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A bit more on certificates

509 is not the only certificate
andard — see ad'so X9.55, X9.57,
X9.59, Xcetera, Xcetera, Xcetera.

evera “web of trust” designs exist —
particular, see SPKI1/SDSI.
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d now for something
ompletely different.
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ure 7.
li-Party Protocols and
eractive Proofs

Attribute Certificates

one who has the private key
sociated with the included public
key hastheright to ...
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Multi-Party Protocols

sfar, the protocols we' ve explored
e dealt primary with two-party
scenarios.

y scenarios concern fair agreement
d computation with more players.
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Fair Selection

pose that a group wants to make a
r choice between two or more
tions.

can this be done in an unbiased
anner?
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Secret Sharing

e simple cases. “AND”

ave a secret value z that | would like to share
h Alice and Bob such that both Alice and
Bob can together determine the secret at any

e, but such that neither has any information
ividually.
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Secret Sharing— AND

he secret valueisz= (x +y) mod m.

198)
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Secret Sharing

Suppose that | have some data that | want to
share amongst three people such that

~ ¢ any two can uniquely determine the data

+ but any one aone has no information
whatsoever about the data.
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Secret Sharing— AND
e Z,={0,1,...,m-1} be asecret value to be
ared with Alice and Bob.

omly and uniformly select valuesx and y
m Z,,, subject to the constraint that

(x+y)modm=z
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Secret Sharing— AND

trick easily generalizesto more
an two shareholders.

A secret S can be written as
S=(g+s,+...+5)modm

any randomly chosen integer values
S, s Spintherange0<s <m.
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Secret Sharing

e simple cases. “OR”

ave a secret value z that | would like to share
th Alice and Bob such that either Alice or
Bob can determine the secret at any time.
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Secret Sharing—OR

s case also generaizes easily to
ore than two shareholders.
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Secret Sharing
ze Z,
OR
z z z
AND AND AND
] 5L 4 Z %
A B A C B C
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Secret Sharing — OR

The secret valueisz.
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Secret Sharing

e complex access structures ...

t to share secret value zamongst Alice, Bob,
d Carol such that any two of the three can
reconstruct z

S=(AAB)V(AAC)V(BAC)

Practical Aspects of Modern
February 19, 2002 Cryptography 16

Threshold Schemes

ant to distribute a secret datum
ongst n trustees such that

y k of the n trustees can uniquely
determine the secret datum,
t any set of fewer than k trustees has

D information whatsoever about the
beret datum.

February 19, 2002
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Threshold Schemes

\1outofn\

\noutofn\
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Shamir’s Threshold Scheme

distribute a secret valuese Z, amongst a
et of n Trustees{T,,T,,...,T,} such that any
can determine the secret

pick random coefficients a;,a,,...,a, € Z,
let P(x) = a X<+ ... +a e+ ax+ s
give P(i) to trustee T;.

The secret valueis s = P(0).
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Shamir’s Threshold Scheme

The threshold 2 case:
Example: Range=27,,={0,1,...,10}

InZ,,,85
=17+2
= 6x6

36

3

Share 1

(34
Share 3

Practical Aspects of Modern

February 19, 2002 Cryptography

23

Shamir’s Threshold Scheme

Any k pointsin afield uniquely determine a
polynomial of degree at most k-1.

- Thisnot only works of the reals, rationals, and
other infinite fields, but also over the finite
fieldZ,={0,1,...,p-1} where pisaprime.
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Shamir’s Threshold Scheme

The threshold 2 case:
Example: Range=27,,={0,1,...,10}, Secret
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Shamir’s Threshold Scheme

methods are commonly used to
erpolate a polynomial given a set of
ints.

L agrange interpolation
olving a system of linear equations
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' Lagrange Interpolation

or each point (i,P(i)), construct a
olynomial P, with the correct value at
and avalue of zero at the other given
points.

(%) = P() > [Tj.41) + [g)(-1)

x) =2 P(¥)
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Verifiable Secret Sharing

ret sharing is very useful when the
dealer” of asecret is honest, but what
things can happen if the dedler is
potentially dishonest?

I measures be taken to eiminate or
itigate the damages?
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An Additive Homomorphism

we find an encryption function for
hich the sum (or product) of two
crypted messages is the (an)
encryption of the sum of the two
original messages?

E(X)°E(y) = E(x+y)

Practical Aspects of Modern
Cryptography 2

Solving aLinear System

ard the polynomial coefficents as
knowns.

g in each known point to get a
linear equation in terms of the
unknown coefficients.
Dnce there are as many equations as
knowns, use linear agebrato solve
e system of equations..,

Coypogrepty
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Homomorphic Encryption

| that with RSA, thereisa
[ti plicative homomor phism.

E()E(Y) = E(xy)

_an we find an encryption function
ith an additive homomorphism?
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An Additive Homomorphism

| the one-way function given by
f(xX) = g¢mod m.

For this function,
f(x)f(y) mod m=g*gy mod m=
gy mod m = f(x+y) mod m.
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Verifiable Secret Sharing

el ect a polynomial with secret a, as

P(X) = a, X<+ ... + a2+ a X + ay,.

;ommit to the coefficients by publishing

g%, g%, g%, ..., g

+ Compute acommitment to P(i) from public
velues as

QPO = g g gt . g,
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| Secret Shari ng Homomorphisms

f these secret sharing methods
e an additional useful feature:

If two secrets are separately shared
| amongst the same set of peoplein the
e way, then the sum of the
dividual shares constitute shares of

e sum of the Secrels., ..

February 19, 2002 Cryptography

33

Secret Sharing Homomorphisms

AND
ret: a — Shares: a, ay, ..., a,
et: b — Shares: b;, b, ..., b,
et sum: at+b
esums. a;tb;, a,+b,, ..., a,+b,
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Verifiable Secret Sharing

Randomness must be included to
event small spaces of possible
ecrets and shares from being
haustively searched.
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Secret Sharing Homomorphisms
OR

:a— Shares: 4,4, ...,a
tet: b — Shares: b, b, ..., b

ecret sum: a+b
esums. at+b, atb, ..., atb
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Secret Sharing Homomorphisms
THRESHOLD

: P(0) — Shares: P,(1), P,(2), ..., P,(n)
tet: P,(0) — Shares: Py(1), Py(2), ..., Py(n)

ret sum: P,(0) + P, (0)
esums: P,(1) +P, (1), P,(2) + P, (2), ...,
(n) + P, (n)
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rifiable Secret-Ballot Elections

an election, each voter can cast avote
sharing the vote with a set of election
icials at a pre-determined threshold.

e officials can read an individual’ s vote
only if asufficiently large set conspire.
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¥ifiable Secret-Ballot Elections

The sum of the shares of the votes
constitute shares of the sum of the
votes.

Practical Aspects of Modern
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iable Secret-Ballot Elections

shares of the votes can each be
crypted with an additively
homomorphic encryption function.
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rifiable Secret-Ballot Elections

er | Vote |Official 1| Official 2| Official 3
Va S Ss Se
Ve Se1 Ss, Sas
Ve S Se S

tal [T=2V, | T,=2S, | T,=2S, | T=2S,
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ifiable Secret-Ballot Elections

er | Vote |Official 1|Official 2| Official 3

VA SAZL SA2 SA3
VB SBl SBZ SBS
VC SCl SCZ SC3

tal [T=2V, | T=2S
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fiable Secret-Ballot Elections

er | Vote |Official 1|Official 2| Official 3
VA SAl SAZ SAS
Vg Ses Sez Ses
VC SCl SCZ SC3
tal |T=XV, | T,=XS, | T,=2S, | T,=2S,
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¥ifiable Secret-Ballot Elections

Vote |Official 1|Official 2 |Officia 3
A El(SAl) EZ(SAZ) E3(SA3)
s | BEiSe) | BSs) | Ei(Sed)
c | EBiSa) | EfSe) | EiSed)
T:ZVi lezsll TZZZSIZ T3:Zsl3
Practical Aspects of Modern
Cryptography S

et encryptions of the sums,
pmpute the products of the
encryptions.
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¥ifiable Secret-Ballot Elections

rifiable Secret-Ballot Elections

February 19, 2002
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er | Vote |Official 1|Official 2| Official 3
VA El(SAl) EZ(SAZ) E3(SA3)

Ve | Ei(Ss) | EXSs) | Ex(Sg))

VC El(SCI) EZ(SCZ) ES(SC3)
IE,(Sy) | TIE,S,) | TTE(Sy)

tal |T=XV, | T,=ZS, | T,=3S, | T;=XS,

g

¥ifiable Secret-Ballot Elections
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er | Vote |Official 1| Official 2| Official 3
VA El(SAl) EZ(SAZ) E3(8A3)
VB El(SBl) EZ(SBZ) ES(SBS)
VC El(scl) EZ(SCZ) E3(SC3)
tal [T=3V, | T,=5S, | T,/2S, T, %S,

¥ifiable Secret-Ballot Elections

February 19, 2002
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er | Vote |Official 1|Official 2| Official 3
VA E:L(SAl) EZ(SAZ) E3(SA3)
Ve | EiSed) | ExfSel) | Ei(Seo)
VC El(SCI) EZ(SCZ) E3(SC3)
tal |T=XV, | T,=XS, | T,=XS, | T;=XS,

¥ifiable Secret-Ballot Elections

February 19, 2002
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er | Vote |Official 1|Official 2| Officia 3
VA El(SAl) EZ(SAZ) ES(SA3)

Ve | EiSsd) | EXSsr) | Es(Sed)

VC El(SCl) EZ(SCZ) E3(SC3)
ME(S) | TIE(S,) | TTEK(SY)

E(ES) | E(S) | EESy)

tal |T=XV, | T,=XS, | T,=2S, | T,=2S,
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¥ifiable Secret-Ballot Elections

Ccrypt the products to determine the
olumn sums.

Official 1

Official 2

¥ifiable Secret-Ballot Elections

Official 3

El(SAl)
SICH
Ei(Se)

EZ(SAZ)
E(Se2)
E(S)

E3(SA3)
Ey(Seo)
Ey(Sea)

IE,(Sy)
E((2Sy)

TE,S,)
EA2S)

TTEL(Sy)
Ey(2Sy)

T=3V,

TZL:ZSIZL

TS,
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rifiable Secret-Ballot Elections

February 19, 2002
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er | Vote |Official 1|Officia 2 |Officia 3
Va El(SAl) EZ(SAZ) E3(SA3)

Vo | EiSs) | EfSp) | Eo(Se)

Ve El(SCI) Ez(scz) Es(Scs)
TEL(S,) | TIEAS,) | TTE(S))

E(S) | E(S) | E(ES)

tal |T=XV, | T,=ZS, | T,=3S, | T;=XS,
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¥ifiable Secret-Ballot Elections
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er | Vote |Official 1|Official 2| Official 3
VA El(SAl) EZ(SAZ) E3(8A3)

VB El(SBl) EZ(SBZ) ES(SBS)

VC El(scl) EZ(SCZ) E3(SC3)
TTE,(Sy) | TIE(S,) | TTE(S,)

E.ES) | BES) | B(ES)

tal [T=2V, | T,=5S, | T,=5S, | T=5S,
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¥ifiable Secret-Ballot Elections

Combine the shares to form the tally.

¥ifiable Secret-Ballot Elections

February 19, 2002
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er | Vote |Official 1|Official 2| Officia 3
VA El(SAl) EZ(SAZ) ES(SA3)

Ve | EiSsd) | EXSsr) | Es(Sed)

VC El(SCl) EZ(SCZ) E3(SC3)
ME(S) | TIE(S,) | TTEK(SY)

E(ES) | E(S) | EESy)

tal |T=XV, | T,=XS, | T,=2S, | T,=2S,




ifiable Secret-Ballot Elections

oduct of Encryptions= Encryption of Sum
Sum of Shares= Shares of Sum

pie product of the encryptions of the
shares of the votes constitute
encryptions of the shares of the sum
the votes.
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Interactive Proofs

+ There are non-traditional methods of
convincing others that something is true
without writing down a proof.

+ These methods can be used to convince
others of the veracity of partial information
about a secret.

Practical Aspects of Modern
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Interactive Proofs

We engage in adialogue at the
conclusion of which you are
convinced that my claim istrue.

Practical Aspects of Modern
February 19, 2002 Cryptography 59

rifiable Secret-Ballot Elections

er | Vote |Official 1|Official 2| Officia 3

VA El(SAl) EZ(SAZ) ES(SA3)
VB El(SBl) EZ(SBZ) ES(SBS)
C El(scl) EZ(SCZ) EB(SCS)
TTE,(Sy) | TIE(S,) | TTE(S,)
E.ES) | BES) | B(ES)
tal [T=2V, | T,=5S, | T,=5S, | T=5S,
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Traditional Proofs

+ | want to convince you that
something istrue.

+| write down a proof and giveit to
youl.
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Proving Something is a Square

Suppose | want to convince you that
Y isasquare modulo N.
[There existsan X such that Y = X2 mod N.]
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Proving Something is a Square

Suppose | want to convince you that
Y isasquare modulo N.
[There existsan X such that Y = X2 mod N.]

First approach: | giveyou X.
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An Interactive Proof

Y
1 Y2 Y3 Y4 Y5 .............. Yloo
0 0 1 eecesersccnnes 1
Practical As)a::scf Modern ©
An Interactive Proof
Y
1 Y2 Y3 Y4 Y5 .............. Y]_O()
1 0 QO 1 cececccccccces 1
VY, Y,
(YY) (Yz*Y) (Y10°Y)
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| An Interactive Proof
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An Interactive Proof
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| An Interactive Proof

er for me to “fool” you, | would have to
ess your exact challenge sequence.

2 probability of my successfully convincing
you that Y isasquare when itisnot is 2-1%0,

nteractive proof is said to be “zero-
owledge” because the challenger received no
ormation (beyond the proof of the claim) that
couldn’t compute itself.

Practical Aspects of Modern
Cryptography

February 19, 2002
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Proving Knowledge

Suppose that we share a public key
consisting of amodulus N and an
encryption exponent E and that | want
to convince you that | have the
corresponding decryption exponent D.

How can | do this?

Practical Aspects of Modern
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A Proof of Knowledge

Y
1 Y2 Y3 Y4 Y5 .............. Yloo
A Proof of Knowledge
Y
1 Y2 Y3 Y4 Y5 .............. Y]_O()
1 0 QO 1 cececccccccces 1
YL Y,P
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+ | can give you my private key D.

+ You can encrypt something for me and |
decrypt it for you.

+ You can encrypt something for me and |
can engage in an interactive proof with you
to show that | can decrypt it.

Practical Aspects of Modern
February 19, 2002 Cryptography 68

A Proof of Knowledge
Y
1 Y2 Y3 Y 4 Y5 .............. YlOO
1 0 O 1 eececensccnnes 1
February 19, 2002 Hmmcszg,‘;é Modern »
A Proof of Knowledge
Y
1 Y2 Y3 Y 4 Y5 .............. YlOO
1 0 O 1 eececessccnces 1
Y32 Y,°
2Y)P (YgoY)P (Y100Y) P
Practical Aspects of Modern
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A Proof of Knowledge

engaging in this proof, the prover
demonstrated its knowledge of YP
ithout revealing this value.

#1f Y is generated by a challenger, this
ompelling evidence that the prover
0Sseses D.
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| Facts about I nteractive Proofs

s frequently possible to simulate
interaction by substituting a one-
yay function for the challenges of a
verifier.
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An Non-Interactive ZK Proof

Y
1 Y2 Y3 Y4 Y5 .............. Y]_O()
1 0 QO 1 cececccccccnes 1

here the bit string is computed as
XXX = SHA'l(Yl, Y2, ey YlOO)

Practical Aspects of Modern
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| Facts About Interactive Proofs

yith an interactive proof.

nything in NP can be proven with a
er0-knowledge interactive proof.

Practical Aspects of Modern
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' An Non-Interactive ZK Proof

Y
8 Yo Yi Y, Yg o oeeeeceeceecnn Y 100
An Non-Interactive ZK Proof
Y
8 Yo Yo Y, Yo oeeeeceeceecnn Y 100
1 0 O 1 eececessccnces 1
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An Non-Interactive ZK Proof

Y
1 Y 2 Y 3 Y 4 Y g teeeseeesesess Y 100
1 0 QO 1 cececcccccccns 1
NERS
(YZ'Y) (Ych) (Yloo'Y)
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| Elliptic Curves

y2=x3+ Ax+ B

Practical Aspects of Modern

Cryplograpty

81

Practical Aspects of Modern
Cryptography
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| Elliptic Curve Cryptosystems

Andliptic curve

y?=x3+ Ax+ B

Practical Aspects of Modern
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| Elliptic Curves

y =x3+Ax+B

Practical Aspects of Modern
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Elliptic Curves

Practical Aspects of Modern
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Elliptic Curves

y2=x3+ Ax+B

85

Elliptic Curves

y2=x3+ Ax+B

Practical AspectSof Modern

Cryptography

87

Elliptic Curves

y2=x3+ Ax+B
y

February 19, 2002

Elliptic Curves

y2=x3+ Ax+B

Elliptic Curves

y2=x3+ Ax + B
y

Practical Aspects of Modern
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Elliptic Curves

y2=x3+ AX+B
y

Practical Aspects of Modern

Cryptography
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jptic Curves Intersecting Lines

Non-vertical Lines
{ y2=x3+ Ax +B
y=ax+Db
(ax +b)2=x3+ Ax+B
X3+ A'X2+B'x+C' =0

Practical Aspects of Modern
ri
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ptic Curves Intersecting Lines

Non-vertical Lines

1 intersection point (typical case)
~ # 2intersection points (tangent case)
+ 3intersection points (typical case)

Practical Aspects of Modern
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iptic Curves Intersecting Lines

y2=x3+ Ax+B
y

February 19, 2002

tic Curves Intersecting Lines

X3+ AX2+B'x+C' =0
y

Practical Aspects of Modern
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tic Curves Intersecting Lines

Practical Aspects of Modern
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ptic Curves Intersecting Lines
Vertical Lines
+ O intersection point

+ 1 intersection points
+ 2 intersection points

(typical case)
(tangent case)
(typical case)

Practical Aspects of Modern
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Elliptic Groups

y2=x3+ Ax+B

9

Elliptic Groups

y2=x3+ Ax +B
y

February 19, 2002 Cryptography 101
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Elliptic Groups

¢ Add an “artificia” paint | to handle the
vertical line case.

¢ Thispoint | also serves as the group identity
value.
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(X1,Y1) X (X2,Y2) = (X3,Y3)

X3 = ((3x,#+A)/(2y,))? - 2%,
Y3 = Y1 + ((3XZA)(2y1)) (X1 - Xo)

whenx; =x,andy; =y,#0

Practical Aspects of Modern
Ci Iri
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Elliptic Groups
(X1,Y1) X (X2,Y2) = (X3,Y3)

X3 = (YYD (XamX9))? = X = X,

Y3 =-Y1 + (YY) (X3-%1) (X1 - X3)

when x; # X,

Practical Aspects of Modern
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The Fundamental Equation

Z=Y*X mod N

Practical Aspects of Modern
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Elliptic Groups

(XpYy1) X (XY2) = |
when x;= X, but y;# y, or y;= y,= 0

(Xpy1) X I'=(X,y1) =1 X (Xp,y4)
x| =1

Practical Aspects of Modern
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The Fundamental Equation

Z=Y* inE/(AB)

Practical Aspects of Modern
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| The Fundamental Equation

—vX :
Z=Y " inE,A,B)
computed by repeated squaring.

Practical Aspects of Modern

Cryptography

When Z is unknown, it can be efficiently

109

| The Fundamental Equation

—vX :
Z=Y " inE/(A,B)
computed by “sophisticated” means.

Practical Aspects of Modern
ri

When Y isunknown, it can be efficiently

The Fundamental Equation

Z=Y* inE,(AB)
When X is unknown, this version of the

discrete logarithm is believed to be
quite hard to solve.
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Alice Bob

¢ Randomly select a
large integer band
sendB =YPinE,

+ Compute the key
K=APinE,

large integer a and
send A =Y?inE,
+ Compute the key
K=B?inE,

Ba=Yba=yab=AP

Practical Aspects of Modern
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Diffie-Hellman Key Exchange

Alice Bob

+ Randomly select a ¢ Randomly select a
large integer a and large integer band
send A =Yamod N. send B =YP mod N.

+ Compute the key + Compute the key
K =B2mod N. K = AP mod N.

Ba=yba=yab=AP

Practical Aspects of Modern
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Why use Elliptic Curves?

+ The best currently known algorithm for EC
discrete logarithms would take about aslong to
find a 160-bit EC discrete log as the best currently
known algorithm for integer discrete logarithms
would take to find a 1024-bit discrete log.

+ 160-bit EC agorithms are somewhat faster and
use shorter keys than 1024-bit “traditional”
algorithms.

Practical Aspects of Modern
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Why not use Elliptic Curves?

+ EC discrete logarithms have been studied far less
than integer discrete logarithms.

+ Results have shown that a fundamental bresk in
integer discretelogs would also yield a
fundamental break in EC discrete logs, although
the reverse may not be true.

+ Basic EC operations are more cumbersome than

integer operations, so EC isonly faster if the keys

are much smaller.

Practical Aspects of Modern

Cryptography
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