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Public-Key History

♦ 1976 New Directions in Cryptograhy
Whit Diffie and Marty Hellman
• One-Way functions

• Diffie-Hellman Key Exchange

♦ 1978 RSA paper
Ron Rivest, Adi Shamir, and Len Adleman
• RSA Encryption System

• RSA Digital Signature Mechanism
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The Fundamental Equation

Z=YX mod N
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Diffie-Hellman

Z=YX mod N
When X is unknown, the problem is

known as the discrete logarithm and is
generally believed to be hard to solve.
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Diffie-Hellman Key Exchange

Alice

♦ Randomly select a
large integer a and
send A = Ya mod N.

♦ Compute the key
K = Ba mod N.

Bob

♦ Randomly select a
large integer b and
send B = Yb mod N.

♦ Compute the key
K = Ab mod N.

Ba = Yba = Yab = Ab
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Diffie-Hellman Key Exchange

What does Eve see?

Y, Ya , Yb

… but the exchanged key is Yab.

Belief: Given Y, Ya , Yb it is difficult to
compute Yab .

Contrast with discrete logarithm assumption:
Given Y, Yx it is difficult to compute x .
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One-Way Trap-Door Functions

Z=YX mod N
Recall that this equation is solvable for Y

if the factorization of N is known, but
is believed to be hard otherwise.
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RSA Public-Key Cryptosystem

Alice

♦ Select two large
random primes P & Q.

♦ Publish the product
N=PQ.

♦ Use knowledge of P &
Q to compute Y.

Anyone

♦ To send message Y to
Alice, compute

Z=YX mod N.

♦ Send Z and X to Alice.
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Some RSA Details

When N=PQ is the product of distinct primes,

YX mod N = Y
whenever

X mod (P-1)(Q-1) = 1 and 0 ≤Y<N.
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Some RSA Details

When N=PQ is the product of distinct primes,

YX mod N = Y
whenever

X mod (P-1)(Q-1) = 1 and 0 ≤Y<N.

Alice can easily select integers E and D such
that E•D mod (P-1)(Q-1) = 1.
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Some RSA Details

Encryption: E(Y) = YE mod N.

Decryption: D(Y) = YD mod N.

D(E(Y))

= (YE mod N)D mod N

= YED mod N

= Y
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RSA Signatures

An additional property

D(E(Y)) = YED mod N = Y

E(D(Y)) = YDE mod N = Y

Only Alice (knowing the factorization of N)
knows D. Hence only Alice can compute
D(Y) = YD mod N.

This D(Y) serves as Alice’s signature on Y.



3

January 15, 2002
Practical Aspects of Modern

Cryptography

Remaining RSA Basics

♦ Why is YX mod PQ = Y whenever

X mod (P-1)(Q-1) = 1, 0 ≤Y<PQ,

and P and Q are distinct primes?

♦ How can Alice can select integers E and D
such that E•D mod (P-1)(Q-1) = 1?
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Modular Arithmetic

♦ To compute (A+B) mod N,
compute (A+B) and take the result mod N.

♦ To compute (A-B) mod N,
compute (A-B) and take the result mod N.

♦ To compute (A×B) mod N,
compute (A×B) and take the result mod N.

♦ To compute (A÷B) mod N, …
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Modular Division

What is the value of (1÷2) mod 7?

We need a solution to 2x mod 7 = 1.

Try x = 4.

What is the value of (7÷5) mod 11?

We need a solution to 5x mod 11 = 7.

Try x = 8.

January 15, 2002
Practical Aspects of Modern

Cryptography

Modular Division

Is modular division always well-defined?

(1÷3) mod 6 = ?

3x mod 6 = 1 has no solution!

Fact

(A÷B) mod N always has a solution when
gcd(B,N) = 1.
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Greatest Common Divisors

gcd(A , B) = gcd(B , A - B)

gcd(21,12) = gcd(12,9) = gcd(9,3)
= gcd(6,3) = gcd(3,3) = gcd(0,3) = 3

gcd(A , B) = gcd(B , A mod B)

gcd(21,12) = gcd(12,9) = gcd(9,3)

= gcd(0,3) = 3
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Extended Euclidean Algorithm

Given integers A and B, find integers X and Y
such that AX + BY = gcd(A,B).

When gcd(A,B) = 1, solve AX mod B = 1,
by finding X and Y such that

AX + BY = gcd(A,B) = 1.

Compute (C÷A) mod B as C×(1÷A) mod B.
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Extended Euclidean Algorithm

Given A,B > 0, set x1=1, x2=0, y1=0, y2=1,
a1=A, b1=B, i=1.

Repeat while bi>0: {i = i + 1;

q = ai-1 div bi-1; bi = ai-1-qbi-1; ai = bi-1;

xi+1=xi-1-qxi; yi+1=yi-1-qyi}.

Axi + Byi = ai = gcd(A,B).
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Remaining RSA Basics

♦ Why is YX mod PQ = Y whenever

X mod (P-1)(Q-1) = 1, 0 ≤Y<PQ,

and P and Q are distinct primes?

♦ How can Alice can select integers E and D
such that E•D mod (P-1)(Q-1) = 1?
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Fermat’s Little Theorem

If p is prime,

then x p-1 mod p = 1 for all 0 < x < p.

Equivalently …

If p is prime,

then x p mod p = x mod p for all integers x.
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The Binomial Theorem

(x + y) p = x p + ( )x p-1y + … + ( )xy p-1 + y p

If p is prime, then ( ) mod p = 0 for 0 < i < p.

Thus, (x + y) p mod p = (x p + y p) mod p.

p
1

Proof of Fermat’s Little Theorem

p
p-1

p
i
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Proof of Fermat’s Little Theorem

By induction on x…

Basis

If x = 0, then x p mod p = 0 = x mod p.

If x = 1, then x p mod p = 1 = x mod p.
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Proof of Fermat’s Little Theorem

Inductive Step

Assume that x p mod p = x mod p.

Then (x + 1) p mod p = (x p + 1p) mod p

= (x + 1) mod p.

Hence, x p mod p = x mod p for integers x ≥ 0.

Also true for negative x, since (-x) p = (-1) px p.
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Proof of RSA

We have shown …

YP mod P = Y whenever 0 ≤ Y < P

and P is prime!

You will show …

YK(P-1)(Q-1)+1 mod PQ = Y when 0 ≤ Y < PQ

P and Q are distinct primes and K ≥ 0.
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Authentication

How can I use RSA to authenticate
someone’s identity?

If Alice’s public key EA, just pick a random
message m and send EA(m).

If m comes back, I must be talking to Alice.
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Authentication

Should Alice be happy with this method of
authentication?

Bob sends Alice the authentication string
y = “I owe Bob $1,000,000 - signed Alice.”

Alice dutifully authenticates herself by
decrypting (putting her signature on) y.
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Authentication

What if Alice only returns authentication
queries when the decryption has a certain
format?
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RSA Cautions

Is it reasonable to sign/decrypt something
given to you by someone else?

Note that RSA is multiplicative. Can this
property be used/abused?
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RSA Cautions

D(Y1) • D(Y2) = D(Y1 • Y2)

Thus, if I’ve decrypted (or signed) Y1 and Y2,
I’ve also decrypted (or signed) Y1 • Y2.
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The Hastad Attack

Given

E1(x) = x3 mod n1

E2(x) = x3 mod n2

E3(x) = x3 mod n3

one can easily compute x.
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The Bleichenbacher Attack

PKCS#1 Message Format:

00 01 XX XX ... XX 00 YY YY ... YY

random
non-zero

bytes

message
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“Man-in-the-Middle” Attacks

Alice Bob

Alice Eve Bob
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The Practical Side

♦ RSA can be used to encrypt any data.

♦ Public-key (asymmetric) cryptography is
very inefficient when compared to
traditional private-key (symmetric)
cryptography.
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The Practical Side

For efficiency, one generally uses RSA (or
another public-key algorithm) to transmit a
private (symmetric) key.

The private session key is used to encrypt and
authenticate any subsequent data.

Digital signatures are only used to sign a
digest of the message.
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Symmetric Ciphers

Private-key (symmetric) ciphers are usually
divided into two classes.

♦ Block ciphers

♦ Stream ciphers
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Symmetric Ciphers

Private-key (symmetric) ciphers are usually
divided into two classes.

♦ Block ciphers

♦ Stream ciphers
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Block Ciphers

Block
Cipher

Plaintext Data Ciphertext

Key
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Block Ciphers

Block
Cipher

Plaintext Data Ciphertext

Key

Currently usually 8 bytes.
Soon 16-32 bytes.
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Block Cipher Modes

Electronic Code Book (ECB) Encryption:

Block
Cipher

Block
Cipher

Block
Cipher

Block
Cipher

Plaintext

Ciphertext
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Block Cipher Modes

Electronic Code Book (ECB) Decryption:

Inverse
Cipher

Inverse
Cipher

Inverse
Cipher

Inverse
Cipher

Plaintext

Ciphertext
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Block Cipher Modes

Electronic Code Book (ECB) Encryption:

Block
Cipher

Block
Cipher

Block
Cipher

Block
Cipher

Plaintext

Ciphertext
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Block Cipher Modes

Cipher Block Chaining (CBC) Encryption:

Block
Cipher

Block
Cipher

Block
Cipher

Block
Cipher

Plaintext

Ciphertext

IV
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Block Cipher Modes

Cipher Block Chaining (CBC) Decryption:

Inverse
Cipher

Inverse
Cipher

Inverse
Cipher

Inverse
Cipher

Plaintext

Ciphertext

IV
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Block Cipher Modes

Cipher Block Chaining (CBC) Encryption:

Block
Cipher

Block
Cipher

Block
Cipher

Block
Cipher

Plaintext

Ciphertext

IV
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How to Build a Block Cipher

Block
Cipher

Plaintext

Ciphertext

Key
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Feistel Ciphers

Ugly
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Feistel Ciphers

Ugly
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Feistel Ciphers

Ugly
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Ugly

Feistel Ciphers
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Feistel Ciphers

Ugly

Ugly
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Feistel Ciphers

♦ Typically, most Feistel ciphers are iterated
for about 16 rounds.

♦ Different “sub-keys” are used for each
round.

♦ Even a weak round function can yield a
strong Feistel cipher if iterated sufficiently.
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Data Encryption Standard (DES)

Block
Cipher

64-bit Plaintext

64-bit Ciphertext

56-bit Key
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Data Encryption Standard (DES)

64-bit Plaintext

64-bit Ciphertext

56-bit Key 16 Feistel
Rounds
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Data Encryption Standard (DES)

64-bit Plaintext

64-bit Ciphertext

56-bit Key 16 Feistel
Rounds
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DES Round

Ugly
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Simplified DES Round Function

Sub-key

4-bit substitutions

32-bit permutation

Ugly32 bits
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Actual DES Round Function

Sub-key

6/4-bit substitutions

32-bit permutation

Ugly32 bits

48 bits
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Symmetric Ciphers

Private-key (symmetric) ciphers are usually
divided into two classes.

♦ Block ciphers

♦ Stream ciphers
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Stream Ciphers

♦ Use the key as a seed to a pseudo-random
number-generator.

♦ Take the stream of output bits from the
PRNG and XOR it with the plaintext to
form the ciphertext.
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Stream Cipher Encryption

Plaintext:

PRNG(seed):

Ciphertext:
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Stream Cipher Decryption

Plaintext:

PRNG(seed):

Ciphertext:
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A PRNG: Alleged RC4

Initialization

S[0..255] = 0,1,…,255

K[0..255] = Key,Key,Key,…

for i = 0 to 255

j = (j + S[i] + K[i]) mod 256

swap S[i] and S[j]
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A PRNG: Alleged RC4

Iteration

i = (i + 1) mod 256

j = (j + S[i]) mod 256

swap S[i] and S[j]

t = (S[i] + S[j]) mod 256

Output S[t]
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Stream Cipher Integrity

♦ It is easy for an adversary (even one who
can’t decrypt the ciphertext) to alter the
plaintext in a known way.

Bob to Bob’s Bank:
Please transfer $0,000,002.00 to the account
of my good friend Alice.
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Stream Cipher Integrity

♦ It is easy for an adversary (even one who
can’t decrypt the ciphertext) to alter the
plaintext in a known way.

Bob to Bob’s Bank:
Please transfer $1,000,002.00 to the account
of my good friend Alice.
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Stream Cipher Integrity

♦ It is easy for an adversary (even one who
can’t decrypt the ciphertext) to alter the
plaintext in a known way.

Bob to Bob’s Bank:
Please transfer $1,000,002.00 to the account
of my good friend Alice.

♦ This can be protected against by the careful
addition of appropriate redundancy.
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One-Way Hash Functions

The idea of a check sum is great, but it is
designed to prevent accidental changes in a
message.

For cryptographic integrity, we need an
integrity check that is resilient against a
smart and determined adversary.
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One-Way Hash Functions

Generally, a one-way hash function is a
function H : {0,1}* → {0,1}k (typically k is
128 or 160) such that given an input value
x, one cannot find a value x′ ≠ x such H(x) =
H(x′ ).
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One-Way Hash Functions

There are many measures for one-way hashes.

♦ Non-invertability: given y, it’s difficult to
find any x such that H(x) = y.

♦ Collision-intractability: one cannot find a
pair of values x′ ≠ x such that H(x) = H(x′ ).
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One-Way Hash Functions

♦ When using a stream cipher, a hash of the
message can be appended to ensure
integrity. [Message Authentication Code]

♦ When forming a digital signature, the
signature need only be applied to a hash of
the message. [Message Digest]
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A Cryptographic Hash: SHA-1

Compression
Function

160-bit Output

512-bit Input(IV)
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds

No Change
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds

Rotate 30 bits
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds

No Change
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds

No Change
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds

?
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A Cryptographic Hash: SHA-1

What’s in the final 32-bit transform?

♦ Take the rightmost word.

♦ Add in the leftmost word rotated 5 bits.

♦ Add in a round-dependent function f of the
middle three words.
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds

f
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A Cryptographic Hash: SHA-1

Depending on the round, the “non-linear”
function f is one of the following.

f(X,Y,Z) = (X∧Y) ∨ ((¬X)∧Z)

f(X,Y,Z) = (X∧Y) ∨ (X∧Z) ∨ (Y∧Z)

f(X,Y,Z) = X ⊕ Y ⊕ Z
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A Cryptographic Hash: SHA-1

What’s in the final 32-bit transform?

♦ Take the rightmost word.

♦ Add in the leftmost word rotated 5 bits.

♦ Add in a round-dependent function f of the
middle three words.

January 15, 2002
Practical Aspects of Modern

Cryptography

A Cryptographic Hash: SHA-1

What’s in the final 32-bit transform?

♦ Take the rightmost word.

♦ Add in the leftmost word rotated 5 bits.

♦ Add in a round-dependent function f of the
middle three words.

♦ Add in a round-dependent constant.

January 15, 2002
Practical Aspects of Modern

Cryptography

A Cryptographic Hash: SHA-1

What’s in the final 32-bit transform?

♦ Take the rightmost word.

♦ Add in the leftmost word rotated 5 bits.

♦ Add in a round-dependent function f of the
middle three words.

♦ Add in a round-dependent constant.

♦ Add in a portion of the 512-bit message.
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds
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Cryptographic Tools

One-Way Trapdoor Functions

Public-Key Encryption Schemes

One-Way Functions

One-Way Hash Functions

Pseudo-Random Number-Generators

Secret-Key Encryption Schemes

Digital Signature Schemes


