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Cryptography is ...

♦ Protecting Privacy of Data

♦ Authentication of Identities

♦ Preservation of Integrity

… basically any protocols designed to operate
in an environment absent of universal trust.
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Basic Communication Problem

Hello

Eve listening to
Alice talking to Bob
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Two-Party Environments

Alice Bob
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Remote Coin Flipping

♦ Alice and Bob decide to make a decision by
flipping a coin.

♦ Alice and Bob are not in the same place.
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Ground Rule

Protocol must be asynchronous.

♦ We cannot assume simultaneous actions.

♦ Players must take turns.

January 8, 2002
Practical Aspects of Modern

Cryptography

Is Remote Coin Flipping Possible?

Two-part answer:

♦ NO – I will sketch a formal proof.

♦ YES – I will provide an effective protocol.
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Completing the Pruning

When the pruning is complete one will
end up with either

♦ a winner before the protocol has begun, or

♦ a useless infinite game.
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Conclusion of Part I

Remote coin
flipping is utterly
impossible!!!
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The INTEGERS

0 4 8 12 16 …

1 5 9 13 17 …
2 6 10 14 18 …

3 7 11 15 19 …
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How to Remotely Flip a Coin

The INTEGERS

0 4 8 12 16 …

1 5 9 13 17 …
2 6 10 14 18 …

3 7 11 15 19 …

Type +1:

Type -1:
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How to Remotely Flip a Coin

Fact 1

Multiplying two (odd) integers of the same
type always yields a product of Type +1.

(4p+1)(4q+1) = 16pq+4p+4q+1 = 4(4pq+p+q)+1

(4p–1)(4q–1) = 16pq–4p–4q+1 = 4(4pq–p–q)+1
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How to Remotely Flip a Coin

Fact 2

There is no known method (other than
factoring) to distinguish a product of two
“Type +1” integers from a product of two
“Type –1” integers.
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How to Remotely Flip a Coin

Fact 3

Factoring large integers is believed to be
much harder than multiplying large
integers.
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How to Remotely Flip a Coin

Alice

♦ Randomly select a bit
b∈{±1} and two large
integers P and Q –
both of type b.

♦ Compute N = PQ.

♦ Send N to Bob.

Bob
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Alice

♦ Randomly select a bit
b∈{±1} and two large
integers P and Q –
both of type b.

♦ Compute N = PQ.

♦ Send N to Bob.

How to Remotely Flip a Coin

Bob

♦ After receiving N from
Alice, guess the value
of b and send this
guess to Alice.
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How to Remotely Flip a Coin

Alice Bob

b
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Bob

♦ After receiving N from
Alice, guess the value
of b and send this
guess to Alice.

Bob wins if and only
if he correctly guesses
the value of b.

Alice

♦ Randomly select a bit
b∈{±1} and two large
integers P and Q –
both of type b.

♦ Compute N = PQ.

♦ Send N to Bob.

After receiving b from
Bob, reveal P and Q.
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Does This Work?

There is no known method (other than
factoring) to distinguish a “Type +1”
product from a “Type –1” product.

(4p+1)(4q+1) = 16pq+4p+4q+1 = 4(4pq+p+q)+1

(4p–1)(4q–1) = 16pq–4p–4q+1 = 4(4pq–p–q)+1

Bob cannot distinguish without factoring.
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Can Alice Cheat?

♦ Randomly pick large integers p, q, r, and s.

♦ Send Bob N = (4p+1)(4q+1)(4r–1)(4s–1).

♦ If Bob guesses –1, send
P = (4p+1)(4q+1) and Q = (4r–1)(4s–1).

♦ If Bob guesses +1, send
P = (4p+1)(4r–1) and Q = (4q+1)(4s–1).
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Bob

♦ After receiving N from
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of b and send this
guess to Alice.

Bob wins if and only
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Alice
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How to Remotely Flip a Coin

Bob

♦ After receiving N from
Alice, guess the value
of b and send this
guess to Alice.

Bob wins if and only
if he correctly guesses
the value of b.

Alice

♦ Randomly select a bit
b∈{±1} and two large
primes P and Q –
both of type b.

♦ Compute N = PQ.

♦ Send N to Bob.

After receiving b from
Bob, reveal P and Q.
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Checking Primality

Basic result from group theory –

If p is a prime, then for integers a such that
0 < a < p, then ap -1 mod p = 1.

This is almost never true when p is
composite.
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How are the Answers Reconciled?

♦ The impossibility proof assumed unlimited
computational ability.

♦ The protocol is not 50/50 -- Bob has a small
advantage.

January 8, 2002
Practical Aspects of Modern

Cryptography

Applications of Remote Flipping

♦ Remote Card Playing

♦ Internet Gambling

♦ Various “Fair” Agreement Protocols
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Bit Commitment

We have implemented remote coin
flipping via bit commitment.

Commitment protocols can also be used for

♦ Sealed bidding

♦ Undisclosed contracts

♦ Authenticated predictions
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One-Way Functions

We have implemented bit commitment
via one-way functions.

One-way functions can be used for

♦ Authentication

♦ Data integrity

♦ Strong “randomness”
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One-Way Functions

Two basic classes of one-way functions

♦ Mathematical
– Multiplication: Z=X•Y

– Modular Exponentiation: Z = YX mod N

♦ Ugly

January 8, 2002
Practical Aspects of Modern

Cryptography

The Fundamental Equation

Z=YX mod N
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The Fundamental Equation

Z=YX mod N
When Z is unknown, it can be efficiently

computed.
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The Fundamental Equation

Z=YX mod N
When X is unknown, the problem is

known as the discrete logarithm and is
generally believed to be hard to solve.
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The Fundamental Equation

Z=YX mod N
When Y is unknown, the problem is

known as discrete root finding and is
generally believed to be hard to solve...
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The Fundamental Equation

Z=YX mod N
… unless the factorization of N is

known.
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The Fundamental Equation

Z=YX mod N
The problem is not well-studied for the

case when N is unknown.
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Implementation

Z=YX mod N
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How to compute YX mod N

Compute YX and then reduce mod N.

♦ If X, Y, and N each are 1,000-bit integers,
YX consists of ~21010 bits.

♦ Since there are roughly 2250 particles in the
universe, storage is a problem.
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How to compute YX mod N

♦ Repeatedly multiplying by Y (followed
each time by a reduction modulo N) X
times solves the storage problem.

♦ However, we would need to perform ~2900

32-bit multiplications per second to
complete the computation before the sun
burns out.
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compute Y, 2Y, 4Y, 8Y, 16Y,…
and sum up those values dictated by the binary
representation of X.
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How to compute YX mod N

Multiplication by Repeated Doubling

To compute X • Y,

compute Y, 2Y, 4Y, 8Y, 16Y,…
and sum up those values dictated by the binary
representation of X.

Example: 26Y = 2Y + 8Y + 16Y.
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How to compute YX mod N

Exponentiation by Repeated Squaring

To compute YX,

compute Y, Y2, Y4, Y8, Y16, …
and multiply those values dictated by the binary
representation of X.
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How to compute YX mod N

Exponentiation by Repeated Squaring

To compute YX,

compute Y, Y2, Y4, Y8, Y16, …
and multiply those values dictated by the binary
representation of X.

Example: Y26 = Y2 • Y8 • Y16.
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How to compute YX mod N

We can now perform a 1,000-bit modular
exponentiation using ~1,500 1,000-bit
modular multiplications.

♦ 1,000 squarings: y, y2, y4, …, y21000

♦ ~500 “ordinary” multiplications
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Large-Integer Operations

♦ Addition and Subtraction

♦ Multiplication

♦ Division and Remainder (Mod N)

♦ Exponentiation
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Large-Integer Addition

In general, adding two large integers –
each consisting of n small blocks –
requires O(n) small-integer additions.

Large-integer subtraction is similar.
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Large-Integer Multiplication

In general, multiplying two large
integers – each consisting of n small
blocks – requires O(n2) small-integer
multiplications and O(n) large-integer
additions.
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Large-Integer Squaring

×
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Large-Integer Squaring

×
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Large-Integer Squaring

Careful bookkeeping can save nearly
half of the small-integer
multiplications (and nearly half of
the time).
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Recall computing YX mod N

♦About 2/3 of the multiplications
required to compute YX are actually
squarings.

♦Overall, efficient squaring can save
about 1/3 of the small multiplications
required for modular exponentiation.
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Karatsuba Multiplication

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD

4 multiplications, 1 addition

(A+B)(C+D) = AC + AD + BC + BD

(A+B)(C+D) – AC – BD = AD + BC
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Karatsuba Multiplication

(Ax+B)(Cx+D) = ACx2 + (AD+BC)x + BD
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Karatsuba Multiplication

♦ This can be done on integers as well as on
polynomials, but it’s not as nice on integers
because of carries.

♦ The larger the integers, the larger the
benefit.
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Karatsuba Multiplication

(A•2k+B)(C•2k+D) =

AC•22k + (AD+BC)•2k + BD

4 multiplications, 1 addition

(A+B)(C+D) = AC + AD + BC + BD

(A+B)(C+D) – AC – BD = AD + BC

3 multiplications, 2 additions, 2 subtractions
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Modular Reduction

Generally, computing (A•B) mod N requires
much more than twice the time to compute
A•B.

Division is slow and cumbersome.
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Generally, computing (A•B) mod N requires
much more than twice the time to compute
A•B.

Division is slow and cumbersome.
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Modular Reduction

Generally, computing (A•B) mod N requires
much more than twice the time to compute
A•B.

Division is wretched.
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Modular Reduction

Generally, computing (A•B) mod N requires
much more than twice the time to compute
A•B.

Division is slow and cumbersome.

January 8, 2002
Practical Aspects of Modern

Cryptography

The Montgomery Method

The Montgomery Method performs a domain
transform to a domain in which the modular
reduction operation can be achieved by
multiplication and simple truncation.

Since a single modular exponentiation
requires many modular multiplications and
reductions, transforming the arguments is
well justified.
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Montgomery Multiplication

Let A, B, and M be n-block integers
represented in base x with 0 ≤ M < xn.

Let R = xn. GCD(R,M) = 1.

The Montgomery Product of A and B modulo
M is the integer ABR–1 mod M.

Let M′ = –M–1 mod R and S = ABM′ mod R.

Fact: (AB+SM)/R ≡ ABR–1 (mod M).
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Using the Montgomery Product

The Montgomery Product ABR–1 mod M can
be computed in the time required for two
ordinary large-integer multiplications.

Montgomery transform: A→AR mod M.

The Montgomery product of (AR mod M) and
(BR mod M) is (ABR mod M).
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Sliding Window Method

Another way to speed up modular
exponentiation is by precomputation of
many small products.

For instance, if I have y, y2, y3, …, y15

computed in advance, I can multiply by (for
example) y13 without having to multiply
individually by y, y4, and y8.
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One-Way Functions

Z=YX mod N
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One-Way Functions

Informally, F : X → Y is a one-way if

♦ Given x, y = F(x) is easily computable.

♦ Given y, it is difficult to find any x for
which y = F(x).
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One-Way Functions

The family of functions

FY,N(X) = YX mod N

is believed to be one-way for most N and Y.

January 8, 2002
Practical Aspects of Modern

Cryptography

One-Way Functions

The family of functions

FY,N(X) = YX mod N

is believed to be one-way for most N and Y.

No one has ever proven a function to be one-
way, and doing so would, at a minimum,
yield as a consequence that P≠NP.
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One-Way Functions

When viewed as a two-argument function, the
(candidate) one-way function

FN(Y,X) = YX mod N

also satisfies a useful additional property
which has been termed quasi-commutivity:

F(F(Y,X1),X2) = F(F(Y,X2),X1)

since YX1X2 = YX2X1.
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Diffie-Hellman Key Exchange

Alice Bob

January 8, 2002
Practical Aspects of Modern

Cryptography

Diffie-Hellman Key Exchange

Alice

♦ Randomly select a
large integer a and
send A = Ya mod N.

Bob

♦ Randomly select a
large integer b and
send B = Yb mod N.
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Diffie-Hellman Key Exchange

Alice Bob

A

B
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large integer a and
send A = Ya mod N.
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Diffie-Hellman Key Exchange

Alice

♦ Randomly select a
large integer a and
send A = Ya mod N.

♦ Compute the key
K = Ba mod N.

Bob

♦ Randomly select a
large integer b and
send B = Yb mod N.

♦ Compute the key
K = Ab mod N.
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Diffie-Hellman Key Exchange

Alice

♦ Randomly select a
large integer a and
send A = Ya mod N.

♦ Compute the key
K = Ba mod N.

Bob

♦ Randomly select a
large integer b and
send B = Yb mod N.

♦ Compute the key
K = Ab mod N.

Ba = Yba = Yab = Ab
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Diffie-Hellman Key Exchange

What does Eve see?

Y, Ya , Yb

… but the exchanged key is Yab.

Belief: Given Y, Ya , Yb it is difficult to
compute Yab .

Contrast with discrete logarithm assumption:
Given Y, Ya it is difficult to compute a .
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More on Quasi-Commutivity

Quasi-commutivity has additional
applications.

♦ decentralized digital signatures

♦ membership testing

♦ digital time-stamping
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One-Way Trap-Door Functions

Z=YX mod N
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One-Way Trap-Door Functions

Z=YX mod N
Recall that this equation is solvable for Y

if the factorization of N is known, but
is believed to be hard otherwise.
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RSA Public-Key Cryptosystem

Alice Anyone
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RSA Public-Key Cryptosystem

Alice

♦ Select two large
random primes P & Q.

Anyone
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Alice

♦ Select two large
random primes P & Q.

♦ Publish the product
N=PQ.

Anyone

January 8, 2002
Practical Aspects of Modern

Cryptography

RSA Public-Key Cryptosystem

Alice

♦ Select two large
random primes P & Q.

♦ Publish the product
N=PQ.

Anyone

♦ To send message Y to
Alice, compute

Z=YX mod N.
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RSA Public-Key Cryptosystem

Alice

♦ Select two large
random primes P & Q.

♦ Publish the product
N=PQ.

Anyone

♦ To send message Y to
Alice, compute

Z=YX mod N.

♦ Send Z and X to Alice.
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RSA Public-Key Cryptosystem

Alice

♦ Select two large
random primes P & Q.

♦ Publish the product
N=PQ.

♦ Use knowledge of P &
Q to compute Y.

Anyone

♦ To send message Y to
Alice, compute

Z=YX mod N.

♦ Send Z and X to Alice.
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RSA Public-Key Cryptosystem

In practice, the exponent X is almost always
fixed to be X = 65537 = 216 + 1.
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Some RSA Details

When N=PQ is the product of distinct primes,

YX mod N = Y
whenever

X mod (P-1)(Q-1) = 1 and 0 ≤Y<N.
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Some RSA Details

When N=PQ is the product of distinct primes,

YX mod N = Y
whenever

X mod (P-1)(Q-1) = 1 and 0 ≤Y<N.

Alice can easily select integers E and D such
that E•D mod (P-1)(Q-1) = 1.
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Some RSA Details

Encryption: E(Y) = YE mod N.

Decryption: D(Y) = YD mod N.

D(E(Y))

= (YE mod N)D mod N

= YED mod N

= Y
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RSA Signatures

An additional property

D(E(Y)) = YED mod N = Y

E(D(Y)) = YDE mod N = Y

Only Alice (knowing the factorization of N)
knows D. Hence only Alice can compute
D(Y) = YD mod N.

This D(Y) serves as Alice’s signature on Y.
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Public Key Directory

Name Public Key Encryption

Alice NA EA(Y)=YE mod NA

Bob NB EB(Y)=YE mod NB

Carol NC EC(Y)=YE mod NC

: : :
(Recall that E is commonly fixed to be

E=65537.)
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Certificate Authority

“Alice’s public modulus is
NA = 331490324840…”

-- signed CA.
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Trust Chains

Alice certifies Bob’s key.

Bob certifies Carol’s key.

If I trust Alice should I accept Carol’s key?
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Authentication

How can I use RSA to authenticate
someone’s identity?

If Alice’s public key EA, just pick a random
message m and send EA(m).

If m comes back, I must be talking to Alice.
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Authentication

Should Alice be happy with this method of
authentication?

Bob sends Alice the authentication string
y = “I owe Bob $1,000,000 - signed Alice.”

Alice dutifully authenticates herself by
decrypting (putting her signature on) y.
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Authentication

What if Alice only returns authentication
queries when the decryption has a certain
format?
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RSA Cautions

Is it reasonable to sign/decrypt something
given to you by someone else?

Note that RSA is multiplicative. Can this
property be used/abused?
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RSA Cautions

D(Y1) • D(Y2) = D(Y1 • Y2)

Thus, if I’ve decrypted (or signed) Y1 and Y2,
I’ve also decrypted (or signed) Y1 • Y2.
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The Hastad Attack

Given

E1(x) = x3 mod n1

E2(x) = x3 mod n2

E3(x) = x3 mod n3

one can easily compute x.
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The Bleichenbacher Attack

PKCS#1 Message Format:

00 01 XX XX ... XX 00 YY YY ... YY

random
non-zero

bytes

message
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“Man-in-the-Middle” Attacks

Alice Bob

Alice Eve Bob
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The Practical Side

♦ RSA can be used to encrypt any data.

♦ Public-key (asymmetric) cryptography is
very inefficient when compared to
traditional private-key (symmetric)
cryptography.
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The Practical Side

For efficiency, one generally uses RSA (or
another public-key algorithm) to transmit a
private (symmetric) key.

The private session key is used to encrypt any
subsequent data.

Digital signatures are only used to sign a
digest of the message.


