

The Fundamental Equation

$\mathrm{Z}=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

Practical Aspects of Modern

Diffie-Hellman

$\mathrm{Z}=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

When X is unknown, the problem is known as the discrete logarithm and is generally believed to be hard to solve.

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

What does Eve see?

$$
\mathrm{Y}, \mathrm{Y}^{a}, \mathrm{Y}^{b}
$$

... but the exchanged key is $\mathrm{Y}^{a b}$.
Belief: Given Y, $\mathrm{Y}^{a}, \mathrm{Y}^{b}$ it is difficult to compute $\mathrm{Y}^{a b}$.
Contrast with discrete logarithm assumption: Given $\mathrm{Y}, \mathrm{Y}^{x}$ it is difficult to compute x.

$$
\mathrm{B}^{a}=\mathrm{Y}^{b a}=\mathrm{Y}^{a b}=\mathrm{A}^{b}
$$

January 15, 2002

$\mathrm{Z}=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

Recall that this equation is solvable for Y if the factorization of N is known, but is believed to be hard otherwise.

Some RSA Details

When $\mathrm{N}=\mathrm{PQ}$ is the product of distinct primes,

$$
Y^{X} \bmod N=Y
$$

whenever
$\mathrm{X} \bmod (\mathrm{P}-1)(\mathrm{Q}-1)=1$ and $0 \leq \mathrm{Y}<\mathrm{N}$.

Some RSA Details

Encryption: $\mathrm{E}(\mathrm{Y})=\mathrm{Y}^{\mathrm{E}} \bmod \mathrm{N}$.
Decryption: $\mathrm{D}(\mathrm{Y})=\mathrm{Y}^{\mathrm{D}} \bmod \mathrm{N}$.

$$
\mathrm{D}(\mathrm{E}(\mathrm{Y}))
$$

January 15, 2002
An additional property
$\mathrm{D}(\mathrm{E}(\mathrm{Y}))=\mathrm{Y}^{\mathrm{ED}} \bmod \mathrm{N}=\mathrm{Y}$
$\mathrm{E}(\mathrm{D}(\mathrm{Y}))=\mathrm{Y}^{\mathrm{DE}} \bmod \mathrm{N}=\mathrm{Y}$
Only Alice (knowing the factorization of N)

$$
=\left(\mathrm{Y}^{\mathrm{E}} \bmod \mathrm{~N}\right)^{\mathrm{D}} \bmod \mathrm{~N}
$$ knows D. Hence only Alice can compute

$$
=\mathrm{Y}^{\mathrm{ED}} \bmod \mathrm{~N}
$$ $\mathrm{D}(\mathrm{Y})=\mathrm{Y}^{\mathrm{D}} \bmod \mathrm{N}$.

$$
=\mathrm{Y}
$$

This $\mathrm{D}(\mathrm{Y})$ serves as Alice's signature on Y .

Remaining RSA Basics

- Why is $\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{PQ}=\mathrm{Y}$ whenever $\mathrm{X} \bmod (\mathrm{P}-1)(\mathrm{Q}-1)=1,0 \leq \mathrm{Y}<\mathrm{PQ}$, and P and Q are distinct primes?
- How can Alice can select integers E and D such that $\mathrm{E} \cdot \mathrm{D} \bmod (\mathrm{P}-1)(\mathrm{Q}-1)=1$?

Modular Arithmetic

- To compute $(\mathrm{A}+\mathrm{B}) \bmod \mathrm{N}$, compute $(\mathrm{A}+\mathrm{B})$ and take the result $\bmod \mathrm{N}$.
- To compute (A-B) mod N, compute ($\mathrm{A}-\mathrm{B}$) and take the result mod N .
- To compute $(\mathrm{A} \times \mathrm{B}) \bmod \mathrm{N}$, compute $(\mathrm{A} \times \mathrm{B})$ and take the result $\bmod \mathrm{N}$.
- To compute $(\mathrm{A} \div \mathrm{B}) \bmod \mathrm{N}, \ldots$

January 15, 2002 $\quad \begin{gathered}\text { Practical Aspects of Modern } \\ \text { Cryptography }\end{gathered}$

Modular Division

What is the value of $(1 \div 2) \bmod 7$?
We need a solution to $2 x \bmod 7=1$.
Try $x=4$.

What is the value of $(7 \div 5) \bmod 11$?
We need a solution to $5 x \bmod 11=7$.
Try $x=8$.

Practical Aspects of Modern
Pactical Aspects of M
Cryptography

Modular Division

Is modular division always well-defined?

$$
(1 \div 3) \bmod 6=?
$$

$3 x \bmod 6=1$ has no solution!

Fact

$(\mathrm{A} \div \mathrm{B}) \bmod \mathrm{N}$ always has a solution when $\operatorname{gcd}(B, N)=1$.

Practical Aspects of Modern

Greatest Common Divisors

```
gcd(A,B)}=\operatorname{gcd}(\textrm{B},\textrm{A}-\textrm{B}
    gcd}(21,12)=\operatorname{gcd}(12,9)=\operatorname{gcd}(9,3
    =gcd(6,3)=\operatorname{gcd}(3,3)=\operatorname{gcd}(0,3)=3
gcd(A, B) = gcd(B,A mod B)
    gcd}(\mathbf{21,12})=\operatorname{gcd}(12,9)=\operatorname{gcd}(9,3
    = gcd(0,3)=3
```


Extended Euclidean Algorithm

Given integers A and B, find integers X and Y such that $A X+B Y=\operatorname{gcd}(A, B)$.

When $\operatorname{gcd}(A, B)=1$, solve $A X \bmod B=1$, by finding X and Y such that

$$
\mathrm{AX}+\mathrm{BY}=\operatorname{gcd}(\mathrm{A}, \mathrm{~B})=1
$$

Compute $(\mathrm{C} \div \mathrm{A}) \bmod \mathrm{B}$ as $\mathrm{C} \times(1 \div \mathrm{A}) \bmod \mathrm{B}$.

Extended Euclidean Algorithm

Given A,B >0, set $x_{1}=1, x_{2}=0, y_{1}=0, y_{2}=1$, $a_{1}=\mathrm{A}, b_{1}=\mathrm{B}, i=1$.

Repeat while $b_{i}>0$: $\{i=i+1$;
$q=a_{i-1} \operatorname{div} b_{i-1} ; b_{i}=a_{i-1} q b_{i-1} ; a_{i}=b_{i-1} ;$
$\left.x_{i+1}=x_{i-1}-q x_{i} ; y_{i+1}=y_{i-1}-q y_{i}\right\}$.
$\mathrm{A} x_{i}+\mathrm{B} y_{i}=a_{i}=\operatorname{gcd}(\mathrm{A}, \mathrm{B})$.

Practical Aspects of Modern
Cryptography

Remaining RSA Basics

- Why is $\mathrm{Y}^{\mathrm{x}} \bmod \mathrm{PQ}=\mathrm{Y}$ whenever $\mathrm{X} \bmod (\mathrm{P}-1)(\mathrm{Q}-1)=1,0 \leq \mathrm{Y}<\mathrm{PQ}$, and P and Q are distinct primes?
- How can Alice can select integers E and D such that $\mathrm{E} \cdot \mathrm{D} \bmod (\mathrm{P}-1)(\mathrm{Q}-1)=1$?

Fermat's Little Theorem

If p is prime,
then $x^{p-1} \bmod p=1$ for all $0<x<p$.

Equivalently ...

If p is prime,
then $x^{p} \bmod p=x \bmod p$ for all integers x.

Practical Aspects of Modern
Cryptography

Proof of Fermat's Little Theorem

Proof of Fermat's Little Theorem

By induction on $x \ldots$
$\underline{\text { Basis }}$
If $x=0$, then $x^{p} \bmod p=0=x \bmod p$.
If $x=1$, then $x^{p} \bmod p=1=x \bmod p$.
Inductive Step
Assume that $x^{p} \bmod p=x \bmod p$.
Then $(x+1)^{p} \bmod p=\left(x^{p}+1^{p}\right) \bmod p$

$$
=(x+1) \bmod p .
$$

Hence, $x^{p} \bmod p=x \bmod p$ for integers $x \geq 0$.
Also true for negative x, since $(-x)^{p}=(-1)^{p} x^{p}$.

Practical Aspects of Moder
Cryptography

Authentication

How can I use RSA to authenticate someone's identity?

If Alice's public key E_{A}, just pick a random message m and send $\mathrm{E}_{\mathrm{A}}(m)$.

If m comes back, I must be talking to Alice.

Practical Aspects of Modern
Cryptography

Authentication

Should Alice be happy with this method of authentication?

Bob sends Alice the authentication string $y=$ "I owe Bob \$1,000,000 - signed Alice."

Alice dutifully authenticates herself by decrypting (putting her signature on) y.

Practical Aspects of Modern
Cryptopranhy

| RSA Cautions |
| :---: | :---: |
| Is it reasonable to sign/decrypt something |
| given to you by someone else? |
| Note that RSA is multiplicative. Can this |
| property be used/abused? |

RSA Cautions

Is it reasonable to sign/decrypt something given to you by someone else?

Note that RSA is multiplicative. Can this property be used/abused?

RSA Cautions

$$
\mathrm{D}\left(\mathrm{Y}_{1}\right) \cdot \mathrm{D}\left(\mathrm{Y}_{2}\right)=\mathrm{D}\left(\mathrm{Y}_{1} \cdot \mathrm{Y}_{2}\right)
$$

Thus, if I've decrypted (or signed) Y_{1} and Y_{2}, I've also decrypted (or signed) $\mathrm{Y}_{1} \bullet \mathrm{Y}_{2}$.

The Practical Side

For efficiency, one generally uses RSA (or another public-key algorithm) to transmit a private (symmetric) key.
The private session key is used to encrypt and authenticate any subsequent data.

Digital signatures are only used to sign a digest of the message.

Symmetric Ciphers

Private-key (symmetric) ciphers are usually divided into two classes.

- Block ciphers
- Stream ciphers

Block Cipher Modes
Cipher Block Chaining (CBC) Encryption:

Block Cipher Modes

Cipher Block Chaining (CBC) Decryption:

Feistel Ciphers

Stream Ciphers

- Use the key as a seed to a pseudo-random number-generator.
- Take the stream of output bits from the PRNG and XOR it with the plaintext to form the ciphertext.

Stream ciphers

Stream Cipher Encryption

$\oplus \oplus \oplus$
PRNG(seed):

Ciphertext:

A PRNG: Alleged RC4

Initialization
$\mathrm{S}[0 . .255]=0,1, \ldots, 255$
K[0..255] = Key,Key,Key, \ldots
for $\mathrm{i}=0$ to 255
$\mathrm{j}=(\mathrm{j}+\mathrm{S}[\mathrm{i}]+\mathrm{K}[\mathrm{i}]) \bmod 256$
swap $S[i]$ and $S[j]$

Stream Cipher Integrity

- It is easy for an adversary (even one who can't decrypt the ciphertext) to alter the plaintext in a known way.
Bob to Bob's Bank:
Please transfer $\$ 0,000,002.00$ to the account of my good friend Alice.

Stream Cipher Integrity

- It is easy for an adversary (even one who can't decrypt the ciphertext) to alter the plaintext in a known way.
Bob to Bob's Bank:
Please transfer $\$ 1,000,002.00$ to the account of my good friend Alice.

Stream Cipher Integrity

- It is easy for an adversary (even one who can't decrypt the ciphertext) to alter the plaintext in a known way.
Bob to Bob's Bank: Please transfer \$1,000,002.00 to the account of my good friend Alice.
- This can be protected against by the careful addition of appropriate redundancy.

January 15, 2002

One-Way Hash Functions

Generally, a one-way hash function is a function $\mathrm{H}:\{0,1\}^{*} \rightarrow\{0,1\}^{\mathrm{k}}$ (typically k is 128 or 160) such that given an input value x, one cannot find a value $x^{\prime} \neq x$ such $\mathrm{H}(x)=$ $\mathrm{H}\left(x^{\prime}\right)$.
$\underset{\text { Cryptoctaphy }}{\text { Practical Aspects of Modern }}$
Practical Aspects of M
Cryptography

One-Way Hash Functions

The idea of a check sum is great, but it is designed to prevent accidental changes in a message.
For cryptographic integrity, we need an integrity check that is resilient against a smart and determined adversary.

One-Way Hash Functions

- When using a stream cipher, a hash of the message can be appended to ensure integrity. [Message Authentication Code]
- When forming a digital signature, the signature need only be applied to a hash of the message. [Message Digest]

A Cryptographic Hash: SHA-1

A Cryptographic Hash: SHA-1

Depending on the round, the "non-linear" function f is one of the following.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=(\mathrm{X} \wedge \mathrm{Y}) \vee((\neg \mathrm{X}) \wedge \mathrm{Z}) \\
& \mathrm{f}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=(\mathrm{X} \wedge \mathrm{Y}) \vee(\mathrm{X} \wedge \mathrm{Z}) \vee(\mathrm{Y} \wedge \mathrm{Z}) \\
& \mathrm{f}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{X} \oplus \mathrm{Y} \oplus \mathrm{Z}
\end{aligned}
$$

A Cryptographic Hash: SHA-1

What's in the final 32-bit transform?

- Take the rightmost word.
- Add in the leftmost word rotated 5 bits.
- Add in a round-dependent function f of the middle three words.
- Add in a round-dependent constant.

A Cryptographic Hash: SHA-1

What's in the final 32-bit transform?

- Take the rightmost word.
- Add in the leftmost word rotated 5 bits.
- Add in a round-dependent function f of the middle three words.
- Add in a round-dependent constant.
- Add in a portion of the 512-bit message.

| Cryptographic Tools |
| :--- | :--- |
| One-Way Trapdoor Functions |
| Public-Key Encryption Schemes |
| One-Way Functions |
| One-Way Hash Functions |
| Pseudo-Random Number-Generators |
| Secret-Key Encryption Schemes |
| Digital Signature Schemes |
| |
| Iamary 15.2002 |

