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Visual Tracking with Online Multiple Instance Learning
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[ B. Babenko, M.-H. Yang, and S. Belongie,
“Visual Tracking with Online Multiple Instance Learning,” CVPR 2009 ]
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Tracking-Learning-Detection

Fig. 1. Given a single bounding box defining the object location and extent in the initial frame (LEFT), our system tracks, learns, and detects the
object in real time. The red dot indicates that the object is not visible.

[ Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-Learning-Detection,”
PAMI 2012 ]



Tracking as Learning
ooeo

Tracking-Learning-Detection
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[ Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-Learning-Detection,”

PAMI 2012 |
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Tracking-Learning-Detection
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Fig. 7. lllustration of the examples output by the P-N experts. The third
row shows error compensation.

[ Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-Learning-Detection,’
PAMI 2012 ]



Tracking by Correlation

before Deep Learning
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Fast and Precise

Object Localization with Correlation Filters
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Given a query (left) find its match in the test image (right)
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Problem Definition

Learning stage:
@ Input: example signal(s) x in 1D or 2D
@ Output: a scoring function f : x' -+ R
Detection stage:
@ Input: Z, a “long” 1D signal or a “large” 2D image

@ Output: sub-signal z of Z for which f is highest
(size of z is the same as the size of training signal x)
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Approach |: Let the Filter be Idnetical to Query

F(x';x) =x"x




Intro Filter Learning Extensions Conclusions
ooeo 00000 0000000 oo

Approach |: Let the Filter be ldnetical to Query




Intro Filter Learning Extensions Conclusmns
ooeo 00000 0000000

Approach |: Let the Filter be ldnetical to Query




Intro Filter Learning Extensions Conclusmns
ooeo 00000 0000000

Approach |: Let the Filter be ldnetical to Query

4/19



Intro Filter Learning Extensions Conclusions
ooeo 00000 0000000 oo

Approach [: Let the Filter be ldentical to Query

@ correlation peak’s shape depends on the template structure
@ robust to deformation: “picks up” other bison in the scene
@ not discriminative: highlights car parts

4/19
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Details of Template-Matching

Template-matching can be faster in the frequency domain:

© compute Discrete Fourier Transform (DFT)
of the “big" image: ZD£>T2

DFT .
@ compute DFT of template: x — X (same size as

)

A~

sZ
@ point-wise multiply (taking Hermitian transpose) § = Z ® &/
© bring back to spatial domain: y = inverse-DFT(y)



Intro Filter Learning Extensions Conclusions
0000 ©0000 0000000 oo

Approach II: Optimize the Filter

@ use “many” templates during training

@ shape the desired filter response
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Approach II: Optimize the Filter

@ use “many” templates during training

@ shape the desired filter response

@ “Multivariant Technique for Multiclass Pattern Recognition,”
C. F. Hester et al., J. Applied Optics, 1980

@ "“Average of Synthetic Exact Filters,” Bolme et al., CVPR
2009

© "“Accurate Scale Estimation for Robust Visual Tracking,”
Danelljan et al., BMVC 2014

@ "High-Speed Tracking with Kernelized Correlation Filters,”
Henriques et al., PAMI 2015

© ‘"Zero-Aliasing Correlation Filters for Object Recognition,”
Fernandez et al., PAMI 2015 (one of co-authors in Dayton)
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Formulation as a Regression Problem

fx;w) =w'x

opt _ i AN Y 2
wt =min Y (F(x;) = yi)* + Allw]

i
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Formulation as a Regression Problem
T

f(x;w) =w'x

opt _ i AN Y 2
woPt = mminZ(f(X:) yi)” + Allwll
Define X such that its /-th row is x;, then :
for real-valued inputs : wP* = (XTX + AI)"1X Ty
for complex-valued inputs : w°P' = (XH X + AI1)"1xHy
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Formulation as a Regression Problem

fx;w) =w'x

opt __ .: N )2 2
w —m‘;nZ(f(X,) yi)" + Allwl|

Define X such that its /-th row is x;, then :

for real-valued inputs : wP* = (XTX + AI)"1X Ty
for complex-valued inputs : w°P' = (XH X + AI1)"1xHy

Remarks:
@ Brute-force solution of the linear system is expensive:
a 50x50 image patch yields a 2500 dim vector; if we have 2500
examples, matrix inversion becomes impractical in real time

@ Need a recipe for getting “good” training samples
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Intro Filter Learning Extensions
0000 00000

0000000 [e]e]

Obtaining Training Examples via Circular Shifts

Base sample
Shifted by 1 element
‘Shifted by 2 elements
C (= =) =
| Shifted by n—1 elements
Let X = C(x)

then X = Fdiag(X)F" and F is the DFT matrix
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Obtaining Training Examples via Circular Shifts

| Base sample
_—Shifted by 1 element
~Shifted by 2 elements

| Shifted by n—1 elements

Let X = C(x)
then X = Fdiag(X)F" and F is the DFT matrix
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Computationally-Efficient Solution

Recall, the problem we are solving:
find w such that for each example x;, the score f(x;;w) = y; The

closed-form solution takes the form of

A X O
W= ——
X ® x*

A

+ <

Notes:
@ only point-wise multiplications required
@ time complexity bound by the cost of DFT, i.e., O(nlog n)

@ compare to kernel ridge regression: O(n3)
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Learned Correlation Filter in Action
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Learned Correlation Filter in Action
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Learned Correlation Filter in Action

@ now, correlation peak’s shape follows the prescribed pattern
@ specialized to “our” bison, low response for the rest

@ low response on the vehicle

10/19
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Correlation Filter Extensions

multiple channels, e.g., FHOG
kernelized: linear, Gaussian, etc.

multiple spatial scales

control aliasing (due to finite signal extent)
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From Inner Products to Kernels

Thus far, similarity between vectors x’ and x defined as x” x’
Let ¢(x) map x into another space (typically higher-dim)

Define kernel function k(x',x) = ¢(x)T ¢(x')

In practice we want to compute k(x’,x) directly, avoiding ¢

12 /19
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Kernelized Correlation Filter

Base sample
Shifted by 1 element
-Shifted by 2 elements

Shifted by n—1 elements

given a kernel k : (x,x') — R,
define kernel correlation vector k' as

K* = k(x', P 1x),

where P is a cyclic shift operator
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Kernelized Correlation Filter

Key equations:
W = Z a,-go(x,-)
i

fz)=w'z= Za;k(z,x;)
i=1

y
R 1A

o =

A

f(z) =k?0oa
Notes
e Time complexity is again bound by the DFT, hence O(nlog n)

14 /19
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Multi-channel Correlation Filter

Suppose our signal comprises multiple channels ¢ =1, ..., cnax
Example: FHOG 31 channels: 3 x 9-bin histograms + 4 texture

@ Q: How expensive is kernel correlation?
@ A: Time complexity scales linearly with ¢pax

@ For linear kernel:

xx! . ~ A% A
k™ = inverse-DFT (ZC X © xc)

15/19
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FHOG Correlation Filter in Action (linear kernel)

@ FHOG cell is 4x4 pixels, thus x, y are smaller than template
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FHOG Correlation Filter in Action ||near kernel

@ FHOG cell is 4x4 pixels, thus x, y are smaller than template
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FHOG Correlation Filter in Action (linear kernel)

@ FHOG cell is 4x4 pixels, thus x, y are smaller than template
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FHOG Correlation Filter in Action (linear kernel)

@ FHOG cell is 4x4 pixels, thus x, y are smaller than template

@ correlation surface is strongly peaked in the training and test
images

@ unlike standard template matching, response is strong only for

that particular instance
16/19
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Practical consideraitons

Note: correlation filters defined thus far only “work” if the test
image has the same size as x

Q: how to correlate a filter with Z of size larger than x?

A:
@ Transform the filter back to spatial domain, i.e., transform

flz) =k o a

@ Modify the learned filter in the DFT domain:
pad with zeros to match the size of Z

17 /19
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Conclusions

Advantages of correlation filters:

@ good accuracy out of the box
@ controlled by a handful of “knobs”

o failure modes “easy” to understand
@ open-source implementations:
@ “Accurate Scale Estimation for Robust Visual Tracking,”
Danelljan et al.,, BMVC 2014: MATLAB, C++
@ "High-Speed Tracking with Kernelized Correlation Filters,”
Henriques et al., PAMI 2015: MATLAB

© ‘"Correlation Filters with Limited Boundaries,” Galoogahi et
al.,, CVPR 2015: MATLAB
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[ L. Bertinetto et al., “Fully-Convolutional Siamese Networks for Object
Tracking,” ECCV 2016 ]
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Fig. 2. Training pairs extracted from the same video: exemplar image and correspond-
ing search image from same video. When a sub-window extends beyond the extent of
the image, the missing portions are filled with the mean RGB value.

[ L. Bertinetto et al., “Fully-Convolutional Siamese Networks for Object
Tracking,” ECCV 2016 ]
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Success plots of OPE
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[ L. Bertinetto et al., “Fully-Convolutional Siamese Networks for Object
Tracking,” ECCV 2016 ]
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End-to-end representation learning for

Correlation Filter based tracking
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[ J. Valmadre et al., “End-to-end representation learning for Correlation
Filter based tracking,” CVPR 2017 |
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Multi-Target Tracking

via Graph-Theoretic Methods
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Global Data Association for Multi-Object Tracking
Using Network Flows

Detection input Tracking result

[ L. Zhang, Y. Li, and R. Nevatia, “Global Data Association for
Multi-Object Tracking Using Network Flows,” CVPR 2008 |
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Global Data Association for Multi-Object Tracking

Using Network Flows

T* = argmaxP(T|X)
T
= argmax P(X|T)P(7
T

= argmaxHP(xL\T)P(T) (1)
T 3

T = argmaxHP(xJT) H P(Ty)
T K

TReT
SLTNTi =0,k £1 3)
- 1-8 I eT,xi €T
PelT) = { Bi otherwise @

P(Te) = P({Xrg,Xpys -3 X, })
= Pentr(Xro) Prink (Xpy |Xno ) Prink (Xpes X1y )
oo Pring (X, Xy, 1) Peait (X1, ) (5)

[ L. Zhang, Y. Li, and R. Nevatia, “Global Data Association for
Multi-Object Tracking Using Network Flows,” CVPR 2008 |
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Global Data Association for Multi-Object Tracking
Using Network Flows

(u; Vi)l (v, u‘-) > (s,u) & (v;.1)

Observation edges  Transition edges  Enter/exit edges

[ L. Zhang, Y. Li, and R. Nevatia, “Global Data Association for
Multi-Object Tracking Using Network Flows,” CVPR 2008 ]
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Multiple Object Tracking Using

K-Shortest Paths Optimization
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[ J. Berclaz et al., “Multiple Object Tracking Using K-Shortest Paths
Optimization,” PAMI 2011 ]
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Multiple Object Tracking Using

K-Shortest Paths Optimization
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[ J. Berclaz et al., “Multiple Object Tracking Using K-Shortest Paths
Optimization,” PAMI 2011 |



Multi-Target Tracking via Graph-Theoretic Methods
00000®00

Multiple Object Tracking Using

K-Shortest Paths Optimization

Maximize Zlog(1 p’p) Z fj

2 JEN (4)
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[ J. Berclaz et al., “Multiple Object Tracking Using
K-Shortest Paths Optimization,” PAMI 2011 |
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Multiple Object Tracking Using

K-Shortest Paths Optimization
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“compl. red.” means complexity reduction i.e., pruned detections

[ J. Berclaz et al., “Multiple Object Tracking Using K-Shortest Paths Optimization,”
PAMI 2011 ]
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Multiple Object Tracking Using
K-Shortest Paths Optimization

[ J. Berclaz et al., “Multiple Object Tracking Using K-Shortest Paths Optimization,”
PAMI 2011 ]



Multi-Target Tracking

via Graph Neural Networks
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Signal processing on graphs: definitions

We are interested in signals defined on an
undirected, connected, weighted graph
G ={V,E,W}, with vertices V (where
w ll s | [V| = N), edges &£, and a weighted adjacency
I matrix W. If vertices i and j are linked by an
edge e = (i, j), then W; ; represents the
weight of the edge; otherwise, W; ; = 0.

A signal or function f : V — R defined on the vertices of the graph
may be represented as a vector f in RN, where the i*" component
of the vector f represents the function value at the i vertex in V.
[19] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of signal

processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE
Signal Process. Mag., 30(3):83-98, 2013.
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The non-normalized graph Laplacian

@ The non-normalized graph Laplacian, also called the
combinatorial graph Laplacian, is defined ast : =D — W,
where the degree matrix D is a diagonal matrix whose i

diagonal element d; is equal to the sum of the weights of all

of its incident edges.
@ The graph Laplacian is a difference operator: for any f € RV

(LR (@) = > Wislr() — FG)),
JEN;
where N; is the set of vertices connected v; by an edge.

@ Since L is real and symmetric, it has a complete set of
orthonormal eigenvectors, {u;};—o,... n—1. These eigenvectors
have associated real, non-negative eigenvalues {\;};=o,.. nv—1
satisfying tu; = Aug, for [ =0,...,N — 1.
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A graph Fourier transform

We can define the graph Fourier transform f of any function
f € RN on the vertices of G as the expansion of f in terms of the
eigenvectors of the graph Laplacian:

N

FOu) = (Fu) = > F(i)ui (i)

=1

The inverse graph Fourier transform is then given by
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Modern GNNSs: desiderata

Input graph signals Feature i Classifi Output signals
put graph sig — ' — —> P egglabels

e.g. bags of words Convolutional layers Fully connected layers

[ JoN NoNoN Noi

Graph signal filtering
1. Convolution
2. Non-linear activation

Graph coarsening
3. Sub-sampling
4. Pooling

@ strictly localized filters
@ permutation invariance

@ low computational complexity

Figure credit: [6] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS'16, page 3844-3852, Red Hook, NY, USA, 2016. Curran Associates Inc.
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GNN s for Solving Network Flow (approximately)

Approximating the network max-flow algorithm with a GNN [2]

[2] G. Brasé and L. Leal-Taixé. Learning a neural solver for multiple object tracking. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.
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GNNis for Joint Detect and Data Association

(a) Overview of the proposed network

(b) Detection and Data Association

GNN Layer [ = 1

Toaton
ead
=
4 Embedding
Fia § g I 1\4’ Head
- t
g More ...
BE |, [(c) Node Feature Aggregation
55
Backbone
Detection &
7 | Association
F, 7, 7

© GNN nodes: possible detections at time t and tracklets from
timet —1

@ GNN edges between possible detections and tracklets

© possible detections are defined at every pixel of Mf

[23] Y. Wang, K. Kitani, and X. Weng. Joint Object Detection and Multi-Object Tracking with Graph Neural
Networks. arXiv:2006.13164, 2020.
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“Visual Object Tracking and Retrieval

with Natural Language Description”
Guest Lecturer: Qi Feng, Boston University

TRACK
THE SILVER
SEDAN
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[ Q. Feng et al., "Real-time Visual Object Tracking with Natural
Language Description,” WACV 2020 ]





