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Deep Learning in 3D
• We’ll focus on predicting 3D from one or more image

• Supervision: depth, mesh, silhouettes, view supervision

• Representations: Depth, Points, Meshes, Voxels, SDFs

• Neural Scene Representation and Rendering



3D Representation

ɸ(X)

• Many ways to represent objects in 3D



Learning in 3D 
Is a Different Learning Task

Object detectionWhole-image classification

Previous Lectures



Pixel Labelling
• Per-Pixel Regression + Classification, Examples, Architectures

• Depth Estimation: direct vs self supervised, pretraining

• Super-Resolution, Colorization, Image Translation



Pixel vs Image Labelling
• Image labelling, e.g., classification (N class scores per image)Previously

H

W C

1
1 F

CNN

Convert HxW image into a F-dimensional vector

Is this image a cat?
At what distance was this photo taken?

Is this image fake?

N

Now

H

W C

CNN H

W F

Convert HxW image into a F-dimensional vector

Which pixels in this image are a cat?
How far is each pixel away from the camera?

Which pixels of this image are fake?

N

[ David Fouhey ]

• Pixel labelling, e.g., segmentation, depth estimation, superres,
(N class scores, depth, RGB value etc. per pixel)



Segmentation
• Predict object identity and/or category per pixel
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Figure 5. Example mask predictions from our MaskX R-CNN on 3000 classes in Visual Genome. The green boxes are the 80 classes

that overlap with COCO (set A with mask training data) while the red boxes are the remaining 2920 classes not in COCO (set B without

mask training data). It can be seen that our model generates reasonable mask predictions on many classes in set B. See §5 for details.

the model does a reasonable job segmenting isolated trees,
but tends to fail at segmentation when the detected ‘tree’ is
more like a forest. Finally, the detector does a reasonable
job at segmenting whole objects and parts of those objects,
such as windows of a trolley car or handles of a refrigera-
tor. Compared to a detector trained on 80 COCO categories,
these results illustrate the exciting potential of systems that
can recognize and segment thousands of concepts.

6. Conclusion

This paper addresses the problem of large-scale instance
segmentation by formulating a partially supervised learn-
ing paradigm in which only a subset of classes have in-
stance masks during training while the rest have box an-

notations. We propose a novel transfer learning approach,
where a learned weight transfer function predicts how each
class should be segmented based on parameters learned
for detecting bounding boxes. Experimental results on the
COCO dataset demonstrate that our method greatly im-
proves the generalization of mask prediction to categories
without mask training data. Using our approach, we build a
large-scale instance segmentation model over 3000 classes
in the Visual Genome dataset. The qualitative results are en-
couraging and illustrate an exciting new research direction
into large-scale instance segmentation. They also reveal that
scaling instance segmentation to thousands of categories,
without full supervision, is an extremely challenging prob-
lem with ample opportunity for improved methods.

4240

EXLOGLQJ�����
WUHH�����

EXLOGLQJ�����

EXV�����

WUHH�����

WUHH�����

EXV�����

WUHH�����

SROH�����

ELF\FOH�����

VLJQ�����

ZLQGRZ�����ZLQGRZ�����ZLQGRZ�����

ZLQGRZ�����

ZLQGRZ�����

ZLQGRZ�����

ZLQGRZ�����

ZLQGRZ�����

ZLQGRZ�����
ZLQGRZ�����

VLJQ�����
PDQ�����

WUHH�����WUHH����� SROH�����

ELF\FOH�����

FDU�����PDQ�����
PDQ�����

VLJQ�����

VLJQ�����

VLJQ�����

VLJQ�����

MDFNHW����� FDU�����

VLJQ�����

VLJQ�����

ZLQGRZ�����ZLQGRZ�����

VLJQ�����

VLJQ�����

ZLQGRZ�����

ZLQGRZ�����

ZLQGRZ�����

VLJQ�����

PDQ�����PDQ�����

PDQ�����

ODSWRS�����

VXLW�����

PDQ�����

WURXVHU�����

NH\ERDUG�����

EDJ�����

KDLU�����

PDQ�����

QHFNODFH�����

DFFRXQWDQW�����

QHFNWLH�����

VKRH�����

QHFNWLH�����

EXWWRQ�����

EXWWRQ�����EXWWRQ�����

VN\�����

EXLOGLQJ�����

WUXFN�����

SROH�����

WUHH�����
EXLOGLQJ�����

WUHH�����

WUHH�����

FDU�����

FRQH�����FRQH�����FRQH�����

FDU�����
FRQH����� FRQH�����FRQH�����

VLJQ�����

WUXFN�����

EHQFK�����

WUXFN�����

WUHH����� WUHH�����

WLUH�����
WLUH�����

ZLQGRZ�����ZLQGRZ�����

WLUH�����

PDQ�����

VKLUW�����ELF\FOH����� ELF\FOH�����

ELF\FOH�����

PDQ�����

ELF\FOH�����

PDQ�����
VKLUW�����

KHOPHW����� KHOPHW�����

KHOPHW�����KHOPHW�����
KHOPHW�����KHOPHW�����

KHOPHW�����
KHOPHW�����

VKRUWBSDQWV�����
KHOPHW�����KHOPHW�����

KHOPHW����� KHOPHW�����

Figure 5. Example mask predictions from our MaskX R-CNN on 3000 classes in Visual Genome. The green boxes are the 80 classes

that overlap with COCO (set A with mask training data) while the red boxes are the remaining 2920 classes not in COCO (set B without

mask training data). It can be seen that our model generates reasonable mask predictions on many classes in set B. See §5 for details.

the model does a reasonable job segmenting isolated trees,
but tends to fail at segmentation when the detected ‘tree’ is
more like a forest. Finally, the detector does a reasonable
job at segmenting whole objects and parts of those objects,
such as windows of a trolley car or handles of a refrigera-
tor. Compared to a detector trained on 80 COCO categories,
these results illustrate the exciting potential of systems that
can recognize and segment thousands of concepts.

6. Conclusion

This paper addresses the problem of large-scale instance
segmentation by formulating a partially supervised learn-
ing paradigm in which only a subset of classes have in-
stance masks during training while the rest have box an-

notations. We propose a novel transfer learning approach,
where a learned weight transfer function predicts how each
class should be segmented based on parameters learned
for detecting bounding boxes. Experimental results on the
COCO dataset demonstrate that our method greatly im-
proves the generalization of mask prediction to categories
without mask training data. Using our approach, we build a
large-scale instance segmentation model over 3000 classes
in the Visual Genome dataset. The qualitative results are en-
couraging and illustrate an exciting new research direction
into large-scale instance segmentation. They also reveal that
scaling instance segmentation to thousands of categories,
without full supervision, is an extremely challenging prob-
lem with ample opportunity for improved methods.
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Figure 5. Example mask predictions from our MaskX R-CNN on 3000 classes in Visual Genome. The green boxes are the 80 classes

that overlap with COCO (set A with mask training data) while the red boxes are the remaining 2920 classes not in COCO (set B without

mask training data). It can be seen that our model generates reasonable mask predictions on many classes in set B. See §5 for details.

the model does a reasonable job segmenting isolated trees,
but tends to fail at segmentation when the detected ‘tree’ is
more like a forest. Finally, the detector does a reasonable
job at segmenting whole objects and parts of those objects,
such as windows of a trolley car or handles of a refrigera-
tor. Compared to a detector trained on 80 COCO categories,
these results illustrate the exciting potential of systems that
can recognize and segment thousands of concepts.

6. Conclusion

This paper addresses the problem of large-scale instance
segmentation by formulating a partially supervised learn-
ing paradigm in which only a subset of classes have in-
stance masks during training while the rest have box an-

notations. We propose a novel transfer learning approach,
where a learned weight transfer function predicts how each
class should be segmented based on parameters learned
for detecting bounding boxes. Experimental results on the
COCO dataset demonstrate that our method greatly im-
proves the generalization of mask prediction to categories
without mask training data. Using our approach, we build a
large-scale instance segmentation model over 3000 classes
in the Visual Genome dataset. The qualitative results are en-
couraging and illustrate an exciting new research direction
into large-scale instance segmentation. They also reveal that
scaling instance segmentation to thousands of categories,
without full supervision, is an extremely challenging prob-
lem with ample opportunity for improved methods.
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[ Hu et al 2017 ] 



Depth + Normals Estimation

[ Alhashim Wonka 2019 ]

• Predict depth or surface normal per pixel, given RGB input

[ Eigen Fergus 2015 ]



Image Colorization
• Predict color per pixel, given grayscale input

[ Zhang et al. 2016 ] 



Super-Resolution
• Predict high resolution RGB, given low resolution RGB input

A.4. Set5 - Visual Results

bicubic SRResNet SRGAN original

Figure 11: Results for Set5 using bicubic interpolation, SRResNet and SRGAN. [4⇥ upscaling]

4 x downsampled bicubic upsample 4 x superresolution

[ Ledig et al. 2017 ]

real size = 
1 pixel → 16 pixels



8

Why Not Stack Convolutions?

H

W C

« H

W F

n 3x3 convs have a receptive field of 2n+1 pixels
How many convolutions until >=200 pixels?

100

[ David Fouhey ]
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Why Not Stack Convolutions?

H

W C

« H

W F

Suppose 200 3x3 filters/layer, H=W=400
Storage/layer/image: 200 * 400 * 400 * 4 bytes = 122MB

Uh oh!*
*100 layers, batch size of 20 = 238GB of memory!

[ David Fouhey ]



10

Encoder-Decoder

Key idea: First downsample towards middle 
of network. Then upsample from middle.

H

W C

H

WF

How do we downsample?
Convolutions, pooling

[ David Fouhey ]
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Putting it Together

H

W C

Input Downsample
Conv, pool
“Encoder”

Upsample
Tr. Conv./Unpool

“Decoder”

H

WF

Output

Convolutions + pooling downsample/compress/encode
Transpose convs./unpoolings upsample/uncompress/decode

[ David Fouhey ]

or bilinear upsample
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Putting It Together ± Block Sizes
� Often multiple layers at each spatial resolution.

� Often halve spatial resolution and double
feature depth every few layers 

H
W
D

H/2 
W/2
2D

H/4
W/4
4D

H/8
W/8 
8D

H/4
W/4
4D

H/2 
W/2
2D

H
W
D

[ David Fouhey ]
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Missing Details
Where is the useful information about the high-

frequency details of the image?

Result from Long et al. Fully Convolutional Networks For Semantic Segmentation. CVPR 2014

EBA C D

[ David Fouhey ]
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Copy

Missing Details
How do you send details forward in the network? 

You copy the activations forward. 
Subsequent layers at the same resolution figure 

out how to fuse things.

Result from Long et al. Fully Convolutional Networks For Semantic Segmentation. CVPR 2014 [ David Fouhey ]
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U-Net

Ronneberger et al. “U-Net: Convolutional Networks for Biomedical Image Segmentation. MICCAI 2015 

Extremely 
popular 
architecture, was 
originally used for 
biomedical image 
segmentation.

[ David Fouhey ]

Transpose conv,
bilinear upsample 

etc.



Single-View Depth Estimation

[ T. Zhou, A. Geiger ] 



CloseFar

Farther

[ T. Zhou, A. Geiger ]

Single-View Depth Estimation



Single-View Depth Estimation

[ T. Zhou, A. Geiger ] 



NYU Depth v2 Dataset

• 400K RGBD frames captured using Microsoft Kinect

• ~1500 have segmentation labels (26 classes) as well

• The dataset has depth holes, note offset between RGB and
NIR cameras, and NIR dot projector, also raw RGB + D
frames are not synchronized

• Synchronized and filled subset of 50K images by [Alhashim
Wonka 2018] — see Project 4 description

• Limited to indoor scenes due to active NIR illumination



NYU Depth Estimation

20[ Eigen Fergus 2015 ]

Other Tasks ± Surface Normals

NormalsColor Image

𝒏 = 𝑛 , 𝑛 , 𝑛 , 𝒏 = 1

Room

Legend

Image credit: NYU Dataset, Silberman et al.  ECCV 2012

Direct supervision 
via Kinect RGB+D

timization on a grid drawn from vanishing point rays [11],
while Ladicky et al. learn a regression from over-segmented
regions to a discrete set of normals and mixture coefficients.
Barron and Malik [3, 2] infer normals from RGB-D inputs
using a set of handcrafted priors, along with illumination
and reflectance. From RGB inputs, Wang et al. [38] use
convolutional networks to combine normals estimates from
local and global scales, while also employing cues from
room layout, edge labels and vanishing points. Importantly,
we achieve as good or superior results with a more general
multiscale architecture that can naturally be used to perform
many different tasks.

Prior work on semantic segmentation includes many dif-
ferent approaches, both using RGB-only data [35, 4, 9] as
well as RGB-D [31, 29, 26, 6, 15, 17, 13]. Most of these
use local features to classify over-segmented regions, fol-
lowed by a global consistency optimization such as a CRF.
By comparison, our method takes an essentially inverted ap-
proach: We make a consistent global prediction first, then
follow it with iterative local refinements. In so doing, the lo-
cal networks are made aware of their place within the global
scene, and can can use this information in their refined pre-
dictions.

Gupta et al. [13, 14] create semantic segmentations first
by generating contours, then classifying regions using either
hand-generated features and SVM [13], or a convolutional
network for object detection [14]. Notably, [13] also per-
forms amodal completion, which transfers labels between
disparate regions of the image by comparing planes from
the depth.

Most related to our method in semantic segmentation
are other approaches using convolutional networks. Farabet
et al. [9] and Couprie et al. [6] each use a convolutional net-
work applied to multiple scales in parallel generate features,
then aggregate predictions using superpixels. Our method
differs in several important ways. First, our model has a
large, full-image field of view at the coarsest scale; as we
demonstrate, this is of critical importance, particularly for
depth and normals tasks. In addition, we do not use super-
pixels or post-process smoothing — instead, our network
produces fairly smooth outputs on its own, allowing us to
take a simple pixel-wise maximum.

Pinheiro et al. [28] use a recurrent convolutional network
in which each iteration incorporates progressively more
context, by combining a more coarsely-sampled image in-
put along with the local prediction from the previous itera-
tion. This direction is precisely the reverse of our approach,
which makes a global prediction first, then iteratively re-
fines it. In addition, whereas they apply the same network
parameters at all scales, we learn distinct networks that can
specialize in the edits appropriate to their stage.

Most recently, in concurrent work, Long et al. [24] adapt
the recent VGG ImageNet model [32] to semantic segmen-

upsample 

Input 

Normals 

conv/pool 

conv/pool 

!!!"
convolutions 

!!!"
convolutions 

full conn. 
!!!"

conv/pool 

Scale 1 

Scale 2 

Scale 3 

concat 

concat 

upsample 

Depth Labels 

Layer 1.1 1.2 1.3 1.4 1.5 1.6 1.7 upsamp

Scale 1
Size 37x27 18x13 18x13 18x13 8x6 1x1 19x14 74x55

(AlexNet)
#convs 1 1 1 1 1 – – –
#chan 96 256 384 384 256 4096 64 64
ker. sz 11x11 5x5 3x3 3x3 3x3 – – –
Ratio /8 /16 /16 /16 /32 – /16 /4
l.rate 0.001 0.001 0.001 0.001 0.001 see text
Layer 1.1 1.2 1.3 1.4 1.5 1.6 1.7 upsamp

Scale 1
Size 150x112 75x56 37x28 18x14 9x7 1x1 19x14 74x55

(VGG)
#convs 2 2 3 3 3 – – –
#chan 64 128 256 512 512 4096 64 64
ker. sz 3x3 3x3 3x3 3x3 3x3 – – –
Ratio /2 /4 /8 /16 /32 – /16 /4
l.rate 0.001 0.001 0.001 0.001 0.001 see text

Scale 2

Layer 2.1 2.2 2.3 2.4 2.5 upsamp
Size 74x55 74x55 74x55 74x55 74x55 147x109
#chan 96+64 64 64 64 C C
ker. sz 9x9 5x5 5x5 5x5 5x5 –
Ratio /4 /4 /4 /4 /4 /2
l.rate 0.001 0.01 0.01 0.01 0.001

Scale 3

Layer 3.1 3.2 3.3 3.4 final
Size 147x109 147x109 147x109 147x109 147x109
#chan 96+C 64 64 C C
ker. sz 9x9 5x5 5x5 5x5 –
Ratio /2 /2 /2 /2 /2
l.rate 0.001 0.01 0.01 0.001

Figure 1. Model architecture. C is the number of output channels
in the final prediction, which depends on the task. The input to the
network is 320x240.

tation by applying 1x1 convolutional label classifiers at fea-
ture maps from different layers, corresponding to different
scales, and averaging the outputs. By contrast, we apply
networks for different scales in series, which allows them to
make more complex edits and refinements, starting from the
full image field of view. Thus our architecture easily adapts
to many tasks, whereas by considering relatively smaller
context and summing predictions, theirs is specific to se-
mantic labeling.

multi-scale 
architecture

Loss, 
e.g., L2



NYU Depth Estimation

Other Tasks ± Surface Normals

NormalsColor Image

𝒏 = 𝑛 , 𝑛 , 𝑛 , 𝒏 = 1

Room

Legend

Image credit: NYU Dataset, Silberman et al.  ECCV 2012

U-Net with skip 
connections

Loss, 
e.g., L2Direct supervision 

via Kinect RGB+D



Single-View Depth Estimation

Other Tasks ± Surface Normals

NormalsColor Image

𝒏 = 𝑛 , 𝑛 , 𝑛 , 𝒏 = 1

Room

Legend

Image credit: NYU Dataset, Silberman et al.  ECCV 2012

U-Net with skip 
connections

Loss, 
e.g., L2Direct supervision 

via Kinect RGB+D



2-view Stereo
• Form HxWxD=disparity volume and use 3D convolution

[ Kendall et al. 2017 ] 

Extract features 
at each pixel 

using 2D CNN

Form volume by 
sliding features 
from 2nd image 
at D disparities

Perform 3D 
convolution on 
feature volume

Treat output 
as disparity 
cost volume 
and perform 
soft argmax

https://www.youtube.com/watch?v=VtAzDS1NLmo 

https://www.youtube.com/watch?v=VtAzDS1NLmo


Layer Description Output Tensor Dim.
Input image H×W×C

Unary features (section 3.1)
1 5×5 conv, 32 features, stride 2 1⁄2H×1⁄2W×F
2 3×3 conv, 32 features 1⁄2H×1⁄2W×F
3 3×3 conv, 32 features 1⁄2H×1⁄2W×F

add layer 1 and 3 features (residual connection) 1⁄2H×1⁄2W×F
4-17 (repeat layers 2,3 and residual connection) × 7 1⁄2H×1⁄2W×F
18 3×3 conv, 32 features, (no ReLu or BN) 1⁄2H×1⁄2W×F

Cost volume (section 3.2)
Cost Volume 1⁄2D×1⁄2H×1⁄2W×2F

Learning regularization (section 3.3)
19 3-D conv, 3×3×3, 32 features 1⁄2D×1⁄2H×1⁄2W×F
20 3-D conv, 3×3×3, 32 features 1⁄2D×1⁄2H×1⁄2W×F
21 From Cost Volume: 3-D conv, 3×3×3, 64 features, stride 2 1⁄4D×1⁄4H×1⁄4W×2F
22 3-D conv, 3×3×3, 64 features 1⁄4D×1⁄4H×1⁄4W×2F
23 3-D conv, 3×3×3, 64 features 1⁄4D×1⁄4H×1⁄4W×2F
24 From 21: 3-D conv, 3×3×3, 64 features, stride 2 1⁄8D×1⁄8H×1⁄8W×2F
25 3-D conv, 3×3×3, 64 features 1⁄8D×1⁄8H×1⁄8W×2F
26 3-D conv, 3×3×3, 64 features 1⁄8D×1⁄8H×1⁄8W×2F
27 From 24: 3-D conv, 3×3×3, 64 features, stride 2 1⁄16D×1⁄16H×1⁄16W×2F
28 3-D conv, 3×3×3, 64 features 1⁄16D×1⁄16H×1⁄16W×2F
29 3-D conv, 3×3×3, 64 features 1⁄16D×1⁄16H×1⁄16W×2F
30 From 27: 3-D conv, 3×3×3, 128 features, stride 2 1⁄32D×1⁄32H×1⁄32W×4F
31 3-D conv, 3×3×3, 128 features 1⁄32D×1⁄32H×1⁄32W×4F
32 3-D conv, 3×3×3, 128 features 1⁄32D×1⁄32H×1⁄32W×4F
33 3×3×3, 3-D transposed conv, 64 features, stride 2 1⁄16D×1⁄16H×1⁄16W×2F

add layer 33 and 29 features (residual connection) 1⁄16D×1⁄16H×1⁄16W×2F
34 3×3×3, 3-D transposed conv, 64 features, stride 2 1⁄8D×1⁄8H×1⁄8W×2F

add layer 34 and 26 features (residual connection) 1⁄8D×1⁄8H×1⁄8W×2F
35 3×3×3, 3-D transposed conv, 64 features, stride 2 1⁄4D×1⁄4H×1⁄4W×2F

add layer 35 and 23 features (residual connection) 1⁄4D×1⁄4H×1⁄4W×2F
36 3×3×3, 3-D transposed conv, 32 features, stride 2 1⁄2D×1⁄2H×1⁄2W×F

add layer 36 and 20 features (residual connection) 1⁄2D×1⁄2H×1⁄2W×F
37 3×3×3, 3-D trans conv, 1 feature (no ReLu or BN) D×H×W×1

Soft argmin (section 3.4)
Soft argmin H×W

End-to-end Deep Stereo Regression Architecture

[ Kendall et al. 2017 ]
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(a) Soft ArgMin
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(b) Multi-modal distribution
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(c) Multi-modal distribution with prescaling

Figure 2: A graphical depiction of the soft argmin operation (Section 3.4) which we propose in this work. It is able to take a cost curve
along each disparity line and output an estimate of the argmin by summing the product of each disparity’s softmax probability and it’s
disparity index. (a) demonstrates that this very accurately captures the true argmin when the curve is uni-modal. (b) demonstrates a failure
case when the data is bi-modal with one peak and one flat region. (c) demonstrates that this failure may be avoided if the network learns to
pre-scale the cost curve, because the softmax probabilities will tend to be more extreme, producing a uni-modal result.

representations between features, and cannot carry absolute
feature representations through to cost volume.

3.3. Learning Context

Given this disparity cost volume, we would now like to
learn a regularization function which is able to take into ac-
count context in this volume and refine our disparity esti-
mate. The matching costs between unaries can never be
perfect, even when using a deep feature representation. For
example, in regions of uniform pixel intensity (for exam-
ple, sky) the cost curve will be flat for any features based
on a fixed, local context. We find that regions like this can
cause multi modal matching cost curves across the dispar-
ity dimension. Therefore we wish to learn to regularize and
improve this volume.

We propose to use three-dimensional convolutional op-
erations to filter and refine this representation. 3-D con-
volutions are able to learn feature representations from the
height, width and disparity dimensions. Because we com-
pute the cost curve for each unary feature, we can learn con-
volutional filters from this representation. In Section 4.1 we
show the importance of these 3-D filters for learning context
and significantly improving stereo performance.

The difficulty with 3-D convolutions is that the addi-
tional dimension is a burden on the computational time for
both training and inference. Deep encoder-decoder tasks
which are designed for dense prediction tasks get around
their computational burden by encoding sub-sampled fea-
ture maps, followed by up-sampling in a decoder [3]. We
extend this idea to three dimensions. By sub-sampling the
input with stride two, we also reduce the 3-D cost volume

size by a factor of eight. We form our 3-D regularization
network with four levels of sub-sampling. As the unaries
are already sub-sampled by a factor of two, the features are
sub-sampled by a total factor of 32. This allows us to ex-
plicitly leverage context with a wide field of view. We apply
two 3×3×3 convolutions in series for each encoder level.
To make dense predictions with the original input resolu-
tion, we employ a 3-D transposed convolution to up-sample
the volume in the decoder. The full architecture is described
in Table 1.

Sub-sampling is useful to increase each feature’s recep-
tive field while reducing computation. However, it also re-
duces spatial accuracy and fine-grained details through the
loss of resolution. For this reason, we add each higher reso-
lution feature map before up-sampling. These residual lay-
ers have the benefit of retaining higher frequency informa-
tion, while the up-sampled features provide an attentive fea-
ture map with a larger field of view.

Finally, we apply a single 3-D transposed convolution
(deconvolution), with stride two and a single feature out-
put. This layer is necessary to make dense prediction in the
original input dimensions because the feature unaries were
sub-sampled by a factor of two. This results in the final,
regularized cost volume with size H×W×D.

3.4. Differentiable ArgMin

Typically, stereo algorithms produce a final cost volume
from the matching cost unaries. From this volume, we may
estimate disparity by performing an argmin operation over
the cost volumes disparity dimension. However, this opera-
tion has two problems:
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Computing Sub-pixel Disparity

[ Kendall et al. 2017 ]



Plane Sweep Stereo 
(reminder from Lecture 5)

H12(d)

d=1
d=2

d=N
…



Multi-view Stereo

[ DeepMVS, Huang et al. 2018 ] 

Compare patches in ref image
to plane sweep volumes from 

other images

Perform intra and inter-volume 
aggregation of features



[ Huang et al. 2018 ]

DeepMVS: Results

Image Ground
Truth

Colmap
Filtered

Colmap
all

DeepMVS



Components

Pretraining 0.051 0.242
+ U-net 0.043 0.230
+ U-net + VGG 0.040 0.226
+ U-net + VGG + DenseCRF 0.036 0.224
+ U-net + VGG + DenseCRF − MVS-SYNTH 0.037 0.225

Geo. error Pho. error

[ Huang et al. 2018 ]

DeepMVS: Ablation Studies



DeMoN [37]
(best)

COLMAP [33]
(unfiltered)

Our result

Figure 6. Comparisons of rephotography results. See Figure 5 for
the ground truth reference images.

Geometric errors Photometric errors

N
=

1
N

=
8

N
=

1
N

=
8

Image /
ground truth

Our result COLMAP [33]
(unfiltered)

Geometric Errors

MVS-Synth dataset. Table 2 shows that removing MVS-
SYNTH dataset from the training set results in slightly larger
errors for both metrics. Qualitatively, we observe that the
network trained without MVS-SYNTH dataset works very
poorly for the sky and reflective surfaces, as Figure 10
shows. These regions usually lack ground truth data, so

Image Ours Ours w/o
DenseCRF

Figure 9. Example of the improvements from the DenseCRF re-
finement. Applying DenseCRF removes the noisy predictions.

Image Ours Ours w/o
MVS-SYNTH

Figure 10. Comparisons between networks trained with and with-
out the MVS-SYNTH dataset. Without MVS-SYNTH dataset, the
network has difficulty in handling regions such as the sky because
real-world datasets do not cover these regions.

the errors do not reflect much on the quantitative errors. We
suggest that the poor predictions result from the fact that
the ground truths in DeMoN dataset does not cover such
regions.

U-Net and VGG features. As Table 2 shows, adding the
U-net and VGG features each provides improvements in
both error metrics. This shows that allowing non-local in-
formation and providing semantic features both help the
network in better disparity predictions.

4.6. Limitations

Following are some limitations of our network. First, the
quantization of disparity results in undesired geometric and
photometric errors. Second, our network often fails to pre-
dict correct disparities for vegetation areas containing trees
or grass. Finally, the computation speed of our algorithm is
constrained by the time-consuming generation of the plane-
sweep volumes and the deep and large network structures.

5. Conclusions

With DeepMVS, we demonstrate the feasibility of learn-
ing Mulit-View Stereopsis with a convolutinoal neural net-
work, and show that learning-based approaches can over-
come the weaknesses of conventional algorithms.
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DeepMVS: Progressive Improvement

[ Huang et al. 2018 ]



Justin Johnson November 13, 2019

3D Shape Representations: Point Cloud

Lecture 17 - 32

• Represent shape as a set of P points in 3D space
• (+) Can represent fine structures without huge numbers of points
• (  ) Requires new architecture, losses, etc
• (-) Doesn’t explicitly represent the surface of the shape: extracting a mesh

for rendering or other applications requires post-processing

Fan et al, “A Point Set Generation Network for 3D Object Reconstruction from a Single Image”, CVPR 2017
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Processing Pointcloud Inputs: PointNet

Lecture 17 - 33

Input pointcloud:
P x 3

Point features:
P x D

Run MLP on
each point

Max-Pool

Pooled vector:
D

Fully 
Connected

Class score:
C

Want to process 
pointclouds as sets: 

order should not matter

Qi et al, “PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation”, CVPR 2017
Qi et al, “PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space”, NeurIPS 2017



Processing Mesh (and PointCloud): 
FeaStNet

[ Verma, Boyer, and Verbeek CVPR 2018 ]



FeaStNet: Problem Statement

[ Verma, Boyer, and Verbeek CVPR 2018 ]

Vertex-labeling problem:

Reference shape: 6,980 vertices

Let each vertex in the reference 
shape be its own class (label).
Y = {0, ..., 6980-1}

For the target shape (on the 
right), label each vertex using Y



Rethinking Convolution

[ Verma, Boyer, and Verbeek CVPR 2018 ]



Generalized Convolution

[ Verma, Boyer, and Verbeek CVPR 2018 ]

  ← convolution on the image lattice

convolution on an arbitrary graph topology



yi = b+

M∑

m=1

1

|Ni|
∑

j∈Ni

qm(xi,xj)Wmxj ,

qm(xi,xj) ∝ exp
(
u⊤
mxi + v⊤

mxj + cm
)
,

with
∑M

m=1 qm(xi,xj) = 1,

The only additional parameters w.r.t. a conventional CNN 
are the vectors um, vm, which  contain 2MD parameters.

Generalized Convolution

[ Verma, Boyer, and Verbeek CVPR 2018 ]
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3D Datasets: Object-Centric

Lecture 17 - 88

ShapeNet

~50 categories, ~50k 3D CAD models

Standard split has 13 categories, ~44k 
models, 25 rendered images per model
Many papers show results here

(-) Synthetic, isolated objects; no context

(-) Lots of chairs, cars, airplanes
Chang et al, “ShapeNet: An Information-Rich 3D Model Repository”, arXiv 2015
Choy et al, “3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction”, ECCV 2016

Pix3D

9 categories, 219 3D models of IKEA furniture 
aligned to ~17k real images

Some papers train on ShapeNet and show 
qualitative results here, but use ground-truth 
segmentation masks

(+) Real images! Context!

(-) Small, partial annotations – only 1 obj/image

Sun et al, “Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling”, CVPR 2018

uses 3D mesh 
models from IKEA
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3D Shape Prediction: Mesh R-CNN

He, Gkioxari, Dollár, and 
Girshick, “Mask R-CNN”, 
ICCV 2017

Mask R-CNN: 
2D Image -> 2D shapes

Mesh R-CNN: 
2D Image -> Triangle Meshes

Gkioxari, Malik, and Johnson, 
“Mesh R-CNN”, ICCV 2019

Detect objects and 
extract silhouettes Estimate 3D mesh



There Is More To Do in 3D 



We’ve Reached the End of the Class

But there is so much more to 
computer vision!

Stay in touch: vxa@uw.edu




