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Deep Learning in 3D

We'll focus on predicting 3D from one or more image
Supervision: depth, mesh, silhouettes, view supervision
Representations: Depth, Points, Meshes, Voxels, SDFs
Neural Scene Representation and Rendering



3D Representation

® Many ways to represent objects in 3D




Learning in 3D
Is a Different Learning Task

Previous Lectures

Whole-image classification
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Pixel Labelling

® Per-Pixel Regression + Classification, Examples, Architectures
® Depth Estimation: direct vs self supervised, pretraining
® Super-Resolution, Colorization, Image Translation



Pixel vs Image Labelling

® |mage labelling, e.g., classification (N class scores per image)
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® Pixel labelling, e.g., segmentation, depth estimation, superres,
(N class scores, depth, RGB value etc. per pixel)

W

H

C

W

CNN

->

H

N

[ David Fouhey ]



Segmentation

® Predict object identity and/or category per pixel

-
0

PO le.

rt pants O 50 &’ Imet 6807
helmet 8‘ :
lmet 0 89 helm 8 helmgt 0, uL-%

()ga\ ohelmet07 E oAb i ~ 4
Y
¢

) ¥ Wl milt } g ?:\\ PN '
bicycle‘O.é‘Z ST | { ! 3 . =i il
s PP & - A : ) L=}
J | , - 'mhln Mo
J‘)\ L1 e ; i)

| | o Ez

building 0.62 - ) é : ; ~ = 2 e ey "*» maI;'O man (.77 = field 0.50 ma

tree 0.72 ildi : : o Y0 ‘ al a1r 0 72
— ¥ P A . W s Blsign 0.77 Y ~ ‘“! su1t 0. bat 0.78
. & F| (S S e U PR f lnﬁﬁﬁ%‘?(ﬁgaﬁ -
‘ f ch / ’ . m O E— bag07 \ =
. > by > 3 : ‘ it . S < U e y ”. RORES e necktle 0. 5Qecklace 0.8 hand 0.58
" ' sign 0.62 ‘ ':3 '. n ‘*'\J ; 4&
- 1{1,d0w10\513dd))m® ool | A — i I
/ |

man 0.58 Jaglrilet 6 . carl.59 & . ' _ke board 0.64m
. " |" s==sign 0.5% ISR\ 7/ button “
‘ - 3 ' t,rouser 0.74"

A
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Depth + Normals Estimation

® Predict depth or surface normal per pixel, given RGB input

[ Alhashim Wonka 2019 ] [ Eigen Fergus 2015 ]



Image Colorization

® Predict color per pixel, given grayscale input

[ Zhang et al. 2016 ]



Super-Resolution

® Predict high resolution RGB, given low resolution RGB input

4 x downsampled bicubic upsample 4 x superresolution

. | pixel = 16 pixels
real size =

[ Ledig et al. 2017 ]



Why Not Stack Convolutions?

WC F

H H

4

n 3x3 convs have a receptive field of 2n+1 pixels
How many convolutions until >=200 pixels?

100

[ David Fouhey ]



Why Not Stack Convolutions?

WC F

H H

4

Suppose 200 3x3 filters/layer, H=W=400
Storage/layer/image: 200 * 400 * 400 * 4 bytes = 122MB

Uh oh!*

*100 layers, batch size of 20 = 238GB of memory!
[ David Fouhey ]



Encoder-Decoder

Key idea: First downsample towards middle
of network. Then upsample from middle.

How do we downsample?
Convolutions, pooling
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[ David Fouhey ]



Putting it Together

Convolutions + pooling downsample/compress/encode
Transpose convs./unpoolings upsample/uncompress/decode

Input Downsample Upsample Output
Conv, pool Tr. Conv./Unpool
“Encoder” “Decoder”
W C or bilinear upsample WF

[ David Fouhey ]



Putting It Together — Block Sizes

« Often multiple layers at each spatial resolution.
» Often halve spatial resolution and double
feature depth every few layers
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[ David Fouhey ]



Missing Detalls

Where is the useful information about the high-
frequency details of the image?

4

Result from Long et al. Fully Convolutional Networks For Semantic Segmentation. CVPR 2014 [ David Fou hey ]



Missing Details

How do you send details forward in the network??

You copy the activations forward.
Subsequent layers at the same resolution figure
out how to fuse things.
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Result from Long et al. Fully Convolutional Networks For Semantic Segmentation. CVPR 2014 [ David FOU he)’ ]




U-Net

Extremely
popular

architecture, was
originally used for

biomedical image \ '
segmentation.

Transpose conv,
bilinear upsample
etc.

Ronneberger et al. “U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI ZOESDaVid Fouhey ]



Single-View Depth Estimation

[ T. Zhou, A. Geiger ]



Single-View Depth Estimation

[ T. Zhou, A. Geiger ]



Single-View Depth Estimation
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[ T. Zhou, A. Geiger ]



NYU Depth V2 Dataset

400K RGBD frames captured using Microsoft Kinect
~1500 have segmentation labels (26 classes) as well

The dataset has depth holes, note offset between RGB and
NIR cameras, and NIR dot projector, also raw RGB + D
frames are not synchronized

Synchronized and filled subset of 50K images by [Alhashim
Wonka 2018] — see Project 4 description

Limited to indoor scenes due to active NIR illumination



NYU Depth Estimation

multi-scale
architecture

Loss,
Direct supervision e.g., L2
via Kinect RGB+D

[ Eigen Fergus 2015 ],



NYU Depth Estimation

Vs ™~ ’
/ U :

U-Net with skip
connections

Loss,
Direct supervision e.g., L2

via Kinect RGB+D



Single-View Depth Estimation

U-Net with skip
connections

Loss,
Direct supervision e.g., L2
via Kinect RGB+D




2-view Stereo

® Form HxWxD=disparity volume and use 3D convolution

Extract features Form volume by Perform 3D  Treat output
at each pixel sliding features  convolution on  as disparity
using 2D CNN  from 2nd image  feature volume cost volume
at D disparities and perform

soft argmax

https://www.youtube.com/watch?v=VtAzDS INLmo [ Kendall et al. 2017 ]



https://www.youtube.com/watch?v=VtAzDS1NLmo

End-to-end Deep Stereo Regression Architecture

| Layer Description |_Output Tensor Dim.
[ Tnput image I HXWxC
Unary features (section 3.1)
1 5x35 conv, 32 features, stride 2 VAHx VAW xF
2 3x3 conv, 32 features VAHx VAW xF
3 3x3 conv, 32 features VHxsW xF
add layer 1 and 3 features (residual connection) VAHx AW xF
4-17 | (repeat layers 2.3 and residual connection) x 7 VH X VAW xF
18 | 3x3 conv, 32 features, (no ReLu or BN) VHx /AW xF
Cost volume (section 3.2)
[ Cost Volume [ DX ZHX AW X2E
Learning regularization (section 3.3)
19 3-D conv, 3x3x3, 32 features ADx VAH X AW xF
20 3-D conv, 3x3x3, 32 features VADx sHx aW xF
21 From Cost Volume: 3-D conv, 3x3x3, 64 features, stride 2 | /4D xY4Hx4W x2F
22 3-D conv, 3x3x3, 64 features VDX VaHx VsW x 2F
23 3-D conv, 3x3x3, 64 features VDX VaHx VsW x 2F
24 From 21: 3-D conv, 3x3x3, 64 features, stride 2 YD x iHx 4W x 2F
25 3-D conv, 3x3x3, 64 features AD X AH X AW x 2F
26 3-D conv, 3x3x3, 64 features 4D x iHx sW x 2F
27 From 24: 3-D conv, 3x3x3, 64 features, stride 2 V16D x VisH x VisW X 2F
28 3-D conv, 3x3x3, 64 features YD x VisH x VisW x 2F
29 3-D conv, 3x3x3, 64 features V16D x VieH x VieW X 2F
30 From 27: 3-D conv, 3x3x3, 128 features, stride 2 VD x VaH x W x4F
31 3-D conv, 3x3x3, 128 features VD x VoHx W x4F
32 3-D conv, 3x3x3, 128 features VDX VaHx W x4F
33 3x3x3, 3-D transposed conv, 64 features, stride 2 YieDx VisH x VisW x 2F
add layer 33 and 29 features (residual connection) YD x VisHx VieW X 2F
34 3x3x3, 3-D transposed conv, 64 features, stride 2 YADx ViHx aW x 2F
add layer 34 and 26 features (residual connection) DX AH % AW x 2F
35 3x3x3, 3-D transposed conv, 64 features, stride 2 YiDx ViHx aW x 2F
add layer 35 and 23 features (residual connection) VDX VaHx VsW x 2F
36 3x3x3, 3-D transposed conv, 32 features, stride 2 D x VsHx AW xF
add layer 36 and 20 features (residual connection) ADx VaHx /AW xF
37 3x3x3, 3-D trans conv, 1 feature (no ReLu or BN) DxHxWx1
Soft argmin (section 3.4)
[ Soft argmin I HXW

[ Kendall et al. 2017 ]



Computing Sub-pixel Disparity
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(a) Soft ArgMin

[ Kendall et al. 2017 ]

(b) Multi-modal distribution

(c) Multi-modal distribution with prescaling



Plane Sweep Stereo

(reminder from Lecture 5)

d=N

Hi2(d)




Multi-view Stereo
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other images [ DeePMVS, Huang etal.2018 ]



Ground Colmap Colmap DeepMVS
Truth Filtered all [ Huang et al. 2018 ]




DeepMVS: Ablation Studies

Components Geo. error  Pho. error
Pretraining 0.051 0.242
+ U-net 0.043 0.230
+ U-net + VGG 0.040 0.226
+ U-net 4+ VGG + DenseCRF 0.036 0.224
+ U-net 4+ VGG + DenseCRF — MVS-SYNTH 0.037 0.225

[ Huang et al. 2018 ]



DeepMVS: Progressive Improvement
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[ Huang et al. 2018 ]



3D Shape Representations: Point Cloud

* Represent shape as a set of P points in 3D space
* (+) Can represent fine structures without huge numbers of points

* (-) Doesn’t explicitly represent the surface of the shape: extracting a mesh
for rendering or other applications requires post-processing

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017

Justin Johnson Lecture 17 - 32 November 13, 2019




Processing Pointcloud Inputs: PointNet

Run MLP on
each point

- A Fully
- Connected

ﬁ
#
—

— y,

Max-Pool

Input pointcloud: Point features:  Pooled vector: Class score:
Px3 PxD D C

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017
Qi et al, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”, NeurlPS 2017

Justin Johnson Lecture 17 - 33 November 13, 2019



Processing Mesh (and PointCloud):
FeaStNet

[ Verma, Boyer, and Verbeek CVPR 2018 ]



FeaStNet: Problem Statement

Vertex-labeling problem:
Reference shape: 6,980 vertices

Let each vertex in the reference

\\ shape be its own class (label).
WY ={0,.., 6980-1}

For the target shape (on the
right), label each vertex using Y

[ Verma, Boyer, and Verbeek CVPR 2018 ]



Rethinking Convolution

[ Verma, Boyer, and Verbeek CVPR 2018 ]



Generalized Convolution

4| <« convolution on the image lattice

[ Verma, Boyer, and Verbeek CVPR 2018 ]



Generalized Convolution

Z (x4, %)W, x;,
eN;
T

(u Xi +Vv,, xj+cm),

M
m=
%n(xi7xj)

with Z%ﬂ m(xi,x5) = 1,

The only additional parameters w.r.t. a conventional CNN
are the vectors u,,, v,,, which contain 2M D parameters.

[ Verma, Boyer, and Verbeek CVPR 2018 ]



uses 3D mesh

models from IKEA
3D Datasets: Object-Centric

ShapeNet Pix3D

~50 categories, ~50k 3D CAD models O categories, 219 3D models of IKEA furniture
Standard split has 13 categories, ~44k aligned to ~17k real images

models, 25 rendered images per model Some papers train on ShapeNet and show

Many papers show results here qualitative results here, but use ground-truth
o , segmentation masks
(-) Synthetic, isolated objects; no context

(-) Lots of chairs, cars, airplanes (-) Small, partial annotations — only 1 obj/image

Chang et al, “ShapeNet: An Information-Rich 3D Model Repository”, arXiv 2015 — . ey
Choy et al, “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, ECCV 2016 Sun et al, “Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling”, CVPR 2018

Justin Johnson Lecture 17 - 88 November 13, 2019



3D Shape Prediction: Mesh R-CNN

Mask R-CNN: Mesh R-CNN:
2D Image -> 2D shapes 2D Image -> Triangle Meshes

—

He, Gkioxari, Dollar, and
Girshick, “Mask R-CNN”, Gkioxari, Malik, and Johnson,
ICCV 2017 “Mesh R-CNN”, ICCV 2019

Justin Johnson Lecture 17 - 89 November 13, 2019

Detect objects and

. Estimate 3D mesh
extract silhouettes



There Is More To Do in 3D

DeepVoxels

Embedding vector per voxel

Neural Scene

Representation
Re-Rendered

Observations

Observations

Image Loss

Scene represented as an embedding vector per 3D point

DeepSDF

e CPPN for signed distance function, SDF=f(X)

[ Slides: Jeong Joon Park ]

Neural Radiance Fields

® Another cont

Ray 1

“ Ray 2

Ray Distance

inuous scene representation using a FCN

Predict density at each
location, integrate along
ray to get color (volume

rendering)



We've Reached the End of the Class

But there is so much more to
computer vision!

Stay in touch: vxa@uw.edu





