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Meet Alice and Bob

BobAlice

Message
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Modern Symmetric Ciphers
♦ Setup: Alice wants to send a private message to

Bob.

♦ Precondition: Alice and Bob have previously
shared some secret known only to them.

♦ The pre-shared secret is the encryption key
Alice and Bob will use.
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Symmetric Encryption

k

Alice
(sender)

Bob
(receiver)

Bob knows
secret key k

Alice knows
secret key k

Plaintext P Dec(C,k)
Ciphertext C

Enc(P,k) Plaintext P
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What makes a cipher secure?

♦ Exhaustive search of keyspace must be infeasible
– More about this later…

♦ It must also be infeasible to find the key given:
– Sample ciphertext and corresponding plaintext (“known-

plaintext attack”)
– The ability to feed ciphertext in and see what plaintext

comes out (“chosen-ciphertext attack”)
• or the other way around (“chosen-plaintext attack”)

♦ If someone can find keys under any of these
conditions, the cipher isn’t considered secure
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Some bad cipher ideas

♦ Repeated XOR mask
– Pick a key number. XOR with each plaintext

• XOR with key again to decrypt
– INSECURE: just one plaintext/ciphertext gives the key

♦ Monoalphabetic substitution
– Key is a table of letters and corresponding ciphertexts

• a=m, b-x, c=b, d=r, etc.
• encrypt/decrypt by substitution

– Exhaustive search is really hard (26! keys to try).
– INSECURE: statistical analysis of ciphertext frequency
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Symmetric Ciphers
Private-key (symmetric) ciphers are usually

divided into two classes.

♦ Block ciphers

♦ Stream ciphers
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Block ciphers
♦ Encrypt fixed-size blocks

ciphertext = Encrypt(key,cleartext)

cleartext = Decrypt(key,ciphertext)

♦ Encrypt function converts blocks of cleartext bits to
ciphertext bits
– Decrypt function converts back

♦ If the key is wrong, you get the wrong result
♦ Shouldn’t be possible to derive key given cleartext,

ciphertext pairs
♦ Examples include DES, 3DES, AES
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Block Ciphers

Block
Cipher

Plaintext Data Ciphertext

Key
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Block Ciphers

Block
Cipher

Plaintext Data Ciphertext

Key

Currently usually 8 bytes.
AES uses 16 bytes.
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Fast Facts about Block Ciphers
♦ Encrypt/decrypt data a block at a time

♦ Encryption/decryption of sequential blocks may be
related
– Mode of operation

♦ We always encrypt/decrypt full blocks
– No partial blocks allowed by the cipher!

– Our plaintext may not be an even multiple of blocks, so
we may need to pad the last plaintext block
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Block Cipher Modes

Electronic Code Book (ECB) Encryption:

Block
Cipher

Block
Cipher

Block
Cipher

Block
Cipher

Plaintext

Ciphertext
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Block Cipher Modes

Electronic Code Book (ECB) Decryption:

Inverse
Cipher

Inverse
Cipher

Inverse
Cipher

Inverse
Cipher

Plaintext

Ciphertext
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Problems with ECB
♦ Patterns in plaintext preserved in ciphertext

♦ No basic integrity protection. Must add or:
– Cipher block substitution and rearrangement attacks

– Fabrication of information

Block
Cipher

Block
Cipher

Block
Cipher

Block
Cipher

X0 X1 X2 X3 = X0

C0 C1 C2 C3 = C0
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Block Cipher Modes

Cipher Block Chaining (CBC) Encryption:

Block
Cipher

Block
Cipher

Block
Cipher

Block
Cipher

Plaintext

Ciphertext

IV
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Block Cipher Modes

Cipher Block Chaining (CBC) Decryption:

Inverse
Cipher

Inverse
Cipher

Inverse
Cipher

Inverse
Cipher

Plaintext

Ciphertext

IV
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How to Build a Block Cipher

Block
Cipher

Plaintext

Ciphertext

Key
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Feistel Ciphers

Ugly
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Feistel Ciphers

Ugly
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Ugly

Feistel Ciphers
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Feistel Ciphers

Ugly

Ugly
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Feistel Ciphers
♦ Typically, most Feistel ciphers are iterated for

about 16 rounds.

♦ Different “sub-keys” are used for each round.
– Sub-keys are derived from the master key or a

derived key schedule

♦ Even a weak round function can yield a strong
Feistel cipher if iterated sufficiently.
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Data Encryption Standard (DES)

Block
Cipher

64-bit Plaintext

64-bit Ciphertext

56-bit Key
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Data Encryption Standard (DES)

64-bit Plaintext

64-bit Ciphertext

56-bit Key 16 Feistel
Rounds
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Data Encryption Standard (DES)

64-bit Plaintext

64-bit Ciphertext

56-bit Key 16 Feistel
Rounds
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DES Round

Ugly
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Simplified DES Round Function

Sub-key

4-bit substitutions

32-bit permutation

Ugly32 bits
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Actual DES Round Function

Sub-key

6/4-bit substitutions

32-bit permutation

Ugly32 bits

48 bits
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Padding Modes
♦ What do we do if the length of the plaintext is

not an even multiple of the cipher’s block size?

♦ A: Drop the extra data on the floor
(You really didn’t want it encrypted anyway)

♦ B: Throw an exception/return an error
“User error”

♦ C: Pad the last block of plaintext so it’s a full
block, then encrypt it normally
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Padding with Zero
♦ Add enough zeros to the end of the data so we

have a full block to encrypt

Example: last block is 31 D9 7B D7

Zero padding yields:

31 D9 7B D7

31 D9 7B D7 00 00 00 00

January 22, 2002
Practical Aspects of Modern

Cryptography 34

Zero Padding
♦ What’s wrong with padding with zeros?

♦ If my plaintext can end in a zero, I cannot tell
the plaintext data apart from the added pad
– Not always fatal, but in general zero is a legal

plaintext value

– We need something else...

31 D9 7B 00
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PKCS Padding
♦ Idea: Pad the block with a value that depends on

the amount of padding needed.
– This lets you tell the pad apart from the plaintext

– If you need n bytes of pad, pad with a value of n!

♦ Example: Need to pad the last four bytes?
Use a value of 04:

31 D9 7B D7 04 04 04 04
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PKCS Padding
♦ Removing a PKCS pad is easy:

– Look at the last byte of the last block of plaintext
– this is the pad value

– Remove that many bytes of padding

31 D9 7B D7 04 04 04 04
Value: 04

Remove
last 4 bytes
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PKCS Padding

♦ What did I forget?

♦ What happens if the plaintext doesn’t need
to be padded? (Last block is already full...)

A7 9D 42 46 BE D4 37 B8
Value: B8
(decimal 184)

Remove last 184 bytes!

January 22, 2002
Practical Aspects of Modern

Cryptography 38

PKCS Padding

♦ If the last block is a full block, add an entire
block’s worth of padding:

A7 9D 42 46 BE D4 37 B8

08 08 08 08 08 08 08 08
Value: 08

Remove last 8 bytes
(entire block)
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Block Ciphers in Use Today
♦ DES is not secure

– DES can be brute-forced (2^56 operations)

– In January 1998, a combination of the EFF DES
Cracker and distributed.net brute-forced a challenge
in less than 24 hours

♦ Today, the common choices are:
– Triple-DES (two-key or three-key)

– AES (Rijndael)
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Triple-DES (3DES)

♦ Triple-DES is DES run three times
– Sometimes called 3DES-EDE because it has

three stages: encryption-decryption-encryption

DES
Encryption

DES
Decryption

DES
Encryption

CiphertextPlaintext

Key K1 Key K2 Key K3
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Triple-DES (3DES)

♦ Triple-DES can be run in either two-key or three-key
modes
– In two-key mode, K1 = K3

– In three-key mode, K1, K2, K3 are all distinct

♦ If K1 = K2 = K3, you have just DES

DES
Encryption

DES
Decryption

DES
Encryption

CiphertextPlaintext

Key K1 Key K2 Key K3
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Be Skeptical of New Ciphers

♦ The details are everything
– And there are a lot of details

– Cipher design is much harder than you’d think

♦ Don’t ever design and use your own cipher!
– It won’t be nearly as secure as existing designs like

3DES

♦ Don’t trust secret algorithms
– Need lots of review by skeptical experts to gain

confidence in a cipher
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Symmetric Ciphers
Private-key (symmetric) ciphers are usually

divided into two classes.

♦ Block ciphers

♦ Stream ciphers
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♦ An unconditionally secure cipher

♦ Problems:
– Number of random bits needed = sum of lengths of all

messages to be encrypted (not reusable)

– Random bits must be known to both sender and recipient.

Background: The One-Time Pad

Key = random bits = 1100010011100100011…
Message = bits = 1110011001100110001…

Ciphertext = XOR
of Key, Message = 0010001010000010010...
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Random Numbers
♦ Really good random numbers are hard to acquire

– Best bits come from physical systems
• Radioactive decay (http://www.fourmilab.ch/hotbits/)
• Noise diodes
• Lava Lamps

– Getting many truly random bits is slow
– Getting many shared truly random bits is more awkward

♦ Getting “good randomness” is important for many
crypto algorithms
– Picking private key components & secret keys
– Some algorithms (e.g. DSA) require random input!
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So how do we get random numbers on a
computer?

♦ It sounds so easy: “Just pick some random bytes”
♦ No good standard source of computer randomness

– OS state (time-of-day, PID) is very low entropy
– User keyboard input is very unreliable

♦ Best practical options aren’t very good
– Inter-event timing (keyboard, network), timing loops,

fast clocks and interval timers
– Better would be /dev/random, or hardware generator

• Intel 850 chipset (for Pentium motherboards) has
on-board hardware RNG
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Pseudo-Random Numbers
♦ How do we make a lot of “good” random bits

from a smaller number of “really good” random
bits?
– We want “pseudo-random bits”

♦ Pseudo-random bitstrings are “polynomial time
indistinguishable” from truly random bitstrings

♦ In practice: use DES, hash functions to generate
bits from a random seed (FIPS 186)
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Stream Ciphers
♦ Use the secret key as a seed to a pseudo-random

number-generator.

♦ Take the stream of output bits from the PRNG
and XOR it with the plaintext to form the
ciphertext.
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Stream ciphers
♦ Generate mask bits

ciphertext[i] = cleartext[i]+stream(key,state)

cleartext[i] = ciphertext[i]-stream(key,state)

♦ Cipher produces a sequence of bits that is added to the
cleartext to produce ciphertext
– Receiver can generate the same sequence and subtract from

ciphertext to recover cleartext

♦ Must never re-use same part of stream

♦ Each bit is encrypted independently

January 22, 2002
Practical Aspects of Modern

Cryptography 50

Stream Cipher Encryption

Plaintext:

PRNG(seed):

Ciphertext:
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Stream Cipher Decryption

Plaintext:

PRNG(seed):

Ciphertext:
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A PRNG: Alleged RC4
Initialization

S[0..255] = 0,1,…,255

K[0..255] = Key,Key,Key,…

for i = 0 to 255

j = (j + S[i] + K[i]) mod 256

swap S[i] and S[j]
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A PRNG: Alleged RC4
Iteration

i = (i + 1) mod 256

j = (j + S[i]) mod 256

swap S[i] and S[j]

t = (S[i] + S[j]) mod 256

Output S[t]
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Stream Cipher Integrity
♦ It is easy for an adversary (even one who can’t

decrypt the ciphertext) to alter the plaintext in a
known way.

Bob to Bob’s Bank: Please transfer $0,000,002.00
to the account of my good friend Alice.
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Stream Cipher Integrity
♦ It is easy for an adversary (even one who can’t

decrypt the ciphertext) to alter the plaintext in a
known way.

Bob to Bob’s Bank: Please transfer $1,000,002.00
to the account of my good friend Alice.

♦ This can be protected against by the careful
addition of appropriate redundancy.
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One-Way Hash Functions
♦ The idea of a check sum is great, but it is

designed to prevent accidental changes in a
message.

♦ For cryptographic integrity, we need an
integrity check that is resilient against a smart
and determined adversary.
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One-Way Hash Functions
Generally, a one-way hash function is a function

H : {0,1}* → {0,1}k (typically k is 128 or 160)
such that given an input value x, one cannot find
a value x′ ≠ x such H(x) = H(x′ ).

January 22, 2002
Practical Aspects of Modern

Cryptography 59

One-Way Hash Functions
There are many measures for one-way hashes.

♦ Non-invertability: given y, it’s difficult to find
any x such that H(x) = y.

♦ Collision-intractability: one cannot find a pair
of values x′ ≠ x such that H(x) = H(x′ ).
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An Example Hash: SHA-1
♦ SHA-1 was designed by the US Government as

part of the Digital Signature Standard

♦ SHA-1 is the most-commonly used hash
function today
– It’s the hash function in which we have the most

faith right now

♦ SHA-1 takes any size input and produces a 160-
bit output (the digest value)
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A Cryptographic Hash: SHA-1

Compression
Function

160-bit Output

512-bit Input(IV)
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds

No Change
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds

Rotate 30 bits
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds

No Change
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds

No Change
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds

?
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A Cryptographic Hash: SHA-1
What’s in the final 32-bit transform?

♦ Take the rightmost word.

♦ Add in the leftmost word rotated 5 bits.

♦ Add in a round-dependent function f of the
middle three words.
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds

f

January 22, 2002
Practical Aspects of Modern

Cryptography 70

A Cryptographic Hash: SHA-1
Depending on the round, the “non-linear” function

f is one of the following.

f(X,Y,Z) = (X∧Y) ∨ ((¬X)∧Z)

f(X,Y,Z) = (X∧Y) ∨ (X∧Z) ∨ (Y∧Z)

f(X,Y,Z) = X ⊕ Y ⊕ Z
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A Cryptographic Hash: SHA-1
What’s in the final 32-bit transform?

♦ Take the rightmost word.

♦ Add in the leftmost word rotated 5 bits.

♦ Add in a round-dependent function f of the
middle three words.
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A Cryptographic Hash: SHA-1
What’s in the final 32-bit transform?

♦ Take the rightmost word.

♦ Add in the leftmost word rotated 5 bits.

♦ Add in a round-dependent function f of the
middle three words.

♦ Add in a round-dependent constant.
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A Cryptographic Hash: SHA-1
What’s in the final 32-bit transform?

♦ Take the rightmost word.

♦ Add in the leftmost word rotated 5 bits.

♦ Add in a round-dependent function f of the
middle three words.

♦ Add in a round-dependent constant.

♦ Add in a portion of the 512-bit message.
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A Cryptographic Hash: SHA-1

160-bit 512-bit

One of 80 rounds
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One-Way Hash Functions
♦ When using a stream cipher, a hash of the

message can be appended to ensure integrity.
[Message Authentication Code]

♦ When forming a digital signature, the signature
need only be applied to a hash of the message.
[Message Digest]


