

Cryptography is ...

- Protecting Privacy of Data
- Authentication of Identities
- Preservation of Integrity
... basically any protocols designed to operate in an environment absent of universal trust.

Basic Communication Problem
Eve listening to Alice talking to Bob

Practical Aspects of Moder
Cryptography

Two-Party Environments

Alice
Bob

Remote Coin Flipping

- Alice and Bob decide to make a decision by flipping a coin.
- Alice and Bob are not in the same place.

Ground Rule

Protocol must be asynchronous.

- We cannot assume simultaneous actions.
- Players must take turns.

A Protocol Flow Tree

A:
B:

B:

Pruning the Tree
A:

B:

A Protocol Flow Tree

A Protocol Flow Tree

Completing the Pruning When the pruning is complete one will end up with either	
- a winner before the protocol has begun, or	
- a useless infinite game.	
Janary 8. $2002 \ldots$	

Conclusion of Part I Remote coin flipping is utterly impossible!!!

How to Remotely Flip a Coin
The INTEGERS

Practical Aspects or Modern
January 8, 2002
Cryptography

How to Remotely Flip a Coin
The INTEGERS
$\begin{array}{llllll}0 & 4 & 8 & 12 & 16\end{array}$
$4 n+1$:

$4 n-1$:
-
How to Remotely Flip a Coin
The INTEGERS

How to Remotely Flip a Coin

Fact 1

Multiplying two (odd) integers of the same type always yields a product of Type +1 .
$(4 p+1)(4 q+1)=16 p q+4 p+4 q+1=4(4 p q+p+q)+1$
$(4 p-1)(4 q-1)=16 p q-4 p-4 q+1=4(4 p q-p-q)+1$

How to Remotely Flip a Coin

Alice
Bob

How to Remotely Flip a Coin

Alice

- Randomly select a bit $b \in\{ \pm 1\}$ and two large integers P and Q both of type b.
- Compute $N=P Q$.
- Send N to Bob. After receiving b from Bob, reveal P and Q.

Bob wins if and only if he correctly guesses the value of b.

Bob

- After receiving N from Alice, guess the value of b and send this guess to Alice.

	How to Remotely Flip a Coin	
	Alice	Bob
	- Randomly select a bit $b \in\{ \pm 1\}$ and two large integers P and Q both of type b.	- After receiving N from Alice, guess the value of b and send this guess to Alice.
	- Compute $N=P Q$.	
	- Send N to Bob. After receiving b from Bob, reveal P and Q.	Bob wins if and only if he correctly guesses the value of b.
	Lamars. 2002 L	or Moder

How to Remotely Flip a Coin

Alice

- Randomly select a bit $b \in\{ \pm 1\}$ and two large integers P and Q both of type b. Bob
- After receiving N from Alice, guess the value of b and send this guess to Alice.
- Compute $N=P Q$.
- Send N to Bob.

After receiving b from Bob, reveal P and Q.

Bob wins if and only if he correctly guesses the value of b.

$$
(4 p-1)(4 q-1)=16 p q-4 p-4 q+1=4(4 p q-p-q)+1
$$

Does This Work?

There is no known method (other than factoring) to distinguish a "Type +1 " product from a "Type -1 " product.

$$
(4 p+1)(4 q+1)=16 p q+4 p+4 q+1=4(4 p q+p+q)+1
$$

Bob cannot distinguish without factoring.
coring.

Can Alice Cheat?

- Randomly pick large integers p, q, r, and s.
- Send Bob N = $(4 p+1)(4 q+1)(4 r-1)(4 s-1)$.
- If Bob guesses -1 , send
$\mathrm{P}=(4 p+1)(4 q+1)$ and $\mathrm{Q}=(4 r-1)(4 s-1)$.
- If Bob guesses +1 , send

$$
\mathrm{P}=(4 p+1)(4 r-1) \text { and } \mathrm{Q}=(4 q+1)(4 s-1)
$$

January 8, 2002

How to Remotely Flip a Coin

Alice

- Randomly select a bit $b \in\{ \pm 1\}$ and two large primes P and Q both of type b.
- Compute $N=P Q$.
- Send N to Bob.

After receiving b from Bob, reveal P and Q.

Bob wins if and only if he correctly guesses the value of b.

Bob

- After receiving N from Alice, guess the value of b and send this guess to Alice.

Applications of Remote Flipping

- Remote Card Playing
- Internet Gambling
- Various "Fair" Agreement Protocols

January 8. $2002 \quad$ Practical Aspects of Modern

Bit Commitment We have implemented remote coin flipping via bit commitment. Commitment protocols can also be used for - Sealed bidding - Undisclosed contracts - Authenticated predictions January 8, 2002 $\begin{gathered}\text { Practical Aspects of Modern } \\ \text { Cryptography }\end{gathered}$

Cryptography
ctical Aspett of Moder
Con

One-Way Functions

We have implemented bit commitment via one-way functions.

One-way functions can be used for

- Authentication
- Data integrity
- Strong "randomness"

Practical Aspects of Modern
Cryptography

The Fundamental Equation

$\mathrm{Z}=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

When Z is unknown, it can be efficiently computed.

The Fundamental Equation

$\mathrm{Z}=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

When X is unknown, the problem is known as the discrete logarithm and is generally believed to be hard to solve.

The Fundamental Equation

$\mathrm{Z}=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

When Y is unknown, the problem is known as discrete root finding and is generally believed to be hard to solve...

The Fundamental Equation

$\mathrm{Z}=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

... unless the factorization of N is known.

The Fundamental Equation

$\mathrm{Z}=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

The problem is not well-studied for the case when N is unknown.

How to compute $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$
Compute Y^{x} and then reduce $\bmod \mathrm{N}$.

- If X, Y, and N each are 1,000 -bit integers, Y^{X} consists of $\sim 2^{1010}$ bits.
- Since there are roughly 2^{250} particles in the universe, storage is a problem.

How to compute $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

- Repeatedly multiplying by Y (followed each time by a reduction modulo N) X times solves the storage problem.
- However, we would need to perform $\sim 2^{990}$ 32-bit multiplications per second to complete the computation before the sun burns out.

How to compute $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$
Multiplication by Repeated Doubling

How to compute $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$
Multiplication by Repeated Doubling
To compute $\mathrm{X} \cdot \mathrm{Y}$,
compute $\mathrm{Y}, 2 \mathrm{Y}, 4 \mathrm{Y}, 8 \mathrm{Y}, 16 \mathrm{Y}, \ldots$
and sum up those values dictated by the binary representation of X .

How to compute $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$
Multiplication by Repeated Doubling

To compute $\mathrm{X} \cdot \mathrm{Y}$,
compute $\quad \mathrm{Y}, 2 \mathrm{Y}, 4 \mathrm{Y}, 8 \mathrm{Y}, 16 \mathrm{Y}, \ldots$
and sum up those values dictated by the binary representation of X .

Example: $26 \mathrm{Y}=2 \mathrm{Y}+8 \mathrm{Y}+16 \mathrm{Y}$.

Practical Aspects of Modern
Cryptography
ctical Aspects of Mo
(

How to compute $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$
Exponentiation by Repeated Squaring

How to compute $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

Exponentiation by Repeated Squaring
To compute Y^{X},

How to compute $\mathrm{Y}^{\mathrm{x}} \bmod \mathrm{N}$
Exponentiation by Repeated Squaring
To compute Y^{X},
compute $\quad \mathrm{Y}, \mathrm{Y}^{2}, \mathrm{Y}^{4}, \mathrm{Y}^{8}, \mathrm{Y}^{16}, \ldots$
and multiply those values dictated by the binary representation of X .

How to compute $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

Exponentiation by Repeated Squaring
To compute Y^{X},
compute $\quad \mathrm{Y}, \mathrm{Y}^{2}, \mathrm{Y}^{4}, \mathrm{Y}^{8}, \mathrm{Y}^{16}, \ldots$
and multiply those values dictated by the binary representation of X .

Example: $\mathrm{Y}^{26}=\mathrm{Y}^{2} \bullet \mathrm{Y}^{8} \bullet \mathrm{Y}^{16}$.

Practical Aspects of Modern
Cryptography

	How to compute $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$ We can now perform a 1,000 -bit modular exponentiation using $\sim 1,5001,000$-bit modular multiplications.
	1,000 squarings: $y, y^{2}, y^{4}, \ldots, y^{2^{1000}}$ - ~500 "ordinary" multiplications
	January 8, 2002 \quadPractical Aspects of Modern Cryptography

Large-Integer Addition

Large-Integer Multiplication

Practical Aspects of Modern
Crical Aspects of Mo
Cryptography

Large-Integer Multiplication

Large-Integer Squaring

Careful bookkeeping can save nearly half of the small-integer multiplications (and nearly half of the time).
\square

Recall computing $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

- About $2 / 3$ of the multiplications required to compute Y^{x} are actually squarings.
- Overall, efficient squaring can save about $1 / 3$ of the small multiplications required for modular exponentiation.

Karatsuba Multiplication

$(\mathrm{A} x+\mathrm{B})(\mathrm{C} x+\mathrm{D})=\mathrm{AC} x^{2}+(\mathrm{AD}+\mathrm{BC}) x+\mathrm{BD}$
4 multiplications, 1 addition

	Karatsuba Multiplication $(\mathrm{A} x+\mathrm{B})(\mathrm{C} x+\mathrm{D})=\mathrm{AC} x^{2}+(\mathrm{AD}+\mathrm{BC}) x+\mathrm{BD}$ 4 multiplications, 1 addition

[^0]

Karatsuba Multiplication

$(\mathrm{A} x+\mathrm{B})(\mathrm{C} x+\mathrm{D})=\mathrm{AC} x^{2}+(\mathrm{AD}+\mathrm{BC}) x+\mathrm{BD}$
4 multiplications, 1 addition

$$
\begin{aligned}
& (\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})=\mathrm{AC}+\mathrm{AD}+\mathrm{BC}+\mathrm{BD} \\
& (\mathrm{~A}+\mathrm{B})(\mathrm{C}+\mathrm{D})-\mathrm{AC}-\mathrm{BD}=\mathrm{AD}+\mathrm{BC}
\end{aligned}
$$

3 multiplications, 2 additions, 2 subtractions

Karatsuba Multiplication

$(\mathrm{A} x+\mathrm{B})(\mathrm{C} x+\mathrm{D})=\mathrm{AC} x^{2}+(\mathrm{AD}+\mathrm{BC}) x+\mathrm{BD}$
4 multiplications, 1 addition

$$
\begin{aligned}
& (\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})=\mathrm{AC}+\mathrm{AD}+\mathrm{BC}+\mathrm{BD} \\
& (\mathrm{~A}+\mathrm{B})(\mathrm{C}+\mathrm{D})-\mathrm{AC}-\mathrm{BD}=\mathrm{AD}+\mathrm{BC}
\end{aligned}
$$

3 multiplications, 2 additions, 2 subtractions

Karatsuba Multiplication
 $(\mathrm{A} x+\mathrm{B})(\mathrm{C} x+\mathrm{D})=\mathrm{AC} x^{2}+(\mathrm{AD}+\mathrm{BC}) x+\mathrm{BD}$
 4 multiplications, 1 addition
 $$
\begin{aligned} & (\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})=\mathrm{AC}+\mathrm{AD}+\mathrm{BC}+\mathrm{BD} \\ & (\mathrm{~A}+\mathrm{B})(\mathrm{C}+\mathrm{D})-\mathrm{AC}-\mathrm{BD}=\mathrm{AD}+\mathrm{BC} \end{aligned}
$$

3 multiplications, 2 additions, 2 subtractions

Karatsuba Multiplication

$(\mathrm{A} x+\mathrm{B})(\mathrm{C} x+\mathrm{D})=\mathrm{AC} x^{2}+(\mathrm{AD}+\mathrm{BC}) x+\mathrm{BD}$
4 multiplications, 1 addition

$$
\begin{aligned}
& (\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})=\mathrm{AC}+\mathrm{AD}+\mathrm{BC}+\mathrm{BD} \\
& (\mathrm{~A}+\mathrm{B})(\mathrm{C}+\mathrm{D})-\mathrm{AC}-\mathrm{BD}=\mathrm{AD}+\mathrm{BC}
\end{aligned}
$$

3 multiplications, 2 additions, 2 subtractions
Karatsuba Multiplication

$(\mathrm{A} x+\mathrm{B})(\mathrm{C} x+\mathrm{D})=\mathrm{AC} x^{2}+(\mathrm{AD}+\mathrm{BC}) x+\mathrm{BD}$
4 multiplications, 1 addition

$(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})=\mathrm{AC}+\mathrm{AD}+\mathrm{BC}+\mathrm{BD}$
$(\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})-\mathrm{AC}-\mathrm{BD}=\mathrm{AD}+\mathrm{BC}$
3 multiplications, 2 additions, 2 subtractions

Karatsuba Multiplication

$(\mathrm{A} x+\mathrm{B})(\mathrm{C} x+\mathrm{D})=\mathrm{AC} x^{2}+(\mathrm{AD}+\mathrm{BC}) x+\mathrm{BD}$
4 multiplications, 1 addition

Karatsuba Multiplication

$$
\begin{aligned}
& \left(\mathrm{A} \cdot 2^{\mathrm{k}}+\mathrm{B}\right)\left(\mathrm{C} \bullet 2^{\mathrm{k}}+\mathrm{D}\right)= \\
& \mathrm{AC} \cdot 2^{2 \mathrm{k}}+(\mathrm{AD}+\mathrm{BC}) \cdot 2^{\mathrm{k}}+\mathrm{BD}
\end{aligned}
$$

4 multiplications, 1 addition

$$
\begin{aligned}
& (\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})=\mathrm{AC}+\mathrm{AD}+\mathrm{BC}+\mathrm{BD} \\
& (\mathrm{~A}+\mathrm{B})(\mathrm{C}+\mathrm{D})-\mathrm{AC}-\mathrm{BD}=\mathrm{AD}+\mathrm{BC}
\end{aligned}
$$

3 multiplications, 2 additions, 2 subtractions

Modular Reduction

Generally, computing $(A \cdot B) \bmod N$ requires much more than twice the time to compute $\mathrm{A} \cdot \mathrm{B}$.

Division is slow and cumbersome.

January 8. 2002	$\begin{array}{c}\text { Practical Aspects of Modern } \\ \text { Cryptography }\end{array}$

Modular Reduction

Generally, computing $(A \cdot B) \bmod N$ requires much more than twice the time to compute $A \cdot B$.

Division is disgusting.

Modular Reduction

Generally, computing $(\mathrm{A} \bullet \mathrm{B}) \bmod \mathrm{N}$ requires much more than twice the time to compute $\mathrm{A} \cdot \mathrm{B}$.

Division is slow and cumbersome.

Modular Reduction

Generally, computing $(A \cdot B) \bmod N$ requires much more than twice the time to compute $\mathrm{A} \cdot \mathrm{B}$.

Division is slow and cumbersome.

Modular Reduction

Generally, computing $(A \cdot B) \bmod N$ requires much more than twice the time to compute $A \cdot B$.

Division is wretched.

The Montgomery Method

The Montgomery Method performs a domain transform to a domain in which the modular reduction operation can be achieved by multiplication and simple truncation.
Since a single modular exponentiation requires many modular multiplications and reductions, transforming the arguments is well justified.

January 8, 2002 Practical Aspects of Moder
Cryptography

Montgomery Multiplication

Let A, B, and M be n-block integers represented in base x with $0 \leq \mathrm{M}<x^{n}$.
Let $\mathrm{R}=x^{n} . \operatorname{GCD}(\mathrm{R}, \mathrm{M})=1$.
The Montgomery Product of A and B modulo M is the integer $\mathrm{ABR}^{-1} \bmod \mathrm{M}$.
Let $\mathrm{M}^{\prime}=-\mathrm{M}^{-1} \bmod \mathrm{R}$ and $\mathrm{S}=A B M^{\prime} \bmod \mathrm{R}$.
Fact: $(A B+S M) / R \equiv A B R^{-1}(\bmod M)$.

Practical Aspects of Modern
January 8, 2002而

Using the Montgomery Product

The Montgomery Product $\mathrm{ABR}^{-1} \bmod \mathrm{M}$ can be computed in the time required for two ordinary large-integer multiplications.
Montgomery transform: A \rightarrow AR mod M.
The Montgomery product of $(\mathrm{AR} \bmod \mathrm{M})$ and $(B R \bmod M)$ is $(A B R \bmod M)$.

Sliding Window Method

Another way to speed up modular exponentiation is by precomputation of many small products.
For instance, if I have $y, y^{2}, y^{3}, \ldots, y^{15}$ computed in advance, I can multiply by (for example) y^{13} without having to multiply individually by y, y^{4}, and y^{8}.

One-Way Functions

$\mathrm{Z}=\mathrm{Y}^{\mathrm{x}} \bmod \mathrm{N}$

One-Way Functions

The family of functions

$$
\mathrm{F}_{\mathrm{Y}, \mathrm{~N}}(\mathrm{X})=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{~N}
$$

is believed to be one-way for most N and Y .
(4) Diffie-Helman Key Exchange

One-Way Functions

The family of functions

$$
\mathrm{F}_{\mathrm{Y}, \mathrm{~N}}(\mathrm{X})=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{~N}
$$

is believed to be one-way for most N and Y .

No one has ever proven a function to be oneway, and doing so would, at a minimum, yield as a consequence that $\mathrm{P} \neq \mathrm{NP}$.

Diffie-Hellman Key Exchange

Alice

which has been termed quasi-commutivity:
$\mathrm{F}\left(\mathrm{F}\left(\mathrm{Y}, \mathrm{X}_{1}\right), \mathrm{X}_{2}\right)=\mathrm{F}\left(\mathrm{F}\left(\mathrm{Y}, \mathrm{X}_{2}\right), \mathrm{X}_{1}\right)$ since $Y^{X_{1} X_{2}}=Y^{X_{2} X_{1}}$.

Practical Aspects of Modern

Diffie-Hellman Key Exchange

Alice

- Randomly select a large integer a and send $\mathrm{A}=\mathrm{Y}^{a} \bmod \mathrm{~N}$.

Bob

- Randomly select a large integer b and send $\mathrm{B}=\mathrm{Y}^{b} \bmod \mathrm{~N}$.

Diffie-Hellman Key Exchange

Alice
Bob

January 8, 2002

Cryptography

Diffie-Hellman Key Exchange

Alice

- Randomly select a large integer a and send $\mathrm{A}=\mathrm{Y}^{a} \bmod \mathrm{~N}$.

Bob

- Randomly select a large integer b and send $B=Y^{b} \bmod N$.

Diffie-Hellman Key Exchange

What does Eve see?

$$
\mathrm{Y}, \mathrm{Y}^{a}, \mathrm{Y}^{b}
$$

... but the exchanged key is $\mathrm{Y}^{a b}$.
Belief: Given Y, $\mathrm{Y}^{a}, \mathrm{Y}^{b}$ it is difficult to compute $\mathrm{Y}^{a b}$.
Contrast with discrete logarithm assumption: Given Y, Y^{a} it is difficult to compute a.

More on Quasi-Commutivity

Quasi-commutivity has additional applications.

- decentralized digital signatures
- membership testing
- digital time-stamping

$\mathrm{Z}=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

Recall that this equation is solvable for Y if the factorization of N is known, but is believed to be hard otherwise.

RSA Public-Key Cryptosystem

Alice

- Select two large \quad To send message Y to random primes P \& Q .
- Publish the product $\mathrm{N}=\mathrm{PQ}$. Alice, compute $Z=Y^{\mathrm{X}} \bmod \mathrm{N}$.

RSA Public-Key Cryptosystem

Alice

- Select two large random primes P \& Q .
- Publish the product $\mathrm{N}=\mathrm{PQ}$.

Anyone

- To send message Y to

Alice, compute $\mathrm{Z}=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$.

- Send Z and X to Alice.

RSA Public-Key Cryptosystem

In practice, the exponent X is almost always fixed to be $\mathrm{X}=65537=2^{16}+1$.

Some RSA Details

When $\mathrm{N}=\mathrm{PQ}$ is the product of distinct primes,

$$
\mathrm{Y}^{\mathrm{x}} \bmod \mathrm{~N}=\mathrm{Y}
$$

whenever
$\mathrm{X} \bmod (\mathrm{P}-1)(\mathrm{Q}-1)=1$ and $0 \leq \mathrm{Y}<\mathrm{N}$.

Practical Aspects of Modern

Some RSA Details

When $\mathrm{N}=\mathrm{PQ}$ is the product of distinct primes,

$$
\mathrm{Y}^{\mathrm{x}} \bmod \mathrm{~N}=\mathrm{Y}
$$

whenever
$\mathrm{X} \bmod (\mathrm{P}-1)(\mathrm{Q}-1)=1$ and $0 \leq \mathrm{Y}<\mathrm{N}$.
Alice can easily select integers E and D such that $\mathrm{E} \cdot \mathrm{D} \bmod (\mathrm{P}-1)(\mathrm{Q}-1)=1$.

Some RSA Details

Encryption: $\mathrm{E}(\mathrm{Y})=\mathrm{Y}^{\mathrm{E}} \bmod \mathrm{N}$.
Decryption: $\mathrm{D}(\mathrm{Y})=\mathrm{Y}^{\mathrm{D}} \bmod \mathrm{N}$.

$$
\mathrm{D}(\mathrm{E}(\mathrm{Y}))
$$

$=\left(\mathrm{Y}^{\mathrm{E}} \bmod \mathrm{N}\right)^{\mathrm{D}} \bmod \mathrm{N}$
$=\mathrm{Y}^{\mathrm{ED}} \bmod \mathrm{N}$
$=\mathrm{Y}$

Practical Aspects of Modern

Authentication

How can I use RSA to authenticate someone's identity?

If Alice's public key E_{A}, just pick a random message m and send $\mathrm{E}_{\mathrm{A}}(m)$.

If m comes back, I must be talking to Alice.
\qquad

RSA Cautions

$$
\mathrm{D}\left(\mathrm{Y}_{1}\right) \cdot \mathrm{D}\left(\mathrm{Y}_{2}\right)=\mathrm{D}\left(\mathrm{Y}_{1} \cdot \mathrm{Y}_{2}\right)
$$

Thus, if I've decrypted (or signed) Y_{1} and Y_{2}, I've also decrypted (or signed) $\mathrm{Y}_{1} \bullet \mathrm{Y}_{2}$.

The Bleichenbacher Attack
PKCS\#1 Message Format:

```
0001 XX XX ... XX 00 YY YY ... YY
```

\qquad

``` -
``` \(\qquad\)
``` ,

> random message non-zero bytes
```


	The Practical Side - RSA can be used to encrypt any data. - Public-key (asymmetric) cryptography is very inefficient when compared to traditional private-key (symmetric) cryptography.
	January 8, 2002 \quadPractical Aspects of Modern Cryptography

For	The Practical Side
another public-key algorithm) to transmit a	
private (symmetric) key.	
The private session key is used to encrypt any	
subsequent data.	
Digital signatures are only used to sign a	
digest of the message.	

[^0]: ## Karatsuba Multiplication

 $(\mathrm{A} x+\mathrm{B})(\mathrm{C} x+\mathrm{D})=\mathrm{AC} x^{2}+(\mathrm{AD}+\mathrm{BC}) x+\mathrm{BD}$
 4 multiplications, 1 addition

 $$
 (\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})=\mathrm{AC}+\mathrm{AD}+\mathrm{BC}+\mathrm{BD}
 $$

 $$
 (\mathrm{A}+\mathrm{B})(\mathrm{C}+\mathrm{D})-\mathrm{AC}-\mathrm{BD}=\mathrm{AD}+\mathrm{BC}
 $$

