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Abstract

This paper concerns the problem of fully automated
panoramic image stitching. Though the 1D problem (single
axis of rotation) is well studied, 2D or multi-row stitching is
more difficult. Previous approaches have used human input
or restrictions on the image sequence in order to establish
matching images. In this work, we formulate stitching as a
multi-image matching problem, and use invariant local fea-
tures to find matches between all of the images. Because of
this our method is insensitive to the ordering, orientation,
scale and illumination of the input images. It is also insen-
sitive to noise images that are not part of a panorama, and
can recognise multiple panoramas in an unordered image
dataset. In addition to providing more detail, this paper ex-
tends our previous work in the area [BL03] by introducing
gain compensation and automatic straightening steps.

1 Introduction

Panoramic image stitching has an extensive research lit-
erature [Sze04, Mil75, BL03] and several commercial ap-
plications [Che95, REA, MSF]. The basic geometry of
the problem is well understood, and consists of estimat-
ing a3 × 3 camera matrix or homography for each image
[HZ04, SS97]. This estimation process needs an initialisa-
tion, which is typically provided by user input to approxi-
mately align the images, or a fixed image ordering. For ex-
ample, the PhotoStitch software bundled with Canon digital
cameras requires a horizontal or vertical sweep, or a square
matrix of images. REALVIZ Stitcher version 4 [REA] has a
user interface to roughly position the images with a mouse,
before automatic registration proceeds. Our work is novel
in that we require no such initialisation to be provided.

In the research literature methods for automatic image
alignment and stitching fall broadly into two categories
– direct [SK95, IA99, SK99, SS00] and feature based
[ZFD97, CZ98, MJ02]. Direct methods have the advan-
tage that they use all of the available image data and hence

can provide very accurate registration, but they require a
close initialisation. Feature based registration does not re-
quire initialisation, but traditional feature matching meth-
ods (e.g., correlation of image patches around Harris cor-
ners [Har92, ST94]) lack the invariance properties needed
to enable reliable matching of arbitrary panoramic image
sequences.

In this paper we describe an invariant feature based ap-
proach to fully automatic panoramic image stitching. This
has several advantages over previous approaches. Firstly,
our use of invariant features enables reliable matching of
panoramic image sequences despite rotation, zoom and illu-
mination change in the input images. Secondly, by viewing
image stitching as a multi-image matching problem, we can
automatically discover the matching relationships between
the images, and recognise panoramas in unordered datasets.
Thirdly, we generate high-quality results using multi-band
blending to render seamless output panoramas. This paper
extends our earlier work in the area [BL03] by introducing
gain compensation and automatic straightening steps. We
also describe an efficient bundle adjustment implementation
and show how to perform multi-band blending for multiple
overlapping images with any number of bands.

The remainder of the paper is structured as follows. Sec-
tion 2 develops the geometry of the problem and motivates
our choice of invariant features. Section 3 describes our im-
age matching methodology (RANSAC) and a probabilistic
model for image match verification. In section 4 we de-
scribe our image alignment algorithm (bundle adjustment)
which jointly optimises the parameters of each camera. Sec-
tions 5 - 7 describe the rendering pipeline including au-
tomatic straightening, gain compensation and multi-band
blending. In section 9 we present conclusions and ideas for
future work.

2 Feature Matching

The first step in the panoramic recognition algorithm is
to extract and match SIFT [Low04] features between all of



the images. SIFT features are located at scale-space max-
ima/minima of a difference of Gaussian function. At each
feature location, a characteristic scale and orientation is es-
tablished. This gives a similarity-invariant frame in which
to make measurements. Although simply sampling inten-
sity values in this frame would be similarity invariant, the
invariant descriptor is actually computed by accumulating
local gradients in orientation histograms. This allows edges
to shift slightly without altering the descriptor vector, giving
some robustness to affine change. This spatial accumulation
is also important for shift invariance, since the interest point
locations are typically only accurate in the 0-3 pixel range
[BSW05, SZ03]. Illumination invariance is achieved by us-
ing gradients (which eliminates bias) and normalising the
descriptor vector (which eliminates gain).

Since SIFT features are invariant under rotation and scale
changes, our system can handle images with varying orien-
tation and zoom (see figure 8). Note that this would not be
possible using traditional feature matching techniques such
as correlation of image patches around Harris corners. Or-
dinary (translational) correlation is not invariant under ro-
tation, and Harris corners are not invariant to changes in
scale.

Assuming that the camera rotates about its optical cen-
tre, the group of transformations the images may undergo
is a special group of homographies. We parameterise each
camera by a rotation vectorθ = [θ1, θ2, θ3] and focal length
f . This gives pairwise homographiesũi = Hijũj where

Hij = KiRiRT
j K−1

j (1)

and ũi, ũj are the homogeneous image positions (ũi =
si[ui, 1], whereui is the 2-dimensional image position).
The 4 parameter camera model is defined by

Ki =

fi 0 0
0 fi 0
0 0 1

 (2)

and (using the exponential representation for rotations)

Ri = e[θi]× , [θi]× =

 0 −θi3 θi2

θi3 0 −θi1

−θi2 θi1 0

 . (3)

Ideally one would use image features that are invariant
under this group of transformations. However, for small
changes in image position

ui = ui0 +
∂ui

∂uj

∣∣∣∣
ui0

∆uj (4)

or equivalentlyũi = Aijũj , where

Aij =

a11 a12 a13

a21 a22 a23

0 0 1

 (5)

is an affine transformation obtained by linearising the ho-
mography aboutui0. This implies that each small image
patch undergoes an affine transformation, and justifies the
use of SIFT features which are partially invariant under
affine change.

Once features have been extracted from alln images (lin-
ear time), they must be matched. Since multiple images
may overlap a single ray, each feature is matched to itsk
nearest neighbours in feature space (we usek = 4). This
can be done inO(n log n) time by using a k-d tree to find
approximate nearest neighbours [BL97]. A k-d tree is an
axis aligned binary space partition, which recursively par-
titions the feature space at the mean in the dimension with
highest variance.

3 Image Matching

At this stage the objective is to find all matching (i.e.
overlapping) images. Connected sets of image matches will
later become panoramas. Since each image could poten-
tially match every other one, this problem appears at first to
be quadratic in the number of images. However, it is only
necessary to match each image to a small number of over-
lapping images in order to get a good solution for the image
geometry.

From the feature matching step, we have identified im-
ages that have a large number of matches between them. We
consider a constant numberm images, that have the greatest
number of feature matches to the current image, as potential
image matches (we usem = 6). First, we use RANSAC to
select a set of inliers that are compatible with a homography
between the images. Next we apply a probabilistic model to
verify the match.

3.1 Robust Homography Estimation using
RANSAC

RANSAC (random sample consensus) [FB81] is a robust
estimation procedure that uses a minimal set of randomly
sampled correspondences to estimate image transformation
parameters, and finds a solution that has the best consensus
with the data. In the case of panoramas we select sets of
r = 4 feature correspondences and compute the homogra-
phyH between them using the direct linear transformation
(DLT) method [HZ04]. We repeat this withn = 500 tri-
als and select the solution that has the maximum number
of inliers (whose projections are consistent withH within
a toleranceε pixels). Given the probability that a feature



match is correct between a pair of matching images (the in-
lier probability) ispi, the probability of finding the correct
transformation aftern trials is

p(H is correct) = 1− (1− (pi)r)n. (6)

After a large number of trials the probability of finding the
correct homography is very high. For example, for an in-
lier probability pi = 0.5, the probability that the correct
homography isnot found after 500 trials is approximately
1× 10−14.

RANSAC is essentially a sampling approach to estimat-
ing H. If instead of maximising the number of inliers one
maximises the sum of the log likelihoods, the result is max-
imum likelihood estimation (MLE). Furthermore, if priors
on the transformation parameters are available, one can
compute a maximum a posteriori estimate (MAP). These
algorithms are known as MLESAC and MAPSAC respec-
tively [Tor02].

3.2 Probabilistic Model for Image Match Verifi-
cation

For each pair of potentially matching images we have
a set of feature matches that are geometrically consistent
(RANSAC inliers) and a set of features that are inside the
area of overlap but not consistent (RANSAC outliers). The
idea of our verification model is to compare the probabilities
that this set of inliers/outliers was generated by a correct
image match or by a false image match.

For a given image we denote the total number of features
in the area of overlapnf and the number of inliersni. The
event that this image matches correctly/incorrectly is rep-
resented by the binary variablem ε {0, 1}. The event that
the ith feature matchf (i) ε {0, 1} is an inlier/outlier is as-
sumed to be independent Bernoulli, so that the total number
of inliers is Binomial

p(f (1:nf )|m = 1) = B(ni;nf , p1) (7)

p(f (1:nf )|m = 0) = B(ni;nf , p0) (8)

wherep1 is the probability a feature is an inlier given a cor-
rect image match, andp0 is the probability a feature is an
inlier given a false image match. The set of feature match
variables{f (i), i = 1, 2, . . . , nf} is denotedf (1:nf ). The
number of inliersni =

∑nf

i=1 f (i) andB(.) is the Binomial
distribution

B(x;n, p) =
n!

x!(n− x)!
px(1− p)n−x. (9)

We choose valuesp1 = 0.6 andp0 = 0.1. We can now eval-
uate the posterior probability that an image match is correct
using Bayes’ Rule

p(m = 1|f (1:nf )) =
p(f (1:nf )|m = 1)p(m = 1)

p(f (1:nf ))
(10)

=
1

1 + p(f(1:nf )|m=0)p(m=0)

p(f(1:nf )|m=1)p(m=1)

(11)

We accept an image match ifp(m = 1|f (1:nf )) > pmin

B(ni;nf , p1)p(m = 1)
B(ni;nf , p0)p(m = 0)

accept

≷
reject

1
1

pmin
− 1

. (12)

Choosing valuesp(m = 1) = 10−6 andpmin = 0.999
gives the condition

ni > α + βnf (13)

for a correct image match, whereα = 8.0 andβ = 0.3.
Though in practice we have chosen values forp0, p1, p(m =
0), p(m = 1) andpmin, they could in principle be learnt
from the data. For example,p1 could be estimated by com-
puting the fraction of matches consistent with correct ho-
mographies over a large dataset.

Once pairwise matches have been established between
images, we can find panoramic sequences as connected sets
of matching images. This allows us to recognise multiple
panoramas in a set of images, and reject noise images which
match to no other images (see figure (2)).

4 Bundle Adjustment

Given a set of geometrically consistent matches between
the images, we use bundle adjustment [TMHF99] to solve
for all of the camera parameters jointly. This is an essen-
tial step as concatenation of pairwise homographies would
cause accumulated errors and disregard multiple constraints
between images, e.g., that the ends of a panorama should
join up. Images are added to the bundle adjuster one by
one, with the best matching image (maximum number of
consistent matches) being added at each step. The new im-
age is initialised with the same rotation and focal length as
the image to which it best matches. Then the parameters are
updated using Levenberg-Marquardt.

The objective function we use is a robustified sum
squared projection error. That is, each feature is projected
into all the images in which it matches, and the sum of
squared image distances is minimised with respect to the
camera parameters1. Given a correspondenceuk

i ↔ ul
j (uk

i

1Note that it would also be possible (and in fact statistically optimal) to
represent the unknown ray directionsX explicitly, and to estimate them
jointly with the camera parameters. This would not increase the com-
plexity of the algorithm if a sparse bundle adjustment method was used
[TMHF99].



(a) Image 1 (b) Image 2

(c) SIFT matches 1 (d) SIFT matches 2

(e) RANSAC inliers 1 (f) RANSAC inliers 2

(g) Images aligned according to a homography

Figure 1. SIFT features are extracted from all of the images. After matching all of the features using a k-d tree, them
images with the greatest number of feature matches to a given image are checked for an image match. First RANSAC
is performed to compute the homography, then a probabilistic model is invoked to verify the image match based on the
number of inliers. In this example the input images are 517× 374 pixels and there are 247 correct feature matches.



(a) Image matches

(b) Connected components of image matches

(c) Output panoramas

Figure 2. Recognising panoramas. Given a noisy set of feature matches, we use RANSAC and a probabilistic verification
procedure to find consistent image matches (a). Each arrow between a pair of images indicates that a consistent set of
feature matches was found between that pair. Connected components of image matches are detected (b) and stitched
into panoramas (c). Note that the algorithm is insensitive to noise images that do not belong to a panorama (connected
components of size 1 image).



denotes the position of thekth feature in imagei), the resid-
ual is

rk
ij = uk

i − pk
ij (14)

wherepk
ij is the projection from imagej to imagei of the

point corresponding touk
i

p̃k
ij = KiRiRT

j K−1
j ũl

j . (15)

The error function is the sum over all images of the robusti-
fied residual errors

e =
n∑

i=1

∑
jεI(i)

∑
kεF(i,j)

h(rk
ij) (16)

wheren is the number of images,I(i) is the set of images
matching to imagei, F(i, j) is the set of feature matches
between imagesi andj. We use a Huber robust error func-
tion [Hub81]

h(x) =

{
|x|2, if |x| < σ

2σ|x| − σ2, if |x| ≥ σ
. (17)

This error function combines the fast convergence proper-
ties of anL2 norm optimisation scheme for inliers (distance
less thanσ), with the robustness of anL1 norm scheme for
outliers (distance greater thanσ). We use an outlier distance
σ = ∞ during initialisation andσ = 2 pixels for the final
solution.

This is a non-linear least squares problem which we
solve using the Levenberg-Marquardt algorithm. Each it-
eration step is of the form

Φ = (JT J + λC−1
p )−1JT r (18)

whereΦ are all the parameters,r the residuals andJ =
∂r/∂Φ. We encode our prior belief about the parameter
changes in the (diagonal) covariance matrixCp

Cp =



σ2
θ 0 0 0 0 . . .
0 σ2

θ 0 0 0 . . .
0 0 σ2

θ 0 0 . . .
0 0 0 σ2

f 0 . . .

0 0 0 0 σ2
θ . . .

...
...

...
...

...


(19)

This is set such that the standard deviation of angles is
σθ = π/16 and focal lengthsσf = f̄/10 (wheref̄ is the
mean of the focal lengths estimated so far). This helps in
choosing suitable step sizes, and hence speeding up conver-
gence. For example, if a spherical covariance matrix were
used, a change of 1 radian in rotation would be equally pe-
nalised as a change of 1 pixel in the focal length parameter.

Finally, theλ parameter is varied at each iteration to en-
sure that the objective function of equation 16 does in fact
decrease.

The derivatives are computed analytically via the chain
rule, for example

∂pk
ij

∂θi1

=
∂pk

ij

∂p̃k
ij

∂p̃k
ij

∂θi1

(20)

where

∂pk
ij

∂p̃k
ij

=
∂
[
x/z y/z

]
∂
[
x y z

] =
[
1/z 0 −x/z2

0 1/z −y/z2

]
(21)

and

∂p̃k
ij

∂θi1

= Ki
∂Ri

∂θi1

RjK−1
j ũl

j (22)

∂Ri

∂θi1

=
∂

∂θi1

e[θi]× = e[θi]×

0 0 0
0 0 −1
0 1 0

 . (23)

4.1 Fast Solution by Direct Computation of the
Linear System

Since the matrixJ is sparse, formingJT J by explic-
itly multiplying J by its transpose is inefficient. In fact,
this would be the most expensive step in bundle adjustment,
costingO(MN2) for anM × N matrix J (M is twice the
number of measurements andN is the number of param-
eters). The sparseness arises because each image typically
only matches to a small subset of the other images. This
means that in practice each element ofJT J can be com-
puted in much fewer thanM multiplications

(JT J)ij =
∑

kεF(i,j)

∂rk
ij

∂Φi

T
∂rk

ij

∂Φj
= C−1

Φ (24)

i.e., the inverse covariance between camerasi andj depends
only on the residuals of feature matches betweeni andj.

Similarly, JT r need not be computed explicitly, but can
be computed via

(JT r)i =
n∑

i=1

∑
jεI(i)

∑
kεF(i,j)

∂rk
ij

∂Φi

T

rk
ij . (25)

In both cases each summation would requireM multiplica-
tions if each feature matched to every single image, but in
practice the number of feature matches for a given image
is much less than this. Hence each iteration of bundle ad-
justment isO(N3), which is the cost of solving theN ×N
linear system. The number of parametersN is 4 times the
number of images, and typicallyM is around 100 times
larger thanN .



5 Automatic Panorama Straightening

Image registration using the steps of sections 2 - 4 gives
the relative rotations between the cameras, but there re-
mains an unknown 3D rotation to a chosen world coordi-
nate frame. If we simply assume thatR = I for one of
the images, we typically find a wavy effect in the output
panorama. This is because the real camera was unlikely to
be perfectly level and un-tilted. We can correct this wavy
output and automatically straighten the panorama by mak-
ing use of a heuristic about the way people typically shoot
panoramic images. The idea is that it is rare for people to
twist the camera relative to the horizon, so the cameraX
vectors (horizontal axis) typically lie in a plane (see figure
4). By finding the null vector of the covariance matrix of the
cameraX vectors, we can find the “up-vector”u (normal to
the plane containing the camera centre and the horizon)(

n∑
i=1

XiXT
i

)
u = 0. (26)

Applying a global rotation such that up-vectoru is vertical
(in the rendering frame) effectively removes the wavy effect
from output panoramas as shown in figure 4.

6 Gain Compensation

In previous sections, we described a method for comput-
ing the geometric parameters (orientation and focal length)
of each camera. In this section, we show how to solve for
a photometric parameter, namely the overall gain between
images. This is set up in a similar manner, with an error
function defined over all images. The error function is the
sum of gain normalised intensity errors for all overlapping
pixels

e =
1
2

n∑
i=1

n∑
j=1

∑
uiεR(i, j)
ũi = Hijũj

(giIi(ui)−gjIj(uj))2 (27)

wheregi, gj are the gains, andR(i, j) is the region of over-
lap between imagesi and j. In practice we approximate
I(ui) by the mean in each overlapping regionĪij

Īij =

∑
uiεR(i,j) Ii(ui)∑

uiεR(i,j) 1
. (28)

This simplifies the computation and gives some robustness
to outliers, which might arise due to small misregistrations
between the images. Also, sinceg = 0 is an optimal solu-
tion to the problem, we add a prior term to keep the gains
close to unity. Hence the error function becomes

e =
1
2

n∑
i=1

n∑
j=1

Nij ((giĪij − gj Īji)2/σ2
N + (1− gi)2/σ2

g)

(29)
whereNij = |R(i, j)| equals the number of pixels in im-
agei that overlap in imagej. The parametersσN andσg

are the standard deviations of the normalised intensity er-
ror and gain respectively. We choose valuesσN = 10.0,
(I ε {0..255}) andσg = 0.1. This is a quadratic objective
function in the gain parametersg which can be solved in
closed form by setting the derivative to 0 (see figure 5).

7 Multi-Band Blending

Ideally each sample (pixel) along a ray would have the
same intensity in every image that it intersects, but in real-
ity this is not the case. Even after gain compensation some
image edges are still visible due to a number of unmodelled
effects, such as vignetting (intensity decreases towards the
edge of the image), parallax effects due to unwanted mo-
tion of the optical centre, mis-registration errors due to mis-
modelling of the camera, radial distortion and so on. Be-
cause of this a good blending strategy is important.

From the previous steps we haven imagesIi(x, y)
(i ε {1..n}) which, given the known registration, may
be expressed in a common (spherical) coordinate system
as Ii(θ, φ). In order to combine information from mul-
tiple images we assign a weight function to each image
W (x, y) = w(x)w(y) wherew(x) varies linearly from 1
at the centre of the image to 0 at the edge. The weight func-
tions are also resampled in spherical coordinatesW i(θ, φ).
A simple approach to blending is to perform a weighted sum
of the image intensities along each ray using these weight
functions

I linear(θ, φ) =
∑n

i=1 Ii(θ, φ)W i(θ, φ)∑n
i=1 W i(θ, φ)

(30)

whereI linear(θ, φ) is a composite spherical image formed
using linear blending. However, this approach can cause
blurring of high frequency detail if there are small registra-
tion errors (see figure 7). To prevent this we use the multi-
band blending algorithm of Burt and Adelson [BA83]. The
idea behind multi-band blending is to blend low frequencies
over a large spatial range, and high frequencies over a short
range.

We initialise blending weights for each image by finding
the set of points for which imagei is most responsible

W i
max(θ, φ) =

{
1 if W i(θ, φ) = arg maxj W j(θ, φ)
0 otherwise

(31)



(a) (b) (c)

Figure 3. Finding the up-vectoru. A good heuristic to align wavy panoramas is to note that people rarelytwist the
camera relative to the horizon. Hence despite tilt (b) and rotation (c), the cameraX vectors typically lie in a plane. The
up-vectoru (opposite to the direction of gravity) is the vector normal to this plane.

(a) Without automatic straightening

(b) With automatic straightening

Figure 4. Automatic panorama straightening. Using the heuristic that users rarely twist the camera relative to the
horizon allows us to straighten wavy panoramas by computing the up-vector (perpendicular to the plane containing the
horizon and the camera centre).



(a) Half of the images registered

(b) Without gain compensation

(c) With gain compensation

(d) With gain compensation and multi-band blending

Figure 5. Gain compensation. Note that large changes in brightness between the images are visible if gain compensation
is not applied (a)-(b). After gain compensation, some image edges are still visible due to unmodelled effects such as
vignetting (c). These can be effectively smoothed out using multi-band blending (d).



i.e. W i
max(θ, φ) is 1 for (θ, φ) values where imagei has

maximum weight, and 0 where some other image has a
higher weight. These max-weight maps are successively
blurred to form the blending weights for each band.

A high pass version of the rendered image is formed

Bi
σ(θ, φ) = Ii(θ, φ)− Ii

σ(θ, φ) (32)

Ii
σ(θ, φ) = Ii(θ, φ) ∗ gσ(θ, φ) (33)

wheregσ(θ, φ) is a Gaussian of standard deviationσ, and
the ∗ operator denotes convolution.Bσ(θ, φ) represents
spatial frequencies in the range of wavelengthsλ ∈ [0, σ].
We blend this band between images using a blending weight
formed by blurring the max-weight map for this image

W i
σ(θ, φ) = W i

max(θ, φ) ∗ gσ(θ, φ) (34)

whereW i
σ(θ, φ) is the blend weight for the wavelengthλ ∈

[0, σ] band. Subsequent frequency bands are blended using
lower frequency bandpass images and further blurring the
blend weights, i.e. fork ≥ 1

Bi
(k+1)σ = Ii

kσ − Ii
(k+1)σ (35)

Ii
(k+1)σ = Ii

kσ ∗ gσ′ (36)

W i
(k+1)σ = W i

kσ ∗ gσ′ (37)

where the standard deviation of the Gaussian blurring kernel
σ′ =

√
(2k + 1)σ is set such that subsequent bands have

the same range of wavelengths.
For each band, overlapping images are linearly com-

bined using the corresponding blend weights

Imulti
kσ (θ, φ) =

∑n
i=1 Bi

kσ(θ, φ)W i
kσ(θ, φ)∑n

i=1 W i
kσ(θ, φ)

. (38)

This causes high frequency bands (smallkσ) to be blended
over short ranges whilst low frequency bands (largekσ) are
blended over larger ranges (see figure (6)).

Note that we have chosen to render the panorama in
spherical coordinatesθ, φ. In principle one could choose
any 2-dimensional parameterisation of a surface around the
viewpoint for rendering. One good choice would be to
render to a triangulated sphere, constructing the blending
weights in the image plane. This would have the advantage
of uniform treatment of all images, and it would also allow
easy resampling to other surfaces (in graphics hardware).
Note that theθ, φ parameterisation suffers from singulari-
ties at the poles.

Algorithm: Automatic Panorama Stitching

Input: n unordered images

I. Extract SIFT features from alln images

II. Find k nearest-neighbours for each feature using a k-d
tree

III. For each image:
(i) Selectm candidate matching images that have

the most feature matches to this image

(ii) Find geometrically consistent feature matches
using RANSAC to solve for the homography be-
tween pairs of images

(iii) Verify image matches using a probabilistic model

IV. Find connected components of image matches

V. For each connected component:
(i) Perform bundle adjustment to solve for the rota-

tion θ1, θ2, θ3 and focal lengthf of all cameras

(ii) Render panorama using multi-band blending

Output: Panoramic image(s)

8 Results

Figure 2 shows typical operation of the panoramic recog-
nition algorithm. A set of images containing 4 panoramas
and 4 noise images was input. The algorithm detected con-
nected components of image matches and unmatched im-
ages, and output 4 blended panoramas.

Figure 5 shows a larger example. This sequence was
shot using the camera’s automatic mode, which allowed the
aperture and exposure time to vary, and the flash to fire on
some images. Despite these changes in illumination, the
SIFT features match robustly and the multi-band blending
strategy yields a seamless panorama. The output is 360°×
100° degrees and has been rendered in spherical coordinates
(θ, φ). All 57 images were matched fully automatically with
no user input, and a4 × 57 = 228 parameter optimisation
problem was solved for the final registration. The2272 ×
1704 pixel input images were matched and registered in 60
seconds, and a further 15 minutes were taken to render the
8908×2552 (23 megapixel) output panorama. A2000×573
preview was rendered in 57 seconds. Tests were conducted
on a 1.6GHz Pentium M.



(a) Original images and blended result

(b) Band 1 (scale 0 toσ)

(c) Band 2 (scaleσ to 2σ)

(d) Band 3 (scale lower than2σ)

Figure 6. Multi-band blending. Bandpass imagesBkσ(θ, φ) for k = 1, 2, 3 are shown on the left, with the corresponding
blending weightsWkσ(θ, φ) shown on the right. Initial blending weights are assigned to 1 where each image has
maximum weight. To obtain each blending function, the weights are blurred at spatial frequencyσ and bandpass
images of the same spatial frequency are formed. The bandpass images are blended together using weighted sums
based on the blending weights (Note: the blending widths have been exaggerated for clarity in these figures).



(a) Linear blending (b) Multi-band blending

Figure 7. Comparison of linear and multi-band blending. The image on the right was blended using multi-band blending
using 5 bands andσ = 5 pixels. The image on the left was linearly blended. In this case matches on the moving
person have caused small misregistrations between the images, which cause blurring in the linearly blended result, but
the multi-band blended image is clear.

(a) (b)

Figure 8. Stitching with rotation and zoom. Our use of invariant features make stitching possible despite rotation, zoom
and illumination changes in the input images. Here the inset images at the base and tip of the tower are 4 times the
scale of the other images.



9 Conclusions

This paper has presented a novel system for fully auto-
matic panorama stitching. Our use of invariant local fea-
tures and a probabilistic model to verify image matches al-
lows us recognise multiple panoramas in unordered image
sets, and stitch them fully automatically without user input.
The system is robust to camera zoom, orientation of the in-
put images, and changes in illumination due to flash and
exposure/aperture settings. A multi-band blending scheme
ensures smooth transitions between images despite illumi-
nation differences, whilst preserving high frequency details.

Future Work

Possible areas for future work include compensation for
motion in the camera and scene, and more advanced mod-
elling of the geometric and photometric properties of the
camera:

Camera Motion Panoramas often suffer from parallax er-
rors due to small motions of the optical centre. These
could be removed by solving for camera translations
and depths in the scene, before re-rendering from a
central point. A good representation to use might be
plane at infinity plus parallax [RC02]. Whilst gross
camera motions cause parallax artifacts, small motions
during shooting result in motion blur. Motion blurred
images could be deblurred using nearby in-focus im-
ages as in [BBZ96]. Similar techniques can also be
used to generate super-resolution images [CZ98].

Scene Motion Though our multi-band blending strategy
works well in many cases, large motions of objects
in the scene cause visible artifacts when blending be-
tween multiple images (see figure 10). Another ap-
proach would be to automatically find optimal seam
lines based on regions of difference between the im-
ages [Dav98, UES01, ADA+04].

Advanced Camera Modelling An important characteris-
tic of most cameras that is not included in the projec-
tive camera model (which preserves straight lines) is
radial distortion [Bro71]. Whilst this is not explic-
itly modelled by our algorithm, we have tested the
performance under moderate amounts of radial distor-
tion (see figure 9). Although panorama recognition
and approximate alignment is robust to radial distor-
tion in our experiments, there are noticable artifacts in
the rendered results. Hence high quality image stitch-
ing applications would need to include radial distor-
tion parameters at least in the bundle adjustment and
rendering stages. An ideal image stitcher would also
support multiple motion models, for example, rotation

about a point (e.g. panoramas), viewing a plane (e.g.
whiteboards) and Euclidean transforms (e.g. aligning
scanned images). One could also render to multiple
surface types, e.g., spherical, cylindrical, planar.

Photometric Modelling In principle it should also be pos-
sible to estimate many of the photometric parameters
of the camera. Vignetting (decrease in intensity to-
wards image edges) is a common source of artifacts,
particularly in uniform colour regions such as sky
[GC05]. One could also acquire high-dynamic range
[DM97, SHS+04] information from the overlapping
image regions, and render tone mapped or synthetic
exposure images.

We have developed a C++ implementation of the
algorithm described in this paper, called Autostitch.
A demo of this program can be downloaded from
http://www.autostitch.net.
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