CSEP576 Autumn 2021 Project 4 Instructor: Vitaly Ablavsky

[Overview] Pose-estimation of 3D objects from a single image is often a key ingredient for semantic scene analysis.
Yet, in many real-world scenarios, such as the one shown Fig. 1(a), pose estimation remains a challenge. In this project
you will design a pose-regression neural network architecture, train it on synthetic data of the type shown in Fig. 1(b)
and evaluate your method quantitatively, producing metrics such as the one in Fig. 1(c).

Histogram of 0.5(1 — coS(Wirye — West))

1.0

Frequency
o o o
=y (o)) [o0]

o
N

o
IS)

00 02 04 06 08 1.0

(b) (©

Figure 1: (a) Estimating 3D pose of objects (even of known classes) can be challenging under adverse imaging
conditions such as occlusions and low resolution. (b) We could consider tackling this problem in stages, by first
learning to estimate pose of objects in isolation and using synthetic data. For example, the Mitsuba [4] model of a
Pontiac GTO 67 comes from [1]. (c) To quantitatively evaluate performance (accuracy) of our algorithm we would
employ metrics that are specific to pose estimation, such as the one from [3] computed for a hypothetical validation
set and visualized as a histogram with 8 bins.

[Starter code] See the course page: https://courses.cs.washington.edu/courses/csep576/21lau/

Set up the data loaders and visualize a mini-batch [10pts] Fill in setup_xforms_and_data_loaders ()
following comments in the starter code. You can test your implementation using the corresponding unit test func-
tion named ut_setup_xforms_and_data_loaders () whichis called from run_all_unit_tests (). When
you’ve implemented the data loaders correctly, the corresponding ut - function will return True. Next fill in the
details of load batch_of_data () and verify that the corresponding unit test returns True.

Insert a synthetic object into the scene [20pts] Before performing quantitative evaluation, one may want to check
visually that our predicted pose looks good. For applications like simultaneous localization and mapping (SLAM)
one approach is to insert a synthetic pattern (e.g., camera icon with the correct pose) into the scene. In our case
we’ll overlay a three-axis pattern viewed from the direction estimated by our network on top of its input image, as in
Fig. 1(b). You will find step-by-step instructions in the starter code geometry.py.

Define an error metric for angular errors [10pts] The starter code pose_regress . py contains hints on several
loss functions you could try first; an example of an error metric is defined in train_util.py and shown in Fig. 1.
Complete the implementation to turn the hints into one or two lines of code.

Complete the training code and run evaluations [30pts] Following the concepts you learned working on Project 3,
implement SGD training via backpropagation. Evaluate this (baseline) model using metrics developed in the previous
part of the assignment.

Extend the model and/or try new data [30pts] Extend the baseline model. Possible directions include (but are not
limited to): (a) trying a different feature-extraction (encoding) architecture; (b) trying a different loss function and/or
regression output space, e.g., [cos(t), sin(t)] or full 3D; and (c) predicting object masks as in Mask R-CNN. [2]. You
are encouraged to try any publicly available, synthetic or real, dataset of your choice or collect/generate your own data.

[What to turn in] Upload your code and a report (PDF) that is concise but thorough. The report needs to include:

motivation for your work (you can adapt it from the assignment preamble)
hypotheses you wanted to test

experiments you conducted

lessons you learned

A significant part of your report should be devoted to qualitative and quantitative results. The report should show:

1 of 2


https://courses.cs.washington.edu/courses/csep576/21au/

CSEP576 Autumn 2021 Project 4 Instructor: Vitaly Ablavsky

e status of the unit tests (for a correct implementation, they should all return True)

e quantitative results (training/test loss vs. epoch; angular-error histogram plots at the beginning and the end of
training; any other metric you may wish to include)

e qualitative results (examples of visualizing the pose)

For the last part of the assignment, provide the qualitative and quantitative results in the same format as for your
baseline implementation. Make sure to cite any papers and give credit to any open-source code that you use directly
or indirectly!

References

[1] B. Bitterli. Rendering resources, 2016. https://benedikt-bitterli.me/resources/. 1

[2] K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask R-CNN. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 2980-2988, 2017. 1

[3] A.Mousavian, D. Anguelov, J. Flynn, and J. Kosecka. 3D bounding box estimation using deep learning and geometry. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017. 1

[4] M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob. Mitsuba 2: A retargetable forward and inverse renderer. Transactions
on Graphics (Proceedings of SSIGGRAPH Asia), 38(6), Dec. 2019. 1

2 0of2



