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Abstract

In this paper, we address the problem of learning an
adaptive appearance model for object tracking. In partic-
ular, a class of tracking techniques called “tracking by de-
tection” have been shown to give promising results at real-
time speeds. These methods train a discriminative classifier
in an online manner to separate the object from the back-
ground. This classifier bootstraps itself by using the cur-
rent tracker state to extract positive and negative examples
from the current frame. Slight inaccuracies in the tracker
can therefore lead to incorrectly labeled training examples,
which degrades the classifier and can cause further drift.
In this paper we show that using Multiple Instance Learn-
ing (MIL) instead of traditional supervised learning avoids
these problems, and can therefore lead to a more robust
tracker with fewer parameter tweaks. We present a novel
online MIL algorithm for object tracking that achieves su-
perior results with real-time performance.

1. Introduction

Object tracking has many practical applications (e.g.
surveillance, HCI) and has long been studied in computer
vision. Although there has been some success with building
domain specific trackers (e.g. faces [6], humans [16]), track-
ing generic objects has remained very challenging. Gener-
ally there are three components to a tracking system: image
representation (e.g. filter banks [17], subspaces [21], etc.),
appearance model, and motion model; although in some
cases these components are merged. In this work we fo-
cus mainly on the appearance model since this is usually
the most challenging to design.

Although many tracking methods employ static appear-
ance models that are either defined manually or trained us-
ing the first frame [16, 8, 1], these methods tend to have
difficulties tracking objects that exhibit significant appear-
ance changes. It has been shown that in many scenarios
an adaptive appearance model, which evolves during the
tracking process as the appearance of the object changes,
is the key to good performance [17, 21]. Another choice in
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Figure 1. Updating a discriminative appearance model: (A) Using a
single positive image patch to update a traditional discriminative classifier.
The positive image patch chosen does not capture the object perfectly. (B)
Using several positive image patches to update a traditional discriminative
classifier. This can confuse the classifier causing poor performance. (C)
Using one positive bag consisting of several image patches to update a MIL
classifier. See Section 3 for empirical results of these three strategies.

the design of appearance models is whether to model only
the object [5, 21], or both the object and the background
[18, 14, 19, 4, 3, 24, 7]. Many of the latter approaches have
shown that training a model to separate the object from the
background via a discriminative classifier can often achieve
superior results. Because these methods have a lot in com-
mon with object detection they have been termed “tracking
by detection”. In particular, the recent advances in face de-
tection [22] have inspired some successful real-time track-
ing algorithms [14, 19].

A major challenge that is often not discussed in the liter-
ature is how to choose positive and negative examples when
updating the adaptive appearance model. Most commonly
this is done by taking the current tracker location as one
positive example, and sampling the neighborhood around
the tracker location for negatives. If the tracker location is
not precise, however, the appearance model ends up getting
updated with a sub-optimal positive example. Over time
this can degrade the model, and can cause drift. On the
other hand, if multiple positive examples are used (taken
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tion of an image patch in feature space) and y is a binary
variable indicating the presence of the object of interest in
that image patch. At every time step t, our tracker maintains
the object location l∗t . Let l(x) denote the location of image
patch x. For each new frame we crop out a set of image
patches Xs = {x|s > ||l(x)− l∗t−1||} that are within some
search radius s of the current tracker location, and compute
p(y|x) for all x ∈ Xs. We then use a greedy strategy to
update the tracker location:

l∗t = l
(
argmax
x∈Xs

p(y|x)
)

(1)

In other words, we do not maintain a distribution of the tar-
get’s location at every frame; we instead use a motion model
where the location of the tracker at time t is equally likely
to appear within a radius s of the tracker location at time
(t− 1):

p(l∗t |l∗t−1) ∝
{

1 if ||l∗t − l∗t−1|| < s
0 otherwise (2)

This could be extended with something more sophisticated,
such as a particle filter, as is done in [24, 21]; however, we
again emphasize that our focus is on the appearance model.
Furthermore, note that it is straightforward to track other
motion information such as scale and rotation, and we chose
to track only the location for simplicity and computational
efficiency reasons. It is also worth noting that the Haar-like
features we use are fairly invariant to moderate rotation and
scale changes.

Once the tracker location is updated, we proceed to up-
date the appearance model. We crop out a set of patches
Xr = {x|r > ||l(x) − l∗t ||}, where r < s is an inte-
ger radius, and label this bag positive (recall that in MIL
we train the algorithm with labeled bags). In contrast, if
a standard learning algorithm were used, there would be
two options: set r = 1 and use this as a single positive
instance, or set r > 1 and label all these instances posi-
tive. For negatives we crop out patches from an annular
region Xr,β = {x|β > ||l(x) − l∗t || > r}, where r is
same as before, and β is another scalar. Since this gener-
ates a potentially large set, we then take a random subset
of these image patches and label them negative. We place
each negative example into its own negative bag1. Details
on how these parameters were set are in Section 3, although
we use the same parameters throughout all the experiments.
Fig. 1 contains an illustration comparing appearance model
updates using MIL and a standard learning algorithm. We
continue with a more detailed review of MIL.

1Note that we could place all negative examples into a single negative
bag. Our intuition is that there is no ambiguity about negative examples,
so placing them into separate bags makes more sense. Furthermore the
particular loss function we choose is not affected by this choice.

2.2. Multiple Instance Learning

Traditional discriminative learning algorithms for train-
ing a binary classifier that estimates p(y|x) require a train-
ing data set of the form {(x1, y1), . . . , (xn, yn)} where
xi is an instance (in our case a feature vector computed
for an image patch), and yi ∈ {0, 1} is a binary label.
In the Multiple Instance Learning framework the training
data has the form {(X1, y1), . . . , (Xn, yn)} where a bag
Xi = {xi1, . . . , xim} and yi is a bag label. The bag labels
are defined as:

yi = max
j

(yij) (3)

where yij are the instance labels, which are assumed to ex-
ist, but are not known during training. In other words, a
bag is considered positive if it contains at least one posi-
tive instance. Numerous algorithms have been proposed for
solving the MIL problem [9, 2, 23]. The algorithm that is
most closely related to our work is the MILBoost algorithm
proposed by Viola et al. in [23]. MILBoost uses the the gra-
dient boosting framework [13] to train a boosting classifier
that maximizes the log likelihood of bags:

logL =
∑

i

(
log p(yi|Xi)

)
(4)

Notice that the likelihood is defined over bags and not in-
stances, because instance labels are unknown during train-
ing, and yet the goal is to train an instance classifier that
estimates p(y|x). We therefore need to express p(yi|Xi),
the probability of a bag being positive, in terms of its in-
stances. In [23] the Noisy-OR (NOR) model is adopted for
doing this:

p(yi|Xi) = 1−
∏

j

(
1− p(yi|xij)

)
(5)

The equation above has the desired property that if one of
the instances in a bag has a high probability, the bag prob-
ability will be high as well. Note that MILBoost is a batch
algorithm (meaning it needs the entire training data at once)
and cannot be trained in an online manner as we need in our
tracking application (we refer the reader to [23] for further
details on MILBoost). Nevertheless, we adopt the loss func-
tion in Equation 4 and the bag probability model in Equa-
tion 5 when we develop our online MIL algorithm in Sec-
tion 2.4.

2.3. Related Work in Online Boosting

Our algorithm for online MIL is based on the boosting
framework [11] and is related to the work on Online Ad-
aBoost [20] and its adaptation in [14]. The goal of boosting
is to combine many weak classifiers h(x) (usually decision
stumps) into an additive strong classifier:

H(x) =
K∑

k=1

αkhk(x) (6)
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learning approaches, where a single example is considered
independent from other examples [1]. This opens interest-
ing questions of how to effectively exploit the information
in the video during learning.

The second contribution of the paper is the new learning
paradigm called P-N learning. The detector is evaluated in
every frame of the video. Its responses are analyzed by two
types of “experts”: 1) P-expert—recognizes missed detec-
tions, and 2) N-expert—recognizes false alarms. The
estimated errors augment a training set of the detector,
and the detector is retrained to avoid these errors in the
future. As with any other process, the P-N experts are also
making errors themselves. However, if the probability of an
expert’s error is within certain limits (which will be
analytically quantified), the errors are mutually compen-
sated, which leads to stable learning.

The third contribution is the implementation. We show
how to build a real-time long-term tracking system based on
the TLD framework and the P-N learning. The system tracks,
learns, and detects an object in a video stream in real time.

The fourth contribution is the extensive evaluation of the
state-of-the-art methods on benchmark data sets, where our
method achieved saturated performance. Therefore, we
have collected and annotated new, more challenging data
sets, where a significant improvement over state of the art
was achieved.

The rest of the paper is organized as follows: Section 2
reviews the work related to the long-term tracking. Section 3
introduces the TLD framework and Section 4 proposes the
P-N learning. Section 5 comments on the implementation of
TLD. Section 6 then performs a number of comparative
experiments. The paper finishes with contributions and
suggestions for future research.

2 RELATED WORK

This section reviews the related approaches for each of the
component of our system. Section 2.1 reviews the object
tracking with the focus on robust trackers that perform
online learning. Section 2.2 discusses the object detection.
Finally, Section 2.3 reviews relevant machine learning
approaches for training of object detectors.

2.1 Object Tracking

Object tracking is the task of estimation of the object motion.
Trackers typically assume that the object is visible through-
out the sequence. Various representations of the object are
used in practice, for example, points [2], [3], [4], articulated
models [5], [6], [7], contours [8], [9], [10], [11], or optical flow
[12], [13], [14]. Here, we focus on the methods that represent

the objects by geometric shapes and their motion is estimated

between consecutive frames, i.e., the so-called frame-to-

frame tracking. Template tracking is the most straightfor-

ward approach in that case. The object is described by a

target template (an image patch, a color histogram) and the

motion is defined as a transformation that minimizes

mismatch between the target template and the candidate

patch. Template tracking can be either realized as static [15]

(when the target template does not change) or adaptive [2],

[3] (when the target template is extracted from the previous

frame). Methods that combine static and adaptive template

tracking have been proposed [16], [17], [18] as well as

methods that recognize “reliable” parts of the template [19],

[20]. Templates have limited modeling capabilities as they

represent only a single appearance of the object. To model

more appearance variations, the generative models have

been proposed. The generative models are either built offline

[21] or during runtime [22], [23]. The generative trackers

model only the appearance of the object and, as such, often

fail in cluttered background. In order to alleviate this

problem, recent trackers also model the environment where

the object moves. Two approaches to environment modeling

are often used. First, the environment is searched for

supporting the object motion, which is correlated with the

object of interest [24], [25]. These supporting objects then

help in tracking when the object of interest disappears from

the camera view or undergoes a difficult transformation.

Second, the environment is considered as a negative class

against which the tracker should discriminate. A common

approach of discriminative trackers is to build a binary

classifier that represents the decision boundary between the

object and its background. Static discriminative trackers [26]

train an object classifier before tracking, which limits their

applications to known objects. Adaptive discriminative

trackers [27], [28], [29], [30] build a classifier during tracking.

The essential phase of adaptive discriminative trackers is the

update: The close neighborhood of the current location is used

to sample positive training examples, distant surrounding of

the current location is used to sample negative examples, and

these are used to update the classifier in every frame. It has

been demonstrated that this updating strategy handles

significant appearance changes, short-term occlusions, and

cluttered background. However, these methods also suffer

from drift and fail if the object leaves the scene for longer than

expected. To address these problems, the update of the

tracking classifier has been constrained by an auxiliary

classifier trained in the first frame [31] or by training a pair of

independent classifiers [32], [33].
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Fig. 1. Given a single bounding box defining the object location and extent in the initial frame (LEFT), our system tracks, learns, and detects the
object in real time. The red dot indicates that the object is not visible.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 26,2021 at 00:59:19 UTC from IEEE Xplore.  Restrictions apply. 
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image to localize all appearances that have been observed
and learned in the past. As with any other detector, the
detector makes two types of errors: false positives and false
negative. Learning observes the performance of both tracker
and detector, estimates detector’s errors, and generates
training examples to avoid these errors in the future. The
learning component assumes that both the tracker and the
detector can fail. By virtue of the learning, the detector
generalizes to more object appearances and discriminates
against background.

4 P-N LEARNING

This section investigates the learning component of the TLD
framework. The goal of the component is to improve the
performance of an object detector by online processing of a
video stream. In every frame of the stream we wish to
evaluate the current detector, identify its errors, and update
it to avoid these errors in the future. The key idea of P-N
learning is that the detector errors can be identified by two
types of “experts.” P-expert identifies only false negatives,
N-expert identifies only false positives. Both of the experts
make errors themselves; however, their independence
enables mutual compensation of their errors.

Section 4.1 formulates the P-N learning as a semi-
supervised learning method. Section 4.2 models the P-N
learning as a discrete dynamical system and finds condi-
tions under which the learning guarantees improvement of
the detector. Section 4.3 performs several experiments with
synthetically generated experts. Finally, Section 4.4 applies
the P-N learning to training object detectors from video and
proposes experts that could be used in practice.

4.1 Formalization

Let x be an example from a feature space X and y be a label
from a space of labels Y ¼ f�1; 1g. A set of examples X is
called an unlabeled set, Y is called a set of labels, and L ¼
fðx; yÞg is called a labeled set. The input to the P-N learning
is a labeled set Ll and an unlabeled set Xu, where l� u.
The task of P-N learning is to learn a classifier f : X ! Y
from labeled set Ll and bootstrap its performance by the
unlabeled set Xu. Classifier f is a function from a family F
parameterized by �. The family F is subject to implemen-
tation and is considered fixed in training, the training
therefore corresponds to estimation of the parameters �.

The P-N learning consists of four blocks.

1. A classifier to be learned.
2. Training set—a collection of labeled training examples.

3. Supervised training—a method that trains a classifier
from a training set.

4. P-N experts—functions that generate positive and
negative training examples during learning. See
Fig. 3 for illustration.

The training process is initialized by inserting the labeled
set L to the training set. The training set is then passed to
supervised learning, which trains a classifier, i.e., estimates
the initial parameters �0. The learning process then
proceeds by iterative bootstrapping. In iteration k, the
classifier trained in previous iteration classifies the entire
unlabeled set, yku ¼ fðxuj�k�1Þ for all xu 2 Xu. The classifi-
cation is analyzed by the P-N experts, which estimate
examples that have been classified incorrectly. These
examples are added with changed labels to the training
set. The iteration finishes by retraining the classifier, i.e.,
estimation of �k. The process iterates until convergence or
other stopping criterion.

The crucial element of P-N learning is the estimation of the
classifier errors. The key idea is to separate the estimation of
false positives from the estimation of false negatives. For this
reason, the unlabeled set is split into two parts based on the
current classification and each part is analyzed by an
independent expert. P-expert analyzes examples classified
as negative, estimates false negatives, and adds them to
training set with positive label. In iteration k, P-expert
outputsnþðkÞpositive examples. N-expert analyzes examples
classified as positive, estimates false positives, and adds
them with negative label to the training set. In iteration k, the
N-expert outputs n�ðkÞ negative examples. The P-expert
increases the classifier’s generality. The N-expert increases
the classifier’s discriminability.

Relation to supervised bootstrap. To put the P-N learning
into broader context, let us consider that the labels of set Xu

are known. Under this assumption it is straightforward to
recognize misclassified examples and add them to the
training set with correct labels. Such a strategy is commonly
called (supervised) bootstrapping [56]. A classifier trained
using such supervised bootstrap focuses on the decision
boundary and often outperforms a classifier trained on
randomly sampled training set [56]. The same idea of
focusing on the decision boundary underpins the P-N
learning with the difference that the labels of the set Xu are
unknown. P-N learning can therefore be viewed as a
generalization of standard bootstrap to an unlabeled case
where labels are not given but rather estimated using the P-N
experts. As with any other process, the P-N experts also make
errors by estimating the labels incorrectly. Such errors
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Fig. 3. The block diagram of the P-N learning.Fig. 2. The block diagram of the TLD framework.
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example. N-expert identifies a maximally confident patch
(denoted by a red star) and labels all other detections as
negative. Notice that the N-expert is discriminating against
another car and, in addition, corrected the error made by
the P-expert in time tþ 2.

5 IMPLEMENTATION OF TLD

This section describes our implementation of the TLD
framework. The block diagram is shown in Fig. 8.

5.1 Prerequisites

At any time instance, the object is represented by its state.
The state is either a bounding box or a flag indicating that
the object is not visible. The bounding box has a fixed aspect
ratio (given by the initial bounding box) and is parameter-
ized by its location and scale. Other parameters such as in-
plane rotation are not considered. Spatial similarity of two
bounding boxes is measured using overlap, which is defined
as a ratio between intersection and union.

A single instance of the object’s appearance is repre-
sented by an image patch p. The patch is sampled from an
image within the object bounding box and then is
resampled to a normalized resolution (15� 15 pixels)
regardless of the aspect ratio. Similarity between two
patches pi; pj is defined as

Sðpi; pjÞ ¼ 0:5ðNCCðpi; pjÞ þ 1Þ; ð5Þ

where NCC is a Normalized Correlation Coefficient.
A sequence of object states defines a trajectory of an object

in a video volume as well as the corresponding trajectory in
the appearance (feature) space. Note that the trajectory is
fragmented as the object may not be visible.

5.2 Object Model

Object model M is a data structure that represents the object
and its surrounding observed so far. It is a collection of
positive and negative patches, M ¼ fpþ1 ; pþ2 ; . . . ; pþm; p

�
1 ;

p�2 ; . . . ; p�n g, where pþ and p� represent the object and
background patches, respectively. Positive patches are
ordered according to the time when the patch was added
to the collection. pþ1 represents the first positive patch added
to the collection, pþm is the positive patch added last.

Given an arbitrary patch p and object model M, we
define several similarity measures.

1. Similarity with the positive nearest neighbor,
Sþðp;MÞ ¼ maxpþi 2MSðp; p

þ
i Þ.

2. Similarity with the negative nearest neighbor,
S�ðp;MÞ ¼ maxp�i 2MSðp; p

�
i Þ.

3. Similarity with the positive nearest neighbor con-
sidering 50 percent earliest positive patches,
Sþ50%ðp;MÞ ¼ maxpþi 2M^i<m

2
Sðp; pþi Þ.

4. Relative similarity, Sr ¼ Sþ

SþþS� . Relative similarity
ranges from 0 to 1, higher values mean more
confident that the patch depicts the object.

5. Conservative similarity, Sc ¼ Sþ
50%

Sþ
50%
þS� . Conservative

similarity ranges from 0 to 1. High value of Sc mean

more confidence that the patch resembles appear-

ance observed in the first 50 percent of the positive

patches.

Nearest neighbor classifier. The similarity measures
ðSr; ScÞ are used throughout TLD to indicate how much
an arbitrary patch resembles the appearances in the
model. The Relative similarity is used to define a nearest
neighbor classifier. A patch p is classified as positive if
Srðp;MÞ > �NN; otherwise the patch is classified as negative.
A classification margin is defined as Srðp;MÞ � �NN.
Parameter �NN enables tuning the NN classifier either
toward recall or precision.

Model update. To integrate a new labeled patch to the
object model we use the following strategy: The patch is
added to the collection only if the its label estimated by NN
classifier is different from the label given by the P-N
experts. This leads to a significant reduction of accepted
patches at the cost of coarser representation of the decision
boundary. Therefore, we improve this strategy by also
adding patches where the classification margin is smaller
than �. With larger �, the model accepts more patches
which leads to better representation of the decision
boundary. In our experiments, we use � ¼ 0:1, which
compromises the accuracy of representation and the speed
of growing of the object model. Exact setting of this
parameter is not critical.

5.3 Object Detector

The detector scans the input image by a scanning window
and for each patch decides about the presence or absence
of the object.

Scanning-window grid. We generate all possible scales
and shifts of an initial bounding box with the following
parameters: scales step ¼ 1:2, horizontal step ¼ 10 percent
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Fig. 7. Illustration of the examples output by the P-N experts. The third
row shows error compensation.

Fig. 8. Detailed block diagram of the TLD framework.
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Fast and Precise
Object Localization with Correlation Filters
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Intro Filter Learning Extensions Conclusions

Problem Definition

Learning stage:

Input: example signal(s) x in 1D or 2D

Output: a scoring function f : x′ → R
Detection stage:

Input: Z, a “long” 1D signal or a “large” 2D image

Output: sub-signal z of Z for which f is highest
(size of z is the same as the size of training signal x)
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f (x′; x)
.

= xTx′

x

correlation peak’s shape depends on the template structure
robust to deformation: “picks up” other bison in the scene
not discriminative: highlights car parts
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Approach I: Let the Filter be Identical to Query

f (x′; x)
.

= xTx′

x

correlation peak’s shape depends on the template structure
robust to deformation: “picks up” other bison in the scene
not discriminative: highlights car parts
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Details of Template-Matching

Template-matching can be faster in the frequency domain:

1 compute Discrete Fourier Transform (DFT)

of the “big” image: Z
DFT→ Ẑ

2 compute DFT of template: x
DFT→ x̂ (same size as Ẑ)

3 point-wise multiply (taking Hermitian transpose) ŷ = Ẑ� x̂H

4 bring back to spatial domain: y = inverse-DFT(ŷ)
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Approach II: Optimize the Filter

use “many” templates during training

shape the desired filter response

1 “Multivariant Technique for Multiclass Pattern Recognition,”
C. F. Hester et al., J. Applied Optics, 1980

2 “Average of Synthetic Exact Filters,” Bolme et al., CVPR
2009

3 “Accurate Scale Estimation for Robust Visual Tracking,”
Danelljan et al., BMVC 2014

4 “High-Speed Tracking with Kernelized Correlation Filters,”
Henriques et al., PAMI 2015

5 “Zero-Aliasing Correlation Filters for Object Recognition,”
Fernandez et al., PAMI 2015 (one of co-authors in Dayton)
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Formulation as a Regression Problem

f (x;w)
.

= wTx

wopt = min
w

∑
i

(f (xi )− yi )
2 + λ‖w‖2

Define X such that its i-th row is xi , then :

for real-valued inputs : wopt = (XTX + λI)−1XTy

for complex-valued inputs : wopt = (XHX + λI)−1XHy

Remarks:

Brute-force solution of the linear system is expensive:
a 50x50 image patch yields a 2500 dim vector; if we have 2500
examples, matrix inversion becomes impractical in real time

Need a recipe for getting “good” training samples
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Let X = C (x)
then X = Fdiag(x̂)FH and F is the DFT matrix
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Computationally-Efficient Solution

Recall, the problem we are solving:
find w such that for each example xi , the score f (xi ;w) = yi The

closed-form solution takes the form of

ŵ =
x̂∗ � ŷ

x̂� x̂∗ + λ

Notes:

only point-wise multiplications required

time complexity bound by the cost of DFT, i.e., O(n log n)

compare to kernel ridge regression: O(n3)
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Learned Correlation Filter in Action

now, correlation peak’s shape follows the prescribed pattern

specialized to “our” bison, low response for the rest

low response on the vehicle
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Correlation Filter Extensions

multiple channels, e.g., FHOG

kernelized: linear, Gaussian, etc.

multiple spatial scales

control aliasing (due to finite signal extent)
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From Inner Products to Kernels

Thus far, similarity between vectors x′ and x defined as xTx′

Let ϕ(x) map x into another space (typically higher-dim)

Define kernel function k(x′, x)
.

= ϕ(x)Tϕ(x′)

In practice we want to compute k(x′, x) directly, avoiding ϕ

12 / 19
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Kernelized Correlation Filter

given a kernel k : (x, x′) −→ R,
define kernel correlation vector kxx

′
as

kxx
′

i
.

= k(x′,P i−1x),

where P is a cyclic shift operator

13 / 19
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Kernelized Correlation Filter

Key equations:

w =
∑
i

αiϕ(xi )

f (z) = wTz =
n∑

i=1

αik(z, xi )

α̂ =
ŷ

k̂xx + λ

f̂ (z) = k̂xz � α̂

Notes

Time complexity is again bound by the DFT, hence O(n log n)
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Multi-channel Correlation Filter

Suppose our signal comprises multiple channels c = 1, . . . , cmax

Example: FHOG 31 channels: 3 × 9-bin histograms + 4 texture

Q: How expensive is kernel correlation?

A: Time complexity scales linearly with cmax

For linear kernel:

kxx
′

= inverse-DFT
(∑

c
x̂∗c � x̂

′
c

)

15 / 19



Intro Filter Learning Extensions Conclusions

FHOG Correlation Filter in Action (linear kernel)

FHOG cell is 4x4 pixels, thus x, y are smaller than template

correlation surface is strongly peaked in the training and test
images
unlike standard template matching, response is strong only for
that particular instance
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Practical consideraitons

Note: correlation filters defined thus far only “work” if the test
image has the same size as x

Q: how to correlate a filter with Z of size larger than x?

A:

Transform the filter back to spatial domain, i.e., transform

f̂ (z) = k̂xz � α̂

Modify the learned filter in the DFT domain:
pad with zeros to match the size of Z

17 / 19



Intro Filter Learning Extensions Conclusions

Conclusions

Advantages of correlation filters:

good accuracy out of the box

controlled by a handful of “knobs”

failure modes “easy” to understand

open-source implementations:
1 “Accurate Scale Estimation for Robust Visual Tracking,”

Danelljan et al., BMVC 2014: MATLAB, C++
2 “High-Speed Tracking with Kernelized Correlation Filters,”

Henriques et al., PAMI 2015: MATLAB
3 “Correlation Filters with Limited Boundaries,” Galoogahi et

al., CVPR 2015: MATLAB
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127x127x3 6x6x128

255x255x3
22x22x128

17x17x1

Fig. 1. Fully-convolutional Siamese architecture. Our architecture is fully-
convolutional with respect to the search image x. The output is a scalar-valued score
map whose dimension depends on the size of the search image. This enables the simi-
larity function to be computed for all translated sub-windows within the search image
in one evaluation. In this example, the red and blue pixels in the score map contain
the similarities for the corresponding sub-windows. Best viewed in colour (Color figure
online)

Given their widespread success in computer vision [13–16], we will use a deep
conv-net as the function f . Similarity learning with deep conv-nets is typically
addressed using Siamese architectures [17–19]. Siamese networks apply an identi-
cal transformation ϕ to both inputs and then combine their representations using
another function g according to f(z, x) = g(ϕ(z), ϕ(x)). When the function g
is a simple distance or similarity metric, the function ϕ can be considered an
embedding. Deep Siamese conv-nets have previously been applied to tasks such
as face verification [14,18,20], keypoint descriptor learning [19,21] and one-shot
character recognition [22].

2.1 Fully-Convolutional Siamese Architecture

We propose a Siamese architecture which is fully-convolutional with respect
to the candidate image x. We say that a function is fully-convolutional if it
commutes with translation. To give a more precise definition, introducing Lτ

to denote the translation operator (Lτx)[u] = x[u − τ ], a function h that maps
signals to signals is fully-convolutional with integer stride k if

h(Lkτx) = Lτh(x) (1)

for any translation τ . (When x is a finite signal, this only need hold for the valid
region of the output.)

The advantage of a fully-convolutional network is that, instead of a candidate
image of the same size, we can provide as input to the network a much larger
search image and it will compute the similarity at all translated sub-windows
on a dense grid in a single evaluation. To achieve this, we use a convolutional

[ L. Bertinetto et al., “Fully-Convolutional Siamese Networks for Object
Tracking,” ECCV 2016 ]
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Fig. 2. Training pairs extracted from the same video: exemplar image and correspond-
ing search image from same video. When a sub-window extends beyond the extent of
the image, the missing portions are filled with the mean RGB value.

are extracted from two frames of a video that both contain the object and are
at most T frames apart. The class of the object is ignored during training. The
scale of the object within each image is normalized without corrupting the aspect
ratio of the image. The elements of the score map are considered to belong to
a positive example if they are within radius R of the centre (accounting for the
stride k of the network)

y[u] =

{
+1 if k‖u − c‖ ≤ R

−1 otherwise.
(6)

The losses of the positive and negative examples in the score map are weighted
to eliminate class imbalance.

Since our network is fully-convolutional, there is no risk that it learns a bias
for the sub-window at the centre. We believe that it is effective to consider
search images centred on the target because it is likely that the most difficult
sub-windows, and those which have the most influence on the performance of
the tracker, are those adjacent to the target.

Note that since the network is symmetric f(z, x) = f(x, z), it is in fact
also fully-convolutional in the exemplar. While this allows us to use different
size exemplar images for different objects in theory, we assume uniform sizes
because it simplifies the mini-batch implementation. However, this assumption
could be relaxed in the future.

2.3 ImageNet Video for Tracking

The 2015 edition of ImageNet Large Scale Visual Recognition Challenge [10]
(ILSVRC) introduced the ImageNet Video dataset as part of the new object

[ L. Bertinetto et al., “Fully-Convolutional Siamese Networks for Object
Tracking,” ECCV 2016 ]
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4.3 The OTB-13 Benchmark

The OTB-13 [11] benchmark considers the average per-frame success rate at
different thresholds: a tracker is successful in a given frame if the intersection-
over-union (IoU) between its estimate and the ground-truth is above a certain
threshold. Trackers are then compared in terms of area under the curve of success
rates for different values of this threshold. In addition to the trackers reported
by [11], in Fig. 3 we also compare against seven more recent state-of-the-art
trackers presented in the major computer vision conferences and that can run at
frame-rate speed: Staple [33], LCT [34], CCT [35], SCT4 [36], DLSSVM NU [37],
DSST [38] and KCFDP [39]. Given the nature of the sequences, for this bench-
mark only we convert 25 % of the pairs to grayscale during training. All the
other hyper-parameters (for training and tracking) are fixed.

Fig. 3. Success plots for OPE (one pass evaluation), TRE (temporal robustness eval-
uation) and SRE (spatial robustness evaluation) of the OTB-13 [11] benchmark. The
results of CCT, SCT4 and KCFDP were only available for OPE at the time of writing.

4.4 The VOT Benchmarks

For our experiments, we use the latest stable version of the Visual Object Track-
ing (VOT) toolkit (tag vot2015-final), which evaluates trackers on sequences
chosen from a pool of 356, selected so that seven different challenging situations
are well represented. Many of the sequences were originally presented in other
datasets (e.g. ALOV [1] and OTB [11]). Within the benchmark, trackers are
automatically re-initialized five frames after failure, which is deemed to have
occurred when the IoU between the estimated bounding box and the ground
truth becomes zero.

VOT-14 Results. We compare our method SiamFC (and the variant
SiamFC-3s) against the best 10 trackers that participated in the 2014 edition
of the VOT challenge [40]. We also include Staple [33] and GOTURN [28],
two recent real-time trackers presented respectively at CVPR 2016 and ECCV
2016. Trackers are evaluated according to two measures of performance: accuracy
and robustness. The former is calculated as the average IoU, while the latter is
expressed in terms of the total number of failures. These give insight into the
behaviour of a tracker. Figure 4 shows the Accuracy-Robustness plot, where the
best trackers are closer to the top-right corner.

[ L. Bertinetto et al., “Fully-Convolutional Siamese Networks for Object
Tracking,” ECCV 2016 ]
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Figure 1: Overview of the proposed network architecture, CFNet. It is an asymmetric Siamese network: after applying the
same convolutional feature transform to both input images, the “training image” is used to learn a linear template, which is
then applied to search the “test image” by cross-correlation.

Abstract

The Correlation Filter is an algorithm that trains a linear
template to discriminate between images and their transla-
tions. It is well suited to object tracking because its formu-
lation in the Fourier domain provides a fast solution, en-
abling the detector to be re-trained once per frame. Pre-
vious works that use the Correlation Filter, however, have
adopted features that were either manually designed or
trained for a different task. This work is the first to over-
come this limitation by interpreting the Correlation Filter
learner, which has a closed-form solution, as a differen-
tiable layer in a deep neural network. This enables learning
deep features that are tightly coupled to the Correlation Fil-
ter. Experiments illustrate that our method has the impor-
tant practical benefit of allowing lightweight architectures
to achieve state-of-the-art performance at high framerates.

1. Introduction

Deep neural networks are a powerful tool for learn-
ing image representations in computer vision applications.
However, training deep networks online, in order to capture
previously unseen object classes from one or few examples,

∗Equal first authorship.

is challenging. This problem emerges naturally in appli-
cations such as visual object tracking, where the goal is to
re-detect an object over a video with the sole supervision of
a bounding box at the beginning of the sequence. The main
challenge is the lack of a-priori knowledge of the target ob-
ject, which can be of any class.

The simplest approach is to disregard the lack of a-priori
knowledge and adapt a pre-trained deep convolutional neu-
ral network (CNN) to the target, for example by using
stochastic gradient descent (SGD), the workhorse of deep
network optimization [31, 25, 35]. The extremely limited
training data and large number of parameters make this a
difficult learning problem. Furthermore, SGD is quite ex-
pensive for online adaptation [31, 25].

A possible answer to these shortcomings is to have no
online adaptation of the network. Recent works have fo-
cused on learning deep embeddings that can be used as uni-
versal object descriptors [3, 12, 28, 17, 5]. These methods
use a Siamese CNN, trained offline to discriminate whether
two image patches contain the same object or not. The idea
is that a powerful embedding will allow the detection (and
thus tracking) of objects via similarity, bypassing the online
learning problem. However, using a fixed metric to compare
appearance prevents the learning algorithm from exploiting
any video-specific cues that could be helpful for discrimi-
nation.

An alternative strategy is to use instead an online learn-
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Abstract

We propose a network flow based optimization method
for data association needed for multiple object tracking.
The maximum-a-posteriori (MAP) data association prob-
lem is mapped into a cost-flow network with a non-overlap
constraint on trajectories. The optimal data association is
found by a min-cost flow algorithm in the network. The
network is augmented to include an Explicit Occlusion
Model(EOM) to track with long-term inter-object occlu-
sions. A solution to the EOM-based network is found by
an iterative approach built upon the original algorithm.
Initialization and termination of trajectories and potential
false observations are modeled by the formulation intrinsi-
cally. The method is efficient and does not require hypothe-
ses pruning. Performance is compared with previous results
on two public pedestrian datasets to show its improvement.

1. Introduction

Robust detection and tracking of objects are important
for many computer vision tasks. We consider an approach
where object detection results are given in each frame as
input and the task is to associate the detections to find object
trajectories. Not all objects can be expected to be detected
in each frame, false detections may be present and some
objects may be occluded by others; these factors make data
association a difficult task.

Some methods, e.g. [1, 2], attempt to resolve ambigu-
ities in each frame. Others, e.g. [3, 4, 5, 6, 7, 8, 9, 10]
use more global information. However, the search space of
those alternatives grows exponentially with the number of
frames which requires severely limiting the search window
and pruning of hypotheses. They also typically assume that
all detections are correct which is not always accurate.

We propose an efficient global data association approach
that can find optimal solutions for much longer sequences
(windows) than has been possible from earlier approaches.

���������	��
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Figure 1. Detection input and tracking result: our method can re-
move false alarms, recover trajectories and infer events such as
missed detections and occlusions.

In our approach, data association is defined as a MAP es-
timation problem given a set of object detection results as
input observations. Non-overlapping trajectory hypotheses
are modeled as disjoint flow paths in a cost-flow network;
observation likelihood and transition probabilities are mod-
eled as flow costs. Global optimal trajectory association
is found by a min-cost flow algorithm. To track through
long-term occlusions, an Explicit Occlusion Model (EOM)
is constructed, by adding occlusion nodes and constraints to
the network (we only consider inter-object occlusions). A
minimal cost flow in the EOM-based network is solved by
an iterative approach built upon the original min-cost flow
algorithm. Trajectory initialization, termination and infer-
ence of object occlusions are inherent in the method, and
hence can be inferred from the solution. An example of in-
ference of occlusions and missed detections from the track-
ing result is shown in Figure 1.

The rest of the paper is organized as follows. Related
work is discussed in Section 2. The MAP formulation and
the global optimal solution are described in Section 3. The
Explicit Occlusion Model and an iterative solution for it are
introduced in Section 4. Implementation details are given
in Section 5. Experimental results are shown in Section 6.
Conclusions are given in Section 7.
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2. Related work
To track multiple objects, one approach is to make data

association decisions frame-by-frame (or in a small time
window) as in [1, 2]. While such methods have shown very
good performance, considering more frames before making
association decisions should generally help better overcome
ambiguities caused by longer-term occlusions and false or
missed detections.

Many global approaches that use more information have
been explored to overcome errors of detections. One strat-
egy is to optimize one trajectory at a time through the en-
tire sequence; this has been used in Dynamic Programming
based methods, such as [5, 6]. Greedy strategies are then
used to combine the trajectories and handle potential con-
flicts. It is difficult for these methods to model occlusions
because trajectories are optimized separately. Another ap-
proach is to optimize multiple trajectories simultaneously;
multi-Hypothesis Tracking (MHT) [3] and Joint Probabilis-
tic Data Association Filters (JPDAF)[4] are two representa-
tive examples. Also in [10], detection and estimation of tra-
jectory hypotheses are coupled by Quadratic Boolean Pro-
gramming. As the hypotheses search space is combinato-
rial, such methods can only optimize over a limited time
window, and hypotheses must still be pruned. Sampling
methods such as MCMC[9] have also been employed to find
approximate solutions. Occlusions are usually modeled as
merging and splitting of trajectories in these methods.

Tracklet Stitching [8] and Linear Programming (LP)
based tracking [7] are two other approaches seeking to op-
timize all trajectories simultaneously over the entire se-
quence. [8] first generates tracklets, which are fragments
of tracks formed by conservative grouping of detection re-
sponses. The tracklets are then connected by Hungarian
partitioning algorithm. This method assumes all tracklets
to correspond to true object trajectories and hence is hard
to extend to raw detections in each frame where many false
alarms are likely to be present. [7] builds a set of subgraphs
for every object trajectory with edges between them repre-
senting the object interactions. A multi-path search problem
on the subgraphs is then solved approximately by linear pro-
gramming and rounding. It assumes inter-object positions
to be relatively stable, and the number of target to be fixed.

3. Our approach
We define data association as a MAP problem. The prob-

lem is then mapped into a cost-flow network, and solved
with a min-cost flow algorithm. The mapping is based
on the observation that there is an analogy between find-
ing non-overlapping object trajectories and finding edge-
disjoint paths in a graph; the latter can be solved efficiently
by network flow algorithms. We first present the formula-
tion, and then provide the min-cost flow solution.

3.1. MAP under non-overlap constraints

Let X = {xi} be a set of object observations, each of
which is a detection response, xi = (xi, si, ai, ti), where
xi is the position, si is the scale, ai is the appearance and
ti is the time step (frame index) of the object. A single
trajectory hypothesis is defined as an ordered list of object
observations, i.e. Tk = {xk1 ,xk2 , . . . ,xklk

} where xki ∈
X . An association hypothesis T is defined as a set of single
trajectory hypotheses, i.e. T = {Tk}.

The objective of data association is to maximize the pos-
teriori probability of T given the observation set X :

T ∗ = argmax
T

P (T |X )

= argmax
T

P (X|T )P (T )

= argmax
T

∏

i

P (xi|T )P (T ) (1)

assuming that the likelihood probabilities are conditionally
independent given the hypothesis T .

It is difficult to optimize Eqn.1 directly, because the
space of T is huge. However, we can reduce the size of
the search space by using the observation that one object
can only belong to one trajectory. This translates into the
constraint that Tk ∈ T can not overlap with each other, i.e.

Tk ∩ Tl = ∅,∀k �= l

If we further assume that motion of each object is indepen-
dent, we can decompose Eqn.1 as:

T ∗ = argmax
T

∏

i

P (xi|T )
∏

Tk∈T
P (Tk) (2)

s.t. Tk ∩ Tl = ∅,∀k �= l (3)

The terms in Eqn. (2) are defined as follows:

P (xi|T ) =

{
1− βi ∃Tk ∈ T ,xi ∈ Tk
βi otherwise (4)

P (Tk) = P ({xk0
,xk1

, . . . ,xklk
})

= Pentr(xk0
)Plink(xk1

|xk0
)Plink(xk2

|xk1
)

. . . Plink(xklk
|xklk−1

)Pexit(xklk
) (5)

P (xi|T ) is the likelihood function of observation xi; a
Bernoulli distribution is used to model the cases of an obser-
vation being a true detection as well as being a false alarm
(βi is the probability for xi being a false alarm). P (Tk) is
modeled as a Markov chain, which includes initialization
probability Pentr, termination probability Pexit, and tran-
sition probabilities Plink(xki+1 |xki). The precise form of
these functions and their estimation from training data are
described later in Section 5.

2. Related work
To track multiple objects, one approach is to make data

association decisions frame-by-frame (or in a small time
window) as in [1, 2]. While such methods have shown very
good performance, considering more frames before making
association decisions should generally help better overcome
ambiguities caused by longer-term occlusions and false or
missed detections.

Many global approaches that use more information have
been explored to overcome errors of detections. One strat-
egy is to optimize one trajectory at a time through the en-
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tic Data Association Filters (JPDAF)[4] are two representa-
tive examples. Also in [10], detection and estimation of tra-
jectory hypotheses are coupled by Quadratic Boolean Pro-
gramming. As the hypotheses search space is combinato-
rial, such methods can only optimize over a limited time
window, and hypotheses must still be pruned. Sampling
methods such as MCMC[9] have also been employed to find
approximate solutions. Occlusions are usually modeled as
merging and splitting of trajectories in these methods.

Tracklet Stitching [8] and Linear Programming (LP)
based tracking [7] are two other approaches seeking to op-
timize all trajectories simultaneously over the entire se-
quence. [8] first generates tracklets, which are fragments
of tracks formed by conservative grouping of detection re-
sponses. The tracklets are then connected by Hungarian
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to correspond to true object trajectories and hence is hard
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on the subgraphs is then solved approximately by linear pro-
gramming and rounding. It assumes inter-object positions
to be relatively stable, and the number of target to be fixed.

3. Our approach
We define data association as a MAP problem. The prob-

lem is then mapped into a cost-flow network, and solved
with a min-cost flow algorithm. The mapping is based
on the observation that there is an analogy between find-
ing non-overlapping object trajectories and finding edge-
disjoint paths in a graph; the latter can be solved efficiently
by network flow algorithms. We first present the formula-
tion, and then provide the min-cost flow solution.

3.1. MAP under non-overlap constraints

Let X = {xi} be a set of object observations, each of
which is a detection response, xi = (xi, si, ai, ti), where
xi is the position, si is the scale, ai is the appearance and
ti is the time step (frame index) of the object. A single
trajectory hypothesis is defined as an ordered list of object
observations, i.e. Tk = {xk1 ,xk2 , . . . ,xklk

} where xki ∈
X . An association hypothesis T is defined as a set of single
trajectory hypotheses, i.e. T = {Tk}.

The objective of data association is to maximize the pos-
teriori probability of T given the observation set X :
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P (xi|T ) is the likelihood function of observation xi; a
Bernoulli distribution is used to model the cases of an obser-
vation being a true detection as well as being a false alarm
(βi is the probability for xi being a false alarm). P (Tk) is
modeled as a Markov chain, which includes initialization
probability Pentr, termination probability Pexit, and tran-
sition probabilities Plink(xki+1 |xki). The precise form of
these functions and their estimation from training data are
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To track multiple objects, one approach is to make data

association decisions frame-by-frame (or in a small time
window) as in [1, 2]. While such methods have shown very
good performance, considering more frames before making
association decisions should generally help better overcome
ambiguities caused by longer-term occlusions and false or
missed detections.

Many global approaches that use more information have
been explored to overcome errors of detections. One strat-
egy is to optimize one trajectory at a time through the en-
tire sequence; this has been used in Dynamic Programming
based methods, such as [5, 6]. Greedy strategies are then
used to combine the trajectories and handle potential con-
flicts. It is difficult for these methods to model occlusions
because trajectories are optimized separately. Another ap-
proach is to optimize multiple trajectories simultaneously;
multi-Hypothesis Tracking (MHT) [3] and Joint Probabilis-
tic Data Association Filters (JPDAF)[4] are two representa-
tive examples. Also in [10], detection and estimation of tra-
jectory hypotheses are coupled by Quadratic Boolean Pro-
gramming. As the hypotheses search space is combinato-
rial, such methods can only optimize over a limited time
window, and hypotheses must still be pruned. Sampling
methods such as MCMC[9] have also been employed to find
approximate solutions. Occlusions are usually modeled as
merging and splitting of trajectories in these methods.

Tracklet Stitching [8] and Linear Programming (LP)
based tracking [7] are two other approaches seeking to op-
timize all trajectories simultaneously over the entire se-
quence. [8] first generates tracklets, which are fragments
of tracks formed by conservative grouping of detection re-
sponses. The tracklets are then connected by Hungarian
partitioning algorithm. This method assumes all tracklets
to correspond to true object trajectories and hence is hard
to extend to raw detections in each frame where many false
alarms are likely to be present. [7] builds a set of subgraphs
for every object trajectory with edges between them repre-
senting the object interactions. A multi-path search problem
on the subgraphs is then solved approximately by linear pro-
gramming and rounding. It assumes inter-object positions
to be relatively stable, and the number of target to be fixed.

3. Our approach
We define data association as a MAP problem. The prob-

lem is then mapped into a cost-flow network, and solved
with a min-cost flow algorithm. The mapping is based
on the observation that there is an analogy between find-
ing non-overlapping object trajectories and finding edge-
disjoint paths in a graph; the latter can be solved efficiently
by network flow algorithms. We first present the formula-
tion, and then provide the min-cost flow solution.

3.1. MAP under non-overlap constraints

Let X = {xi} be a set of object observations, each of
which is a detection response, xi = (xi, si, ai, ti), where
xi is the position, si is the scale, ai is the appearance and
ti is the time step (frame index) of the object. A single
trajectory hypothesis is defined as an ordered list of object
observations, i.e. Tk = {xk1 ,xk2 , . . . ,xklk

} where xki ∈
X . An association hypothesis T is defined as a set of single
trajectory hypotheses, i.e. T = {Tk}.

The objective of data association is to maximize the pos-
teriori probability of T given the observation set X :

T ∗ = argmax
T

P (T |X )

= argmax
T

P (X|T )P (T )

= argmax
T

∏

i

P (xi|T )P (T ) (1)

assuming that the likelihood probabilities are conditionally
independent given the hypothesis T .

It is difficult to optimize Eqn.1 directly, because the
space of T is huge. However, we can reduce the size of
the search space by using the observation that one object
can only belong to one trajectory. This translates into the
constraint that Tk ∈ T can not overlap with each other, i.e.

Tk ∩ Tl = ∅,∀k �= l

If we further assume that motion of each object is indepen-
dent, we can decompose Eqn.1 as:
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P (xi|T ) is the likelihood function of observation xi; a
Bernoulli distribution is used to model the cases of an obser-
vation being a true detection as well as being a false alarm
(βi is the probability for xi being a false alarm). P (Tk) is
modeled as a Markov chain, which includes initialization
probability Pentr, termination probability Pexit, and tran-
sition probabilities Plink(xki+1 |xki). The precise form of
these functions and their estimation from training data are
described later in Section 5.
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Note that the likelihood function P (xi|T ) can model not
only the observations that are associated in T , i.e. true de-
tections, but also those that are not associated, i.e. false
alarms. This allows the method to select observations,
rather than assume all the inputs to be true detections, with-
out additional processing to remove false trajectories after
association.

3.2. Min-cost flow solution

To couple the non-overlap constraints with the objective
function, the following 0-1 indicator variables are defined
as

fen,i =

{
1 ∃Tk ∈ T , Tk starts from xi

0 otherwise (6)

fex,i =

{
1 ∃Tk ∈ T , Tk ends at xi

0 otherwise (7)

fi,j =

{
1 ∃Tk ∈ T , xj is right after xi in Tk
0 otherwise (8)

fi =

{
1 ∃Tk ∈ T ,xi ∈ Tk
0 otherwise (9)

It’s easy to see that these variables are determined for a
given association hypothesis T , and vice versa. T is non-
overlap if and only if

fen,i +
∑

j

fj,i = fi = fex,i +
∑

j

fi,j , ∀i (10)

Next, we incorporate indicators in logarithm of the ob-
jective function,

T = argmin
T

∑

Tk∈T
− logP (Tk) +

∑

i

− logP (xi|T )

= argmin
T

∑

Tk∈T
(Cen,k0

fen,k0

+
∑

j

Ckj ,kj+1
fkj ,kj+1

+ Cex,klk
fex,klk

)

+
∑

i

(− log(1− βi)fi − log βi(1− fi))

= argmin
T

∑

i

Cen,ifen,i +
∑

i,j

Ci,jfi,j

+
∑

i

Cex,ifex,i +
∑

i

Cifi (11)

subject to Eqn.10, where

Cen,i = − logPentr(xi) Cex,i = − logPexit(xi)

Ci,j = − logPlink(xj |xi) Ci = log
βi

1− βi

This formulation can be mapped into a cost-flow network
G(X ) with source s and sink t. Given an observation set
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Figure 2. A example of the cost-flow network with 3 timesteps and
9 observations

X : for every observation xi ∈ X , create two nodes ui, vi,
create an arc (ui, vi) with cost c(ui, vi) = Ci and flow
f(ui, vi) = fi, an arc (s, ui) with cost c(s, ui) = Cen,i

and flow f(s, ui) = fen,i, and an arc (vi, t) with cost
c(vi, t) = Cex,i and flow f(vi, t) = fex,i. For every tran-
sition Plink(xj |xi) �= 0, create an arc (vi, uj) with cost
c(vi, uj) = Ci,j and flow f(vi, uj) = fi,j . An example
of such a graph is shown in Figure 2. Eqn.10 is equivalent
to the flow conservation constraint and Eqn.11 to the cost
of flow in G. Finding optimal association hypothesis T ∗ is
equivalent to sending the flow from source s to sink t that
minimizes the cost.

The cost-flow network formulation is an intuitive repre-
sentation of multiple object tracking: each flow path can be
interpreted as an object trajectory, the amount of the flow
sent from s to t is equal to the number of object trajectories,
and the total cost of the flow on G corresponds to the log-
likelihood of the association hypothesis. The flow conser-
vation constraint guarantees that no flow paths share a com-
mon edge, and therefore no trajectories overlap. If all the
edge costs in G were positive, the min-cost flow would be
the trivial empty zero-cost flow. However, for any observa-
tion xi that is more likely to be a true detection (βi < 0.5),
the cost Ci of edge (ui, vi) is negative; this allows the op-
timal cost to become below zero by sending flows through
these negative-cost edges.

The optimal cost should be calculated over all possible
f(G), where f(G) is the amount of flow sent from source
to sink. It is known that for a given f(G), the minimal
cost can be solved for in polynomial time by a min-cost
flow algorithm[11]. The entire optimization process is de-
scribed as Algorithm 1. It can also be proven that the min-
imal cost is a convex function w.r.t f(G). Hence the enu-
meration over all possible f(G) can be replaced by a Fi-
bonacci search, which finds the global minimal cost by at
most O(logn) executions of the min-cost flow algorithm.

Let n = |X |, m be the number of edges in G, which

[ L. Zhang, Y. Li, and R. Nevatia, “Global Data Association for
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similar graphical model, with nodes representing detections,
is built by Zhang et al. [35] and Ma et al. [47] for multi-people
tracking. The global optimum is searched using a min-cost
flow algorithm in the former article and a variant of the
k-shortest path algorithm [6] in the latter. Both optimization
methods exploit the specific structure of the graph to reach
the optimum faster than Linear Programming.

Due to their reduced state-space, these methods are
computationally efficient. However, Jiang et al. [4] require
a priori knowledge of the number of objects to be tracked,
which seriously limits its applicability in real life situations.
Also, with a state-space consisting of only observations, as
opposed to all possible locations as in our approach, they
cannot smoothly interpolate trajectories when there are
false negatives. Finally, the choice of arc costs is ad hoc and
involves many parameters which have to be tuned for each
possible application, reducing the generality of the meth-
ods. By contrast, our model is far simpler, with the
neighborhood size being the only value that needs to be
adapted. We optimize over the entire space of locations for
fine trajectory interpolation, and deal with the large
resulting size of our problem by trading standard Linear
Programming optimization for a very efficient formulation
based on the k-shortest paths algorithm.

3 ALGORITHM

In this section, we first formulate multitarget tracking as an
Integer Programming (IP) problem, using the notation
summarized in Table 1. Although such a problem is NP-
hard in many cases, we show that a relaxation of it as a
Linear Program yields the optimal solution, and hence the
problem is solvable in polynomial time. Despite our simple
and clean formulation, the large number of variables and
constraints makes it tractable only for small areas and short
sequences. Thus, in a second step, we demonstrate how the
k-shortest paths algorithm can be used to solve this problem
much more efficiently than generic Linear Programming
solvers can.

3.1 Formalization

We discretize the physical area of interest into K locations,
and the time interval into T instants. For any location k, let
NðkÞ � f1; . . . ; Kg denote the neighborhood of k, that is,

the locations an object located at k at time t can reach at
time tþ 1.

To model occupancy over time, let us consider a labeled
directed graph with K T vertices, which represents every
location at every instant. Its edges correspond to admissible
object motions, which means that there is one edge eti;j from
ðt; iÞ to ðtþ 1; jÞ if, and only if, j 2 NðiÞ. To allow objects to
remain static, there is always an edge from a location at
time t to itself at time tþ 1.

Each vertex is labeled with a discrete variable mt
i

standing for the number of objects located at i at time t.
Each edge is labeled with a discrete variable fti;j standing for
the number of objects moving from location i at time t to
location j at time tþ 1, as shown in Fig. 1a. For instance, the
fact that an object remains at location i between times t and
tþ 1 is represented by fti;i ¼ 1.

Given these definitions, for all t, the sum of flows
arriving at any location j is equal to mt

j, which also is the
sum of outgoing flows from location j at time t. We must
therefore have

8t; j;
X

i:j2NðiÞ
ft�1
i;j

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
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Fig. 1. (a) A simplified flow model which does not use virtual positions.
Positions are arranged on one dimension and neighborhood is reduced
to three positions. (b) A flow model used for tracking objects moving on a
2D grid, such as in pedestrian tracking. For the sake of readability, only
the flows to and from location k at time t are printed.
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standing for the number of objects located at i at time t.
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fact that an object remains at location i between times t and
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Fig. 1. (a) A simplified flow model which does not use virtual positions.
Positions are arranged on one dimension and neighborhood is reduced
to three positions. (b) A flow model used for tracking objects moving on a
2D grid, such as in pedestrian tracking. For the sake of readability, only
the flows to and from location k at time t are printed.
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directed graph with K T vertices, which represents every
location at every instant. Its edges correspond to admissible
object motions, which means that there is one edge eti;j from
ðt; iÞ to ðtþ 1; jÞ if, and only if, j 2 NðiÞ. To allow objects to
remain static, there is always an edge from a location at
time t to itself at time tþ 1.

Each vertex is labeled with a discrete variable mt
i

standing for the number of objects located at i at time t.
Each edge is labeled with a discrete variable fti;j standing for
the number of objects moving from location i at time t to
location j at time tþ 1, as shown in Fig. 1a. For instance, the
fact that an object remains at location i between times t and
tþ 1 is represented by fti;i ¼ 1.

Given these definitions, for all t, the sum of flows
arriving at any location j is equal to mt

j, which also is the
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therefore have
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Fig. 1. (a) A simplified flow model which does not use virtual positions.
Positions are arranged on one dimension and neighborhood is reduced
to three positions. (b) A flow model used for tracking objects moving on a
2D grid, such as in pedestrian tracking. For the sake of readability, only
the flows to and from location k at time t are printed.
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Furthermore, since a location cannot be occupied by more
than one object at a time, we can set an upper bound of 1 to the
sum of all outgoing flows from a given location and impose

8k; t;
X
j2NðkÞ

ftk;j � 1: ð2Þ

A similar constraint applies to the incoming flows, but we do
not need to explicitly state it since it is implicitly enforced by
(1). Finally, the flows have to be nonnegative and we have

8k; j; t; ftk;j � 0: ð3Þ

In general, the number of tracked objects may vary over
time, meaning that objects may appear inside the tracking
area and others may leave. Thus, the total mass of the system
changes and we must allow flows to enter and exit the area.

We do this by introducing two additional nodes, �source

and �sink, into our graph, which are linked to all of the nodes
representing positions through which objects can respec-
tively enter or exit the area, such as doors or borders of the
camera field of view. In addition, a flow goes from �source to
all the nodes of the first frame, and reciprocally, a flow goes
from all of the nodes of the last frame to �sink. We call �source

and �sink virtual locations because, as opposed to the other
nodes of the graph, they do not represent any physical
location. The resulting complete graph is shown in Fig. 2.

Finally, we introduce an additional constraint that
ensures that all flows departing from �source eventually
end up in �sink:X

j2Nð�sourceÞ
ft�source;j

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Leaving �source

¼
X

k:�sink2NðkÞ
ftk;�sink

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Arriving at �sink

: ð4Þ

Let Mt
i denote a random variable standing for the true

presence of an object at location i at time t. The object
detector used to process the sequence provides, for every
location i and every instant t, an estimate of the marginal
posterior probability of the presence of an object

�ti ¼ P̂ ðMt
i ¼ 1 j ItÞ; ð5Þ

where It is the signal available at time t. For the multicamera

pedestrian-tracking application described in Section 4, It

denotes the series of pictures taken by all the cameras at time t.
Let m be an occupancy map that is a set of occupancy

variables mt
i, one for each location and for each instant. We

say that m is feasible if there exists a set of flows ftk;j that

satisfies (1), (2), (3), and (4), and we define F as the set of
feasible maps. Our goal then becomes solving

m� ¼ arg max
m2F

P̂ ðM ¼m j IÞ: ð6Þ

Assuming conditional independence of the Mt
i , given the

It, the optimization problem of (6) can be rewritten as

m� ¼ arg max
m2F

log
Y
t;i

P̂
�
Mt

i ¼ mt
i j It

�

¼ arg max
m2F

X
t;i

log P̂
�
Mt

i ¼ mt
i j It

�
;

ð7Þ

¼ arg max
m2F

X
t;i

�
1�mt

i

�
log P̂

�
Mt

i ¼ 0 j It
�

þ mt
i log P̂

�
Mt

i ¼ 1 j It
� ð8Þ

¼ arg max
m2F

X
t;i

mt
i log

P̂ ðMt
i ¼ 1 j ItÞ

P̂ ðMt
i ¼ 0 j ItÞ

ð9Þ

¼ arg max
m2F

X
t;i

log
�ti

1� �ti

� �
mt
i; ð10Þ

where (7) is true under the assumption of conditional
independence of the Mt

i given It, (8) is true because mt
i is 0

or 1 according to (2), and (9) is obtained by ignoring a term
which does not depend on m. Hence, the objective function
of (10) is a linear expression of the mt

i.

3.2 Linear Programming Formulation

The formulation defined above translates naturally into the
Integer Program

Maximize
X
t;i

log
�ti

1� �ti

� � X
j2NðiÞ

fti;j

subject to 8t; i; j; fti;j � 0

8t; i;
X
j2NðiÞ

fti;j � 1

8t; i;
X
j2NðiÞ

fti;j �
X

k:i2NðkÞ
ft�1
k;i � 0

X
j2Nð�sourceÞ

f�source;j �
X

k:�sink2NðkÞ
fk;�sink

� 0:

ð11Þ

In this system, the optimization is carried out with
respect to the flows fti;j rather than the occupancies mt

i

because there is no natural way to express the flow
continuity constraints in terms of the latter. This is
equivalent to maximizing the objective function of (10)
because 8t; j;mt

j ¼
P

k2NðjÞ f
t
j;k.

Note that the constraints of (1), (2), (3), and (4) are
expressed as inequalities, to have the linear program in
canonical form. This new formulation is strictly equivalent to
the original one and no additional constraint is needed. The
inequalities are indeed sufficient to ensure that no flow can
ever appear or disappear within the graph.

Under this formulation, our Integer Program can be
solved by any generic LP solver. However, due to the
very large size of our problem, this solution would hardly
be practical as IP solving is NP-complete. The usual
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Fig. 2. A complete flow system for a simple graph consisting only of
three positions and three time frames. Here, we assume that position 0
is connected to the virtual positions, and therefore is a possible entrance
and exit point. Flows to and from the virtual positions are shown as
dashed lines.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 26,2021 at 00:47:10 UTC from IEEE Xplore.  Restrictions apply. 

Furthermore, since a location cannot be occupied by more
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(1). Finally, the flows have to be nonnegative and we have

8k; j; t; ftk;j � 0: ð3Þ
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changes and we must allow flows to enter and exit the area.

We do this by introducing two additional nodes, �source

and �sink, into our graph, which are linked to all of the nodes
representing positions through which objects can respec-
tively enter or exit the area, such as doors or borders of the
camera field of view. In addition, a flow goes from �source to
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from all of the nodes of the last frame to �sink. We call �source

and �sink virtual locations because, as opposed to the other
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Let Mt
i denote a random variable standing for the true

presence of an object at location i at time t. The object
detector used to process the sequence provides, for every
location i and every instant t, an estimate of the marginal
posterior probability of the presence of an object

�ti ¼ P̂ ðMt
i ¼ 1 j ItÞ; ð5Þ

where It is the signal available at time t. For the multicamera

pedestrian-tracking application described in Section 4, It

denotes the series of pictures taken by all the cameras at time t.
Let m be an occupancy map that is a set of occupancy

variables mt
i, one for each location and for each instant. We

say that m is feasible if there exists a set of flows ftk;j that

satisfies (1), (2), (3), and (4), and we define F as the set of
feasible maps. Our goal then becomes solving
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where (7) is true under the assumption of conditional
independence of the Mt

i given It, (8) is true because mt
i is 0

or 1 according to (2), and (9) is obtained by ignoring a term
which does not depend on m. Hence, the objective function
of (10) is a linear expression of the mt
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In this system, the optimization is carried out with
respect to the flows fti;j rather than the occupancies mt

i

because there is no natural way to express the flow
continuity constraints in terms of the latter. This is
equivalent to maximizing the objective function of (10)
because 8t; j;mt

j ¼
P

k2NðjÞ f
t
j;k.

Note that the constraints of (1), (2), (3), and (4) are
expressed as inequalities, to have the linear program in
canonical form. This new formulation is strictly equivalent to
the original one and no additional constraint is needed. The
inequalities are indeed sufficient to ensure that no flow can
ever appear or disappear within the graph.

Under this formulation, our Integer Program can be
solved by any generic LP solver. However, due to the
very large size of our problem, this solution would hardly
be practical as IP solving is NP-complete. The usual

BERCLAZ ET AL.: MULTIPLE OBJECT TRACKING USING K-SHORTEST PATHS OPTIMIZATION 1809

Fig. 2. A complete flow system for a simple graph consisting only of
three positions and three time frames. Here, we assume that position 0
is connected to the virtual positions, and therefore is a possible entrance
and exit point. Flows to and from the virtual positions are shown as
dashed lines.
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Furthermore, since a location cannot be occupied by more
than one object at a time, we can set an upper bound of 1 to the
sum of all outgoing flows from a given location and impose
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ftk;j � 1: ð2Þ

A similar constraint applies to the incoming flows, but we do
not need to explicitly state it since it is implicitly enforced by
(1). Finally, the flows have to be nonnegative and we have

8k; j; t; ftk;j � 0: ð3Þ

In general, the number of tracked objects may vary over
time, meaning that objects may appear inside the tracking
area and others may leave. Thus, the total mass of the system
changes and we must allow flows to enter and exit the area.

We do this by introducing two additional nodes, �source

and �sink, into our graph, which are linked to all of the nodes
representing positions through which objects can respec-
tively enter or exit the area, such as doors or borders of the
camera field of view. In addition, a flow goes from �source to
all the nodes of the first frame, and reciprocally, a flow goes
from all of the nodes of the last frame to �sink. We call �source

and �sink virtual locations because, as opposed to the other
nodes of the graph, they do not represent any physical
location. The resulting complete graph is shown in Fig. 2.

Finally, we introduce an additional constraint that
ensures that all flows departing from �source eventually
end up in �sink:X
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Let Mt
i denote a random variable standing for the true

presence of an object at location i at time t. The object
detector used to process the sequence provides, for every
location i and every instant t, an estimate of the marginal
posterior probability of the presence of an object

�ti ¼ P̂ ðMt
i ¼ 1 j ItÞ; ð5Þ

where It is the signal available at time t. For the multicamera

pedestrian-tracking application described in Section 4, It

denotes the series of pictures taken by all the cameras at time t.
Let m be an occupancy map that is a set of occupancy

variables mt
i, one for each location and for each instant. We

say that m is feasible if there exists a set of flows ftk;j that

satisfies (1), (2), (3), and (4), and we define F as the set of
feasible maps. Our goal then becomes solving

m� ¼ arg max
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where (7) is true under the assumption of conditional
independence of the Mt

i given It, (8) is true because mt
i is 0

or 1 according to (2), and (9) is obtained by ignoring a term
which does not depend on m. Hence, the objective function
of (10) is a linear expression of the mt

i.

3.2 Linear Programming Formulation

The formulation defined above translates naturally into the
Integer Program

Maximize
X
t;i

log
�ti

1� �ti

� � X
j2NðiÞ

fti;j

subject to 8t; i; j; fti;j � 0

8t; i;
X
j2NðiÞ

fti;j � 1

8t; i;
X
j2NðiÞ

fti;j �
X

k:i2NðkÞ
ft�1
k;i � 0

X
j2Nð�sourceÞ

f�source;j �
X

k:�sink2NðkÞ
fk;�sink

� 0:

ð11Þ

In this system, the optimization is carried out with
respect to the flows fti;j rather than the occupancies mt

i

because there is no natural way to express the flow
continuity constraints in terms of the latter. This is
equivalent to maximizing the objective function of (10)
because 8t; j;mt

j ¼
P

k2NðjÞ f
t
j;k.

Note that the constraints of (1), (2), (3), and (4) are
expressed as inequalities, to have the linear program in
canonical form. This new formulation is strictly equivalent to
the original one and no additional constraint is needed. The
inequalities are indeed sufficient to ensure that no flow can
ever appear or disappear within the graph.

Under this formulation, our Integer Program can be
solved by any generic LP solver. However, due to the
very large size of our problem, this solution would hardly
be practical as IP solving is NP-complete. The usual
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Fig. 2. A complete flow system for a simple graph consisting only of
three positions and three time frames. Here, we assume that position 0
is connected to the virtual positions, and therefore is a possible entrance
and exit point. Flows to and from the virtual positions are shown as
dashed lines.
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workaround is to relax the integer assumption and solve a
continuous Linear Program instead, which has polyno-
mial-time average-case complexity. The drawback of this
method is that the Linear Program is unlikely to converge
to the optimal solution of the original IP.

In our case, however, the relaxed Linear Program
always converges toward an integer solution because its
constraint matrix exhibits a property known as total

unimodularity, as will be shown in Appendix A, which
can be found in the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/TPAMI.
2011.38 . As a consequence, we could use a generic LP
solver to optimize our multitarget tracking framework.
However, this approach would only be tractable for
moderately sized problems and does not scale to most
practical applications. Therefore, in the next section, we
introduce a more efficient optimization scheme, which takes
into account the specificity of our problem to tremendously
reduce the complexity.

3.3 K-Shortest Paths Formulation

The relaxation of the original integer problem yields a large
scale LP problem, which can be solved by generic LP
solvers that, in general, rely on variants of the Simplex
algorithm [5] or interior-point-based methods [36]. How-
ever, these algorithms do not make use of the specific
structure of our problem and have very high worst-case
time complexities. In the following, we show that this
complexity can be drastically reduced by reformulating the
problem as a k-shortest node-disjoint paths problem on a
directed acyclic graph (DAG).

Given a pair of nodes, namely, the source �source and the
sink �sink, in a graph G, the k-shortest paths problem is to
find the k paths fp1; . . . ; pkg between these nodes such that
the total cost of the paths is minimum. The problem is well
studied in the network optimization literature and the
results have been widely applied in the field of network
connection routing and restoration. There exist many
variants of the algorithm, each targeted at a specific
problem instance.1

In our specific case, we are interested in the particular
instance where the graph is directed and paths are both
node-disjoint—i.e., two separate paths cannot share the
same node—and node-simple—i.e., a path visits every node
in the graph at most once. We use the graph structure with
a single source and a single sink illustrated in Fig. 2. Any
path between �source and �sink in this graph represents the
flow of a single object in the original problem along the
edges of the path. The node-disjointness constraint means
that no location can be shared between two paths, hence
two objects. This is thus equivalent to the constraint of (2).
Moreover, by only looking for paths between the source and
sink nodes, we ensure that no flow can ever be created or
suppressed anywhere in the graph but at the virtual
locations. This enforces the constraints of (1) and (4).
Finally, the node-simple characteristic of the paths simply
stems from the fact that our graph is a DAG, hence acyclic.

A directed edge eti;j from location i at time t to location j

at time tþ 1 is assigned the cost value

cðeti;jÞ ¼ � log
�ti

1� �ti

� �
: ð12Þ

The cost value of the edges emanating from the source node

is set to zero to allow objects to appear at any entrance

position and at any time instant at no cost. We formulate

our problem as a minimization problem by negating the

objective function of (11).
Let H denote the set of feasible solutions of the original

LP formulation of (11), satisfying the constraints given in

(1), (2), (3), and (4). Then, the optimal solution f � of the

k-shortest paths problem can be written as

f� ¼ arg min
f2H

X
t;i

c
�
eti;j
� X
j2NðiÞ

fti;j; ð13Þ

where cðeti;jÞ represents the cost of the edge eti;j defined in

(12). Note that any node-disjoint k paths between �source and

�sink with arbitrary k is in the feasible set of solutions H. In

addition, any solution in H can be expressed as a set of

k node-disjoint paths.
Let p�i be the shortest path computed at the ith iteration

of the algorithm and Pl ¼ fp�1; . . . ; p�l g be the set of all

l shortest paths computed up to iteration l. We start by

finding the single shortest path in the graph p�1 and compute

its total cost

costðp�l Þ ¼
X
eti;j2p�l

c
�
eti;j
�
: ð14Þ

We then compute iteratively the l-shortest paths for

l ¼ 2; 3; 4; . . . , and for each l, we calculate the total cost of

the shortest paths

costðPlÞ ¼
Xl
i¼1

costðp�i Þ: ð15Þ

At each new iteration lþ 1, the total cost costðPlþ1Þ is

compared to the cost at the previous iteration costðPlÞ. The

optimal number of paths k� is obtained when the cost of

iteration k� þ 1 is higher than the one of iteration k�. The

procedure is summarized by the pseudocode of Algorithm 1,

in Appendix B, which can be found in the Computer Society

Digital Library at http://doi.ieeecomputersociety.org/

10.1109/TPAMI.2011.38.
To compute such k-shortest paths, we use the disjoint

paths algorithm [6], which is an efficient iterative method

based on signed paths. For the sake of completeness, we

give a brief description of this algorithm in Appendix B,

which can be found in the Computer Society Digital Library

at http://doi.ieeecomputersociety.org/10.1109/TPAMI.

2011.38.
The equivalence of the LP and the k-shortest paths

formulations follows from the exact procedure we use to

select an optimal k such that the objective function is

minimized. Since path costs are monotonically increasing

costðp�iþ1Þ � costðp�i Þ 8i; ð16Þ
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1. For a complete list of references, see the online bibliography at http://
liinwww.ira.uka.de/bibliography/Theory/k-path.html.
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4.7 Monocular Pedestrian Results

To further emphasize the strength of our approach, we
generated the detection maps using only one of the seven
available views of the PETS data set. Although POM still
works on monocular sequences, ground plane localization
is less precise: Without views from different angles, there is
a depth ambiguity when estimating a pedestrian’s position.
Also, in the monocular case, occlusions often result in
missed detection.

Under these challenging conditions, our algorithm shows
its superiority over the sequential Dynamic Programming,
even more clearly than in the multicamera case. This is
illustrated in Figs. 4 and 5. In this context, DP’s greedy
strategy often leaves people outside the grid instead of trying
to explain their very noisy detections. By contrast, KSP’s joint
optimization pays off and interpolates trajectories nicely.
Monocular tracking results are depicted in Fig. 9.

4.8 Ball Tracking Results

Given the difference in grid scale, the balls move much
faster than pedestrians and can cross more than one grid
location between consecutive frames. To deal with this
environment, we thus had to extend the location neighbor-
hood to include the next closest 49 locations, which
increases the maximum distance traveled between conse-
cutive frames to three grid locations.

Detection and tracking results for the two ball sequences
are also illustrated in Figs. 4 and 5, while screen shots are
shown in Fig. 10. Detecting ping-pong balls is not a
particularly difficult task, and thus POM’s results are
generally excellent, with very few false positives and false
negatives. Because all balls have exactly the same appear-
ance, DP’s color model is useless and the comparison
between the two algorithms is fair. As for the pedestrian
environment, KSP outperforms DP on all four metrics. Here
again, DP’s greedy strategy is a disadvantage. Because it
might be less costly to ignore some isolated detections, DP
tends to leave out too many of them.

4.9 Failure Modes

Our tracking algorithm can be mainly affected by two
elements: false detections and missing ones. To quantify the
effect of both types of detection error, we carried out the
following experiment. We selected a 1,000 frame excerpt of
the laboratory sequence showing high detection accuracy
and added various levels of random detection noise
uniformly. We also randomly deleted detections from the
same original sequence. That way, we artificially generated
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Fig. 6. Artificially increasing the number of detection (a) false positives
and (b) false negatives, expressed as a percentage on the x-axis of the
graphs. Fig. 7. (a) Runtime comparison between our framework solved with a

generic LP package (LP), our framework with a pruned graph solved
with a generic LP package (LP w/comp. red.), our framework solved with
the k-shortest paths algorithm (KSP), and our earlier Dynamic
Programming method (DP). Note that the y-axis represents runtime
and is plotted in log scale. (b) Both the DP and KSP algorithms scale
almost linearly with the grid size.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on November 26,2021 at 00:47:10 UTC from IEEE Xplore.  Restrictions apply. 

“compl. red.” means complexity reduction i.e., pruned detections

[ J. Berclaz et al., “Multiple Object Tracking Using K-Shortest Paths Optimization,”
PAMI 2011 ]



Multi-Target Tracking via Graph-Theoretic Methods

Multiple Object Tracking Using
K-Shortest Paths Optimization

controlled amounts of false positives and false negatives.

The sequences thus generated were then processed by both

DP and KSP tracking methods and evaluated using a

known ground truth.
The results of this evaluation are presented in Fig. 6. The

graph of Fig. 6a shows that KSP is more sensitive to false

positives than DP. Beyond a density value, KSP is able to

readily link false detections into—seemingly—coherent

trajectories. Here, KSP’s lack of motion model is a

disadvantage over DP. Conversely, DP’s tendency to leave

out incomplete trajectories makes it more robust to this kind

of noise. The graph of Fig. 6b shows the effect of missed

detections. Both trackers react the same way: Beyond a false

negative rate, the remaining detections are no longer linked

together and remain unexplained. KSP nevertheless shows

a much higher robustness to missed detections than DP

does. This is consistent with our observations on real data:

In Figs. 4 and 5, the difference between DP and KSP

performance is usually larger when POM’s occupancy
maps have low accuracy.

Another problem to which our method is potentially
vulnerable is identity switch. Since we rely entirely on
detection data and do not use any appearance information
or complex motion model, there is no way to distinguish
two trajectories intersecting. In practice, we do not suffer
much from this because, most of the time, the objects evolve
outside of each other’s neighborhood. Moreover, the joint
optimization of all trajectories pays off in this regard, as
opposed to DP’s greedy strategy.

4.10 Runtime

Finally, we evaluate the speed of our new tracking
algorithm. Solving the Linear Program with standard LP
libraries [42] is slow, as evidenced by the curve labeled LP on
the graph of Fig. 7a. Using the complexity reduction method
of Section 3.4 decreases the computation time by a factor of
10, as shown by the curve labeled LP w/compl. red. Here, we
pruned the graph by a radius of �1 ¼ �2 ¼ 3 (see (19)).
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Fig. 8. Multicamera pedestrian tracking results in various environments. Each of the first four columns shows a different camera view. The fifth
column displays the top view. The first row comes from the laboratory sequence, the second from the basketball environment, the third from the
passageway, and the last one from PETS 2009.

Fig. 9. Monocular pedestrian tracking results, from the PETS 2009 sequence.
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Intro Generic problems Supervised methods Unsupervised Applications Known unknowns References

Signal processing on graphs: definitions

We are interested in signals defined on an
undirected, connected, weighted graph
G = {V, E ,W}, with vertices V (where
|V| = N), edges E , and a weighted adjacency
matrix W. If vertices i and j are linked by an
edge e = (i, j), then Wi,j represents the
weight of the edge; otherwise, Wi,j = 0.

A signal or function f : V → R defined on the vertices of the graph
may be represented as a vector f in RN , where the ith component
of the vector f represents the function value at the ith vertex in V.

[19] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst. The emerging field of signal
processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE
Signal Process. Mag., 30(3):83–98, 2013.
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The non-normalized graph Laplacian

The non-normalized graph Laplacian, also called the
combinatorial graph Laplacian, is defined as  L := D−W,
where the degree matrix D is a diagonal matrix whose ith

diagonal element di is equal to the sum of the weights of all
of its incident edges.

The graph Laplacian is a difference operator: for any f ∈ RN

( Lf)(i) =
∑

j∈Ni

Wi,j [f(i)− f(j)],

where Ni is the set of vertices connected vi by an edge.

Since  L is real and symmetric, it has a complete set of
orthonormal eigenvectors, {ul}l=0,...,N−1. These eigenvectors
have associated real, non-negative eigenvalues {λl}l=0,...,N−1

satisfying  Lul = λul, for l = 0, . . . , N − 1.
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A graph Fourier transform

We can define the graph Fourier transform f̂ of any function
f ∈ RN on the vertices of G as the expansion of f in terms of the
eigenvectors of the graph Laplacian:

f̂(λl) := 〈f,ul〉 =
N∑

i=1

f(i)u∗l (i).

The inverse graph Fourier transform is then given by

f(i) =
N∑

i=1

f̂(λl)ul(i).
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Modern GNNs: desiderata

Classification
Fully connected layers

Feature extraction
Convolutional layers

Input graph signals
e.g. bags of words

Output signals
e.g. labels

Graph signal filtering
1. Convolution

2. Non-linear activation

Graph coarsening
3. Sub-sampling
4. Pooling

Figure 1: Architecture of a CNN on graphs and the four ingredients of a (graph) convolutional layer.

(NN) graphs, leading to a linear complexity w.r.t the input data size n. Moreover, this
method avoids the Fourier basis altogether, thus the expensive eigenvalue decomposition
(EVD) necessary to compute it as well as the need to store the basis, a matrix of size n2.
That is especially relevant when working with limited GPU memory. Besides the data, our
method only requires to store the Laplacian, a sparse matrix of |E| non-zero values.

4. Efficient pooling. We propose an efficient pooling strategy on graphs which, after a rear-
rangement of the vertices as a binary tree structure, is analog to pooling of 1D signals.

5. Experimental results. We present multiple experiments that ultimately show that our for-
mulation is (i) a useful model, (ii) computationally efficient and (iii) superior both in accu-
racy and complexity to the pioneer spectral graph CNN introduced in [4]. We also show
that our graph formulation performs similarly to a classical CNNs on MNIST and study the
impact of various graph constructions on performance. The TensorFlow [1] code to repro-
duce our results and apply the model to other data is available as an open-source software.1

2 Proposed Technique
Generalizing CNNs to graphs requires three fundamental steps: (i) the design of localized convolu-
tional filters on graphs, (ii) a graph coarsening procedure that groups together similar vertices and
(iii) a graph pooling operation that trades spatial resolution for higher filter resolution.

2.1 Learning Fast Localized Spectral Filters

There are two strategies to define convolutional filters; either from a spatial approach or from a
spectral approach. By construction, spatial approaches provide filter localization via the finite size
of the kernel. However, although graph convolution in the spatial domain is conceivable, it faces
the challenge of matching local neighborhoods, as pointed out in [4]. Consequently, there is no
unique mathematical definition of translation on graphs from a spatial perspective. On the other
side, a spectral approach provides a well-defined localization operator on graphs via convolutions
with a Kronecker delta implemented in the spectral domain [31]. The convolution theorem [22]
defines convolutions as linear operators that diagonalize in the Fourier basis (represented by the
eigenvectors of the Laplacian operator). However, a filter defined in the spectral domain is not
naturally localized and translations are costly due to theO(n2) multiplication with the graph Fourier
basis. Both limitations can however be overcome with a special choice of filter parametrization.

Graph Fourier Transform. We are interested in processing signals defined on undirected and
connected graphs G = (V, E ,W ), where V is a finite set of |V| = n vertices, E is a set of edges and
W ∈ Rn×n is a weighted adjacency matrix encoding the connection weight between two vertices.
A signal x : V → R defined on the nodes of the graph may be regarded as a vector x ∈ Rn
where xi is the value of x at the ith node. An essential operator in spectral graph analysis is the
graph Laplacian [6], which combinatorial definition is L = D−W ∈ Rn×n whereD ∈ Rn×n is the

1https://github.com/mdeff/cnn_graph

2

strictly localized filters

permutation invariance

low computational complexity
Figure credit: [6] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with
fast localized spectral filtering. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, NIPS’16, page 3844–3852, Red Hook, NY, USA, 2016. Curran Associates Inc.
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GNNs for Solving Network Flow (approximately)

(a) Input (b) Graph Construction + Feature En-
coding

(c) Neural Message Passing (d) Edge Classification (e) Output

Figure 1: Overview of our method. (a) We receive as input a set of frames and detections. (b) We construct a graph in which
nodes represent detections, and all nodes at different frames are connected by an edge. (c) We initialize node embeddings in
the graph with a CNN, and edge embeddings with an MLP encoding geometry information (not shown in figure). (c) The
information contained in these embeddings is propagated across the graph for a fixed number of iterations through neural
message passing. (d) Once this process terminates, the embeddings resulting from neural message passing are used to classify
edges into active (colored with green) and non-active (colored with red). During training, we compute the cross-entropy loss
of our predictions w.r.t. ground truth labels and backpropagate gradients through our entire pipeline. (e) At inference, we
follow a simple rounding scheme to binarize our classification scores and obtain final trajectories.

set of time-ordered object detections Ti = {oi1 , . . . , oini
},

where ni is the number of detections that form trajectory
i. The goal of MOT is to find the set of trajectories T∗ =
{T1, . . . , Tm}, that best explains the observations O.

The problem can be modelled with an undirected graph
G = (V, E), where V := {1, . . . , n}, E ⊂ V ×V , and each
node i ∈ V represents a unique detection oi ∈ O. The set
of edges E is constructed so that every pair of detections,
i.e., nodes, in different frames is connected, hence allowing
to recover trajectories with missed detections. Now, the task
of dividing the set of original detections into trajectories can
be viewed as grouping nodes in this graph into disconnected
components. Thus, each trajectory Ti = {oi1 , . . . , oini

} in
the scene can be mapped into a group of nodes {i1, . . . , ini

}
in the graph and vice-versa.

3.2. Network Flow Formulation

In order to represent graph partitions, we introduce a bi-
nary variable for each edge in the graph. In the classical
minimum cost flow formulation1 [74], this label is defined
to be 1 between edges connecting nodes that (i) belong to
the same trajectory, and (ii) are temporally consecutive in-

1We present a simplified version of the minimum cost flow-based MOT
formulation [74]. Specifically, we omit both sink and source nodes (and
hence their corresponding edges) and we assume detection edges to be
constant and 1-valued. We provide further details on our simplification
and its relationship to the original problem in the supplementary material.

side a trajectory; and 0 for all remaining edges.
A trajectory Ti = {oi1 , . . . , oini

} is equivalently de-
noted by the set of edges {(i1, i2), . . . , (ini−1, ini)} ⊂ E,
corresponding to its time-ordered path in the graph. We will
use this observation to formally define the edge labels. For
every pair of nodes in different timestamps, (i, j) ∈ E, we
define a binary variable y(i,j) as:

y(i,j) :=

{
1 ∃Tk ∈ T∗ s.t. (i, j) ∈ Tk

0 otherwise.

An edge (i, j) is said to be active whenever y(i,j) = 1. We
assume trajectories in T to be node-disjoint, i.e., a node
cannot belong to more than one trajectory. Therefore, ŷ
must satisfy a set of linear constraints. For each node i ∈ V :

∑

(j,i)∈E s.t. ti>tj

y(j,i) ≤ 1 (1)

∑

(i,k)∈E s.t. ti<tk

y(i,k) ≤ 1 (2)

These inequalities are a simplified version of the flow
conservation constraints [2]. In our setting, they enforce
that every node gets linked via an active edge to, at most,
one node in past frames and one node in upcoming frames.

6249

Approximating the network max-flow algorithm with a GNN [2]

[2] G. Brasó and L. Leal-Taixé. Learning a neural solver for multiple object tracking. In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.
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GNNs for Joint Detect and Data Association

Backbone

Backbone

RoIAlign

N
ode

Feature
Aggregation

Detection & 
Association

More …

GNN

Flatten
…… Reshape

(c) Node Feature Aggregation

(a) Overview of the proposed network

Location
Head

Box Size
Head

Refinement
Head

Embedding
Head

21 3 4

(b) Detection and Data Association

Detection & 
Association

Fig. 2. (a) Overview of the Proposed Network. We first extract features M̂0
t−1, M̂0

t from images Ft and Ft−1 using a shared backbone. To obtain
feature of each tracklet in Tt−1, we use RoIAlign to crop feature from the image feature M̂0

t−1 given the tracklets’ boxes (red boxes in M̂0
t−1). To

obtain features of potential detections, we use feature of every pixel in M̂0
t . To construct a graph with manageable number of edges, we only define edges

between features of potential detections to tracklets if their spatial distances are within a window (grey boxes in M̂0
t ). With the constructed graph, we

use 3-layer GNNs to update features of tracklets and potential detections via node feature aggregation. A detection and data association head is applied to
every layer of GNNs to obtain final detections and matching. (b) Detection and Data Association: The location, box size, and refinement heads generate
M̂ l

L, M̂ l
S , and M̂ l

R which are used to obtain detections. The embedding head generates M̂ l
E to compute identity embedding for data association. (c) Node

Feature Aggregation. The mixed color illustrates that features from tracklets and potential detections affect each other via relation modeling.

gregation (Sec. III-C), detection (Sec. III-A) and association
(Sec. III-B). As we use GNNs for Simultaneous Detection
and Tracking, we abbreviate our method as GSDT.

A. Feature Extraction and Object Detection

Given two input images Ft−1 and Ft, we first use a shared
DLA-34 backbone [64] to extract feature maps at two frames
M̂0
t−1, M̂

0
t ∈ RW

r ×H
r ×C as shown in Fig. 2 (a) left, where

r is the downsample ratio, W /H are width and heights of
the images, and C is the number of channels. Both image
features M̂0

t−1, M̂
0
t will be used in the following relation

modeling, object detection and data association modules.
Also, for the image feature at frame t, we will update it
at the lth layer of GNNs to obtain M̂ l

t (Sec. III-C).
For object detection, we follow CenterNet [65] and detect

each object by finding its center coordinate (x, y) and
width/height (w, h). As we only perform detection in the
frame t, we feed M̂ l

t to three heads (location, box size and
refinement heads) as shown in Fig. 2 (b), which provides
three maps, i.e., a location map M̂ l

L ∈ RW
r ×H

r , a size map
M̂ l
S ∈ RW

r ×H
r ×2, and a refinement map M̂ l

R ∈ RW
r ×H

r ×2.
As the names suggest, M̂ l

L provides rough estimates of object
center coordinates, M̂ l

S gives estimated widths and heights,
and M̂ l

R refines rough coordinates to be precise. Note that
these three detection heads can operate on any GNN layer l.
Training. To train three detection heads and back-propagate
the gradients through the entire network, we need to con-
struct ground truth (GT) for each map and apply loss
functions. For GT location map M l

L ∈ RW
r ×H

r , we use a
Gaussian heatmap where the peaks occupy the locations of
GT objects. Specifically, the value at the location (i, j) is:

M l
L(i, j) =

∑N

k=1
exp (− (i−b xk

r c)2+(j−b ykr c)2
2σ2

k
), (1)

where N is number of GT objects and (xk, yk) is the center
coordinate of GT object k, and b·c is a floor function. The
standard deviation σk scales with the GT box size (wk, hk)

[46]. For GT box size and refinement maps M l
S ,M

l
R, if there

exists a GT object center at location (i, j), then:

M l
S(i, j, :) = (w, h), (2)

M l
R(i, j, :) = (

x

r
− bx

r
c, y
r
− by

r
c). (3)

After we construct the GT for three maps, we use focal
loss for the location map Llloc, and L1 loss for the size map
Llsize and refinement map Llref . Note that for size/refinement
maps, their losses are only applied to locations with GT
objects. The overall loss for detection is then:

Lldet = λ1L
l
loc + λ2L

l
size + λ3L

l
ref , (4)

where we empirically found λ1 = λ3 = 1, λ2 = 0.1 could
achieve a well balance between each individual loss.

B. Data Association

To match detections with tracklets, we add an additional
embedding head as shown in Fig. 2 (b) to learn an identity
embedding for each potential detection, i.e., every pixel in
M̂ l
t . These identity embeddings are used to compute simi-

larity between every pair of tracklet and potential detection
during testing, where the identity embeddings of tracklets
are cached when they are detected in the previous frame.
Specifically, given M̂ l

t as inputs, our embedding head outputs
an embedding map M̂ l

E ∈ RW
r ×H

r ×D, where D denotes
the embedding dimension and each pixel in M̂ l

E has an
embedding for a potential detection centered at this pixel.
Training. To optimize our embedding head, we further use
embedding at each pixel of the embedding map M̂ l

E as input,
and predict its identity vector p̂, the ith entry of which
represents the probability of this pixel has an object identity
of i. Also, we will need the GT identity vector p for training,
which is a one-hot vector of length M (M is the number
of object identities in the target dataset). Note that in the
GT identity vector p, only the GT identity index is filled
with 1 while all other indexes are 0s. Similar as before, we

1 GNN nodes: possible detections at time t and tracklets from
time t − 1

2 GNN edges between possible detections and tracklets

3 possible detections are defined at every pixel of M̂`
t

[23] Y. Wang, K. Kitani, and X. Weng. Joint Object Detection and Multi-Object Tracking with Graph Neural
Networks. arXiv:2006.13164, 2020.
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Abstract

In this work, we argue that conditioning on the
natural language (NL) description of a target pro-
vides information for longer-term invariance, and thus
helps cope with typical tracking challenges. However,
deriving a formulation to combine the strengths of
appearance-based tracking with the language modality is
not straightforward. Therefore, we propose a novel deep
tracking-by-detection formulation that can take advan-
tage of NL descriptions. Regions that are related to
the given NL description are generated by a proposal
network during the detection stage of the tracker. Our
LSTM based tracker then predicts the update of the tar-
get from regions proposed by the NL based detection
stage. Our method runs at over 30 fps on a single
GPU. In benchmarks, our method is competitive with
state of the art trackers that employ bounding boxes for
initialization, while it outperforms all other trackers on
targets given unambiguous and precise language anno-
tations. When conditioned on NL descriptions only,
our model doubles the performance of the previous best
attempt [25].

1. Introduction

Progress in visual object tracking has been driven
in part by the establishment of standard datasets and
competitions/challenges [20, 34] tied to common eval-
uation metrics [10, 34]. These datasets range from spe-
cific scenarios, such as video surveillance [11], contain-
ing predominantly pedestrians and vehicles captured
with stationary cameras, to datasets that depicts ob-
jects of unrestricted categories captured with cameras
undergoing arbitrary motion. Most recent approaches
focused on the latter types of datasets, proposing new
types of deep features [2, 22, 23, 36] that are robust to

∗Work done at Hikvision Research America

. . .

. . .

Figure 1: The goal is to perform tracking by natural
language specifications given by a human. For exam-
ple, someone specifies track the silver sedan running
on the highway and our goal is to predict a sequence
of bounding boxes on the input video. We also take
advantage of the natural language to better handle
the cases of occlusion and rapid motion of the target
throughout the tracking process.

occlusions, rapid motion, etc.

However, since the “unrestricted categories”
datasets require good tracking performance across
a wide range of scenarios, and this affects how the
tracking problem itself is posed. Specifically, it has
been a de facto standard to initialize a tracker with a
bounding box in the first frame, and require that this
bounding box accurately cover the object of interest.
Such a requirement stands in contrast to tracking in
the surveillance domain, where a tracker is expected
to self-initialize using proposals for regions likely to
contain objects of interest [11].

While it may be acceptable, for the sake of bench-
mark evaluation, to condition a tracker on an initial
bounding box, it limits the practical applicability of
the tracker. In particular, it assumes forensic-style sce-
narios where a human operator sitting at a workstation
with a high-definition monitor has the time and atten-
tion to specify an exact bounding box for each object of
interest. Yet, as demand for computer vision evolves,
so do requirements and assumptions for how vision al-
gorithms fit within the intended applications. For ex-
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