

————————   ✦   ————————

1 INTRODUCTION

APPLICATIONS such as video databases, wireless virtual reality
interfaces, smart rooms, very-low-bandwidth video compression,
and security monitoring all have in common the need to track and
interpret human behavior. The ability to find and follow people’s
head, hands, and body is therefore an important visual problem.

To address this need we have developed a real-time system
called Pfinder (“person finder”) that substantially solves the
problem for arbitrarily complex but single-person, fixed-camera
situations. Use of image-to-image registration techniques [1], [10],
as a preprocessing step, allow Pfinder to function in the presence
of camera rotation and zoom, but real-time performance cannot be
achieved without special-purpose hardware. The system provides
interactive performance on general-purpose hardware, has been
tested on thousands of people in several installations around the
world, and has performed quite reliably.

Pfinder has been used as a real-time interface device for infor-
mation, and performance spaces [18], video games [18], and a dis-
tributed virtual reality populated by artificial life [4]. It has also
been used as a preprocessor for gesture recognition systems, in-
cluding one that can recognize a 40-word subset of American Sign
Language with near perfect accuracy [17].

Pfinder adopts a Maximum A Posteriori Probability (MAP) ap-
proach to detection and tracking of the human body using simple
2D models. It incorporates a priori knowledge about people pri-
marily to bootstrap itself and to recover from errors. The central
tracking and description algorithms, however, can be applied
equally well to tracking vehicles or animals, and in fact, we have
done informal experiments in these areas. Pfinder is a descendant
of the vision routines originally developed for the ALIVE system
[9], which performed person tracking but had no explicit model of
the person, and required a controlled background. Pfinder is a
more general, and more accurate, method for person segmenta-
tion, tracking, and interpretation.

(a)

(b)

(c)

Fig. 1. (a) Video input (n.b. color image, shown here in grayscale).
(b) segmentation. (c) A 2D representation of the blob statistics.

2 BACKGROUND

The notion of grouping atomic parts of a scene together to form blob-
like entities based on proximity and visual appearance is a natural
one, and has been of interest to visual scientists since the Gestalt psy-
chologists studied grouping criteria early in this century [6].

In modern computer vision processing, we seek to group image
pixels together, and to segment images based on visual coherence,
but the features obtained from such efforts are usually taken to be
the boundaries, or contours, of these regions rather than the re-
gions themselves. In very complex scenes, such as those contain-
ing people or natural objects, contour features have proven unreli-
able and difficult to find and use.

The blob representation that we use was developed by
Pentland and Kauth et al. [12], [8], as a way of extracting an ex-
tremely compact, structurally meaningful description of multi-
spectral satellite (MSS) imagery. In this method, feature vectors at
each pixel are formed by adding (x, y) spatial coordinates to the
spectral (or textural) components of the imagery. These are then
clustered so that image properties such as color and spatial simi-
larity combine to form coherent connected regions, or “blobs,”
in which all the pixels have similar image properties. This blob
description method is, in fact, a special case of recent Minimum
Description Length (MDL) algorithms [5], [16].

0162-8828/97/$10.00 © 1997 IEEE
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we can reliably determine the location of the head, one hand, and
the feet.

These locations are then integrated into blob-model building
process by using them as prior probabilities for blob creation and
tracking. For instance, when the face and hand image positions are
identified we can set up a strong prior probability for skin-colored
blobs.

The following subsections describe the blob-model building
process in greater detail.

4.1 Learning the Scene
Before the system attempts to locate people in a scene, it must
learn the scene. To accomplish this Pfinder begins by acquiring a
sequence of video frames that do not contain a person. Typically
this sequence is relatively long, a second or more, in order to ob-
tain a good estimate of the color covariance associated with each
image pixel. For computational efficiency, color models are built in
both the standard (Y, U, V) and brightness-normalized (U*, V*)
color spaces.

4.2 Detect Person
After the scene has been modeled, Pfinder watches for large de-
viations from this model. New pixel values are compared to the
known scene by measuring their Mahalanobis distance in color
space from the class at the appropriate location in the scene model,
as per (5).

If a changed region of the image is found that is of sufficient
size to rule out unusual camera noise, then Pfinder proceeds to
analyze the region in more detail, and begins to build up a blob
model of the person.

4.3 Building the Person Model
To initialize blob models, Pfinder uses a 2D contour shape analysis
that attempts to identify the head, hands, and feet locations. When
this contour analysis does identify one of these locations, then a
new blob is created and placed at that location. For hand and face
locations, the blobs have strong flesh-colored color priors. Other
blobs are initialized to cover clothing regions. The blobs intro-
duced by the contour analysis compete with all the other blobs to
describe the data.

When a blob can find no data to describe (as when a hand or
foot is occluded), it is deleted from the person model. When the
hand or foot later reappears, a new blob will be created by either
the contour process (the normal case) or the color splitting process.
This deletion/addition process makes Pfinder very robust to oc-
clusions and dark shadows. When a hand reappears after being
occluded or shadowed, normally only a few frames of video will
go by before the person model is again accurate and complete.

4.3.1 Integrating Blobs and Contours
The blob models and the contour analyzer produce many of the
same features (head, hands, feet), but with very different failure
modes. The contour analysis can find the features in a single frame
if they exist, but the results tend to be noisy. The class analysis pro-
duces accurate results, and can track the features where the contour
can not, but it depends on the stability of the underlying models and
the continuity of the underlying features (i.e., no occlusion).

The last stage of model building involves the reconciliation of
these two modes. For each feature, Pfinder heuristically rates the
validity of the signal from each mode. The signals are then
blended with prior probabilities derived from these ratings. This
allows the color trackers to track the hands in front of the body—

     

(a) (b)

     

(c) (d)

Fig. 3. (a) Chris Wren playing with Bruce Blumberg’s virtual dog in the ALIVE space. (b) Playing SURVIVE. (c) Real-time reading of American
Sign Language (with Thad Starner doing the signing). (d) Trevor Darrell demonstrating vision-driven avatars.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 26,2021 at 01:03:50 UTC from IEEE Xplore.  Restrictions apply. 
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Challenges of Finding Moving Regions

(a)

(b)

(c)

A homogeneous disk 
moves to the right.  Change is 
visible in the black regions 
only (Jt-1 in text).

The same thing happens 
one frame later (Jt).

Only the intersection
(Jt-1 ^ Jt) is certain to be fore-
ground in the middle image.

[ K. Toyama et al., “Wallflower: Principles and Practice of Background Maintenance,”
ICCV 1999 ]
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Pixel-Level Model

Wiener filter
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 are computed from the sample covariance 

[ K. Toyama et al., “Wallflower: Principles and Practice of Background Maintenance,”
ICCV 1999 ]
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Region Level

[ K. Toyama et al., “Wallflower: Principles and Practice of Background Maintenance,”
ICCV 1999 ]
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Comparison to Prior Methods

[ K. Toyama et al., “Wallflower: Principles and Practice of Background Maintenance,”
ICCV 1999 ]
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W 4 System

[ I. Haritaoglu, D. Harwood, and L.S. Davis, “W 4: Real-Time Surveillance
of People and Their Activities,” PAMI 2000 ]



[Background Modeling]

W 4 System

[ I. Haritaoglu, D. Harwood, and L.S. Davis, “W 4: Real-Time Surveillance
of People and Their Activities,” PAMI 2000 ]



[Background Modeling]

W 4 System

[ I. Haritaoglu, D. Harwood, and L.S. Davis, “W 4: Real-Time Surveillance
of People and Their Activities,” PAMI 2000 ]



[Background Modeling]

W 4 System

[ I. Haritaoglu, D. Harwood, and L.S. Davis, “W 4: Real-Time Surveillance
of People and Their Activities,” PAMI 2000 ]



Bayesian Methods
for Multi-Target Tracking



BraMBLe

yi

r i

(x,y,z)

[ M. Isard and J. MacCormick, “BraMBLe: A Bayesian Multiple-Blob Tracker,”
ICCV 2001 ]



BraMBLe

[ M. Isard and J. MacCormick, “BraMBLe: A Bayesian Multiple-Blob Tracker,”
ICCV 2001 ]



BraMBLe

(a) (b) (c)

(d) (e) (f)

[ M. Isard and J. MacCormick, “BraMBLe: A Bayesian Multiple-Blob Tracker,”
ICCV 2001 ]



K. Smith, D. Gatica-Perez, and J-M. Odobez, “Using Particles to Track Varying
Numbers of Interacting People,” CVPR 2005

variable 
num targets 

appearance 
(size)  change

identity ambiguity 
(similar pants)textured 

background

Using Particles to Track Varying 
Numbers of Interacting People



State and Observation Model

Multi-object 
configuration

{ }1, ,, ,t t K tX X X= K

Approximation
by samples ( )( )

1:
1

( | ) ,
N

n
t t n t t

n

p X Z X Xd
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» å

Filtering 
distribution

Observation tZ

1

1: 1 1 1: 1 1( | ) ( | ) ( | ) ( | )
t

t t t t t t t t t

X

p X Z p Z X p X X p X Z dX
-

- - - -µ ´ ò

multi-obj 
transition

K. Smith, D. Gatica-Perez, and J-M. Odobez, “Using Particles to Track Varying
Numbers of Interacting People,” CVPR 2005



Global Binary Observation Model
wrong:

reasonable:

( ) ( ),
1

| |
K

t t t k t
k

p Z X p Z X
=

=Õ

( )| ( | ) ( | )t t t t t tp Z X p Z X p Z X@ F B

Foreground recall

Foreground 
precision

Background 
precision

Background recall

K. Smith, D. Gatica-Perez, and J-M. Odobez, “Using Particles to Track Varying
Numbers of Interacting People,” CVPR 2005



Approximation via RJ MCMC

(1)
1,tX (2)

1,tX ( ) ( )
1, 2,,n n

t tX X ( )
1,

N
tX

RJ MCMC moves:  update    birth   swap  death

1:( | )t tp X Z

1t -

t

(1)
1tX -

(2)
1tX -

( )
1

N
tX -

(1)
tX (2)

tX ( )N
tX

( 1) ( 1)
1, 2,,n n

t tX X+ + ( 2)
1,

n
tX +

( )
1

n
tX -

( )n
tXframe

frame

 Samples within Markov chain for a given frame

K. Smith, D. Gatica-Perez, and J-M. Odobez, “Using Particles to Track Varying
Numbers of Interacting People,” CVPR 2005



Assessment

ranked 2nd 
compared with
KLT, 
Active Shapes,
face detector

Uncertainty about num. 
targets within MC but 
summarized by a point 
estimate 

Observation model poor 
match when sensor-to-
target range exhibits 
extreme variations

personal opinion

ranked 2nd compared 
with
KLT, 
Active Shapes,
face detector

K. Smith, D. Gatica-Perez, and J-M. Odobez, “Using Particles to Track Varying
Numbers of Interacting People,” CVPR 2005



RJ MCMC Model Selection (1)

, 1, ,m m M= KM
{ }

1

1, ,
M

m
m

M
=

´ÕK X

product 
space

RJ MCMC

1M 2M

1M 2M

Carlin & Chib, Bayesian model choice via MCMC, Journal of the Royal Statistical Society 
1995
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compare

RJ MCMC Model Selection (II)

incomparable

expand
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RJ MCMC Example
RBF regression

1m mm Mm

RJ MCMC moves:   merge  split   birth  death

how many kernels?

1 2
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m

+
= 1 ,n mum m b= -

2 ,n mum m b= + [ ], 0,1n mu : U

1
( 1| )q k k

k
+ =

1
( | 1)

1
q k k

k
+ =

+

1 1
splitJ

b b

é ù
ê ú= ê ú-ë û




