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A bit more on certificates

♦X.509 is not the only certificate
standard – see also X9.55, X9.57,
X9.59, Xcetera, Xcetera, Xcetera.

♦Several “web of trust” designs exist –
in particular, see SPKI/SDSI.
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Attribute Certificates

Anyone who has the private key
associated with the included public
key has the right to …
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And now for something
completely different.
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Multi-Party Protocols

Thusfar, the protocols we’ve explored
have dealt primary with two-party
scenarios.

Many scenarios concern fair agreement
and computation with more players.
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Fair Selection

Suppose that a group wants to make a
fair choice between two or more
options.

How can this be done in an unbiased
manner?
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Secret Sharing

Suppose that I have some data that I want to
share amongst three people such that

♦ any two can uniquely determine the data

♦ but any one alone has no information
whatsoever about the data.
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Secret Sharing
Some simple cases: “AND”

I have a secret value z that I would like to share
with Alice and Bob such that both Alice and
Bob can together determine the secret at any
time, but such that neither has any information
individually.
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Secret Sharing – AND
Let z ∈ Zn = {0,1,…,m-1} be a secret value to be

shared with Alice and Bob.

Randomly and uniformly select values x and y
from Zm subject to the constraint that

(x + y) mod m = z.
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Alice Me Bob

Secret Sharing – AND

The secret value is z = (x + y) mod m.

x y
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Secret Sharing – AND

This trick easily generalizes to more
than two shareholders.

A secret S can be written as

S = (s1 + s2 + … + sn) mod m

for any randomly chosen integer values
s1, s2, …, sn in the range 0 ≤ si < m.
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Secret Sharing
Some simple cases: “OR”

I have a secret value z that I would like to share
with Alice and Bob such that either Alice or
Bob can determine the secret at any time.
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Alice BobMe

Secret Sharing – OR

z z

The secret value is z.
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Secret Sharing – OR

This case also generalizes easily to
more than two shareholders.
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Secret Sharing
More complex access structures …

I want to share secret value z amongst Alice, Bob,
and Carol such that any two of the three can
reconstruct z.

S = (A ∧ B) ∨ (A ∧ C) ∨ (B ∧ C)
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Secret Sharing

OR

AND AND AND

A B A C B C

z ∈ Zm

z z z

z1 z2 z3 z4 z6z5
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Threshold Schemes

I want to distribute a secret datum
amongst n trustees such that

♦any k of the n trustees can uniquely
determine the secret datum,

♦but any set of fewer than k trustees has
no information whatsoever about the
secret datum.
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Threshold Schemes

OR

AND n out of n

1 out of n
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Shamir’s Threshold Scheme

Any k points in a field uniquely determine a
polynomial of degree at most k-1.

This not only works of the reals, rationals, and
other infinite fields, but also over the finite
field Zp = {0,1,…,p-1} where p is a prime.
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Shamir’s Threshold Scheme

To distribute a secret value s ∈ Zp amongst a
set of n Trustees {T1,T2,…,Tn} such that any
k can determine the secret

♦ pick random coefficients a1,a2,…,ak-1 ∈ Zp

♦ let P(x) = ak-1x
k-1 + … + a2x

2 + a1x + s

♦ give P(i) to trustee Ti.

The secret value is s = P(0).
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Shamir’s Threshold Scheme

The threshold 2 case:
Example: Range = Z11 = {0,1,…,10}, Secret

= 9
(0,9)

(1,7)

(2,5)
(3,3)

Secret

Share 1
Share 2

Share 3
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Shamir’s Threshold Scheme

The threshold 2 case:
Example: Range = Z11 = {0,1,…,10}

(0,8.5)
(1,7)

(3,4)

Secret

Share 1

Share 3

In Z11, 8.5
≡ 17÷2
≡ 6×6
≡ 36
≡ 3
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Shamir’s Threshold Scheme

Two methods are commonly used to
interpolate a polynomial given a set of
points.

♦Lagrange interpolation

♦Solving a system of linear equations
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Lagrange Interpolation

♦For each point (i,P(i)), construct a
polynomial Pi with the correct value at
i and a value of zero at the other given
points.

Pi(x) = P(i) ×∏(j≠i)(x-j) ÷∏(j≠i)(i-j)

♦P(x) = ∑i Pi(x)
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Solving a Linear System

♦Regard the polynomial coefficents as
unknowns.

♦Plug in each known point to get a
linear equation in terms of the
unknown coefficients.

♦Once there are as many equations as
unknowns, use linear algebra to solve
the system of equations.
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Verifiable Secret Sharing

Secret sharing is very useful when the
“dealer” of a secret is honest, but what
bad things can happen if the dealer is
potentially dishonest?

Can measures be taken to eliminate or
mitigate the damages?
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Homomorphic Encryption

Recall that with RSA, there is a
multiplicative homomorphism.

E(x)E(y) ≅ E(xy)

Can we find an encryption function
with an additive homomorphism?
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An Additive Homomorphism

Can we find an encryption function for
which the sum (or product) of two
encrypted messages is the (an)
encryption of the sum of the two
original messages?

E(x)◦E(y) ≅ E(x+y)
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An Additive Homomorphism

Recall the one-way function given by

f(x) = gx mod m.

For this function,

f(x)f(y) mod m = gxgy mod m =

gx+y mod m = f(x+y) mod m.
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Verifiable Secret Sharing
♦ Select a polynomial with secret a0 as

P(x) = ak-1x
k-1 + … + a2x

2 + a1x + a0.

♦ Commit to the coefficients by publishing

ga0, ga1, ga2, …, gak-1.

♦ Compute a commitment to P(i) from public
values as

gP(i) = ga0i0 ga1i1 ga2i2 … gak-1ik-1.
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Verifiable Secret Sharing

An important detail

Randomness must be included to
prevent small spaces of possible
secrets and shares from being
exhaustively searched.
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Secret Sharing Homomorphisms

All of these secret sharing methods
have an additional useful feature:

If two secrets are separately shared
amongst the same set of people in the
same way, then the sum of the
individual shares constitute shares of
the sum of the secrets.
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Secret Sharing Homomorphisms
OR

Secret: a – Shares: a, a, …, a

Secret: b – Shares: b, b, …, b

Secret sum: a+b

Share sums: a+b, a+b, …, a+b
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Secret Sharing Homomorphisms
AND

Secret: a – Shares: a1, a2, …, an

Secret: b – Shares: b1, b2, …, bn

Secret sum: a+b

Share sums: a1+b1, a2+b2, …, an+bn
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Secret Sharing Homomorphisms
THRESHOLD

Secret: P1(0) – Shares: P1(1), P1(2), …, P1(n)

Secret: P2(0) – Shares: P2(1), P2(2), …, P2(n)

Secret sum: P1(0) + P2 (0)

Share sums: P1(1) + P2 (1), P1(2) + P2 (2), …,
P1(n) + P2 (n)
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♦In an election, each voter can cast a vote
by sharing the vote with a set of election
officials at a pre-determined threshold.

♦The officials can read an individual’s vote
only if a sufficiently large set conspire.

Verifiable Secret-Ballot Elections
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T3=ΣSi3T2=ΣSi2T1=ΣSi1T=ΣViTotal

SC3SC2SC1VCC

SB3SB2SB1VBB

SA3SA2SA1VAA

Official 3Official 2Official 1VoteVoter

Verifiable Secret-Ballot Elections
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The sum of the shares of the votes
constitute shares of the sum of the
votes.

Verifiable Secret-Ballot Elections
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T3=ΣSi3T2=ΣSi2T1=ΣSi1T=ΣViTotal

SC3SC2SC1VCC

SB3SB2SB1VBB

SA3SA2SA1VAA

Official 3Official 2Official 1VoteVoter

Verifiable Secret-Ballot Elections
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The shares of the votes can each be
encrypted with an additively
homomorphic encryption function.

Verifiable Secret-Ballot Elections
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T3=ΣSi3T2=ΣSi2T1=ΣSi1T=ΣViTotal

SC3SC2SC1VCC

SB3SB2SB1VBB

SA3SA2SA1VAA

Official 3Official 2Official 1VoteVoter

Verifiable Secret-Ballot Elections
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T3=ΣSi3T2=ΣSi2T1=ΣSi1T=ΣViTotal

E3(SC3)E2(SC2)E1(SC1)VCC

E3(SB3)E2(SB2)E1(SB1)VBB

E3(SA3)E2(SA2)E1(SA1)VAA

Official 3Official 2Official 1VoteVoter

Verifiable Secret-Ballot Elections

February 19, 2002
Practical Aspects of Modern

Cryptography 44

T3=ΣSi3T2=ΣSi2T1=ΣSi1T=ΣViTotal

E3(SC3)E2(SC2)E1(SC1)VCC

E3(SB3)E2(SB2)E1(SB1)VBB

E3(SA3)E2(SA2)E1(SA1)VAA

Official 3Official 2Official 1VoteVoter

Verifiable Secret-Ballot Elections
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To get encryptions of the sums,
compute the products of the
encryptions.

Verifiable Secret-Ballot Elections
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T3=ΣSi3T2=ΣSi2T1=ΣSi1T=ΣViTotal

E3(SC3)E2(SC2)E1(SC1)VCC

E3(SB3)E2(SB2)E1(SB1)VBB

E3(SA3)E2(SA2)E1(SA1)VAA

Official 3Official 2Official 1VoteVoter

Verifiable Secret-Ballot Elections

February 19, 2002
Practical Aspects of Modern

Cryptography 47

T3=ΣSi3T2=ΣSi2T1=ΣSi1T=ΣViTotal

∏E3(Si3)∏E2(Si2)∏E1(Si1)

E3(SC3)E2(SC2)E1(SC1)VCC

E3(SB3)E2(SB2)E1(SB1)VBB

E3(SA3)E2(SA2)E1(SA1)VAA

Official 3Official 2Official 1VoteVoter

Verifiable Secret-Ballot Elections
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T3=ΣSi3T2=ΣSi2T1=ΣSi1T=ΣViTotal

E3(ΣSi3)E2(ΣSi2)E1(ΣSi1)

∏E3(Si3)∏E2(Si2)∏E1(Si1)

E3(SC3)E2(SC2)E1(SC1)VCC

E3(SB3)E2(SB2)E1(SB1)VBB

E3(SA3)E2(SA2)E1(SA1)VAA

Official 3Official 2Official 1VoteVoter

Verifiable Secret-Ballot Elections
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Decrypt the products to determine the
column sums.

Verifiable Secret-Ballot Elections
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T3=ΣSi3T2=ΣSi2T1=ΣSi1T=ΣViTotal

E3(ΣSi3)E2(ΣSi2)E1(ΣSi1)

∏E3(Si3)∏E2(Si2)∏E1(Si1)

E3(SC3)E2(SC2)E1(SC1)VCC

E3(SB3)E2(SB2)E1(SB1)VBB

E3(SA3)E2(SA2)E1(SA1)VAA

Official 3Official 2Official 1VoteVoter

Verifiable Secret-Ballot Elections
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T3=ΣSi3T2=ΣSi2T1=ΣSi1T=ΣViTotal

E3(ΣSi3)E2(ΣSi2)E1(ΣSi1)

∏E3(Si3)∏E2(Si2)∏E1(Si1)

E3(SC3)E2(SC2)E1(SC1)VCC

E3(SB3)E2(SB2)E1(SB1)VBB

E3(SA3)E2(SA2)E1(SA1)VAA

Official 3Official 2Official 1VoteVoter

Verifiable Secret-Ballot Elections
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Combine the shares to form the tally.

Verifiable Secret-Ballot Elections
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T3=ΣSi3T2=ΣSi2T1=ΣSi1T=ΣViTotal

E3(ΣSi3)E2(ΣSi2)E1(ΣSi1)

∏E3(Si3)∏E2(Si2)∏E1(Si1)

E3(SC3)E2(SC2)E1(SC1)VCC

E3(SB3)E2(SB2)E1(SB1)VBB

E3(SA3)E2(SA2)E1(SA1)VAA

Official 3Official 2Official 1VoteVoter

Verifiable Secret-Ballot Elections
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T3=ΣSi3T2=ΣSi2T1=ΣSi1T=ΣViTotal

E3(ΣSi3)E2(ΣSi2)E1(ΣSi1)

∏E3(Si3)∏E2(Si2)∏E1(Si1)

E3(SC3)E2(SC2)E1(SC1)VCC

E3(SB3)E2(SB2)E1(SB1)VBB

E3(SA3)E2(SA2)E1(SA1)VAA

Official 3Official 2Official 1VoteVoter

Verifiable Secret-Ballot Elections
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Verifiable Secret-Ballot Elections

Product of Encryptions ≡ Encryption of Sum
Sum of Shares ≡ Shares of Sum

The product of the encryptions of the
shares of the votes constitute
encryptions of the shares of the sum
of the votes.
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T3=ΣSi3T2=ΣSi2T1=ΣSi1T=ΣViTotal

E3(ΣSi3)E2(ΣSi2)E1(ΣSi1)

∏E3(Si3)∏E2(Si2)∏E1(Si1)

E3(SC3)E2(SC2)E1(SC1)VCC

E3(SB3)E2(SB2)E1(SB1)VBB

E3(SA3)E2(SA2)E1(SA1)VAA

Official 3Official 2Official 1VoteVoter

Verifiable Secret-Ballot Elections
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Interactive Proofs

♦ There are non-traditional methods of
convincing others that something is true
without writing down a proof.

♦ These methods can be used to convince
others of the veracity of partial information
about a secret.
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Traditional Proofs

♦I want to convince you that
something is true.

♦I write down a proof and give it to
you.
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Interactive Proofs

We engage in a dialogue at the
conclusion of which you are
convinced that my claim is true.
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Proving Something is a Square

Suppose I want to convince you that
Y is a square modulo N.

[There exists an X such that Y = X2 mod N.]
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Proving Something is a Square

Suppose I want to convince you that
Y is a square modulo N.

[There exists an X such that Y = X2 mod N.]

First approach: I give you X.
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An Interactive Proof

Y

Y1 Y3Y2 Y4 Y5 Y100
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An Interactive Proof

Y

Y1 Y3Y2 Y4 Y5 Y100

0 0 11 10
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An Interactive Proof

Y

Y1 Y3Y2 Y4 Y5 Y100

0 0 11 0 1

√Y1 √Y4√Y3
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An Interactive Proof

Y

Y1 Y3Y2 Y4 Y5 Y100

0 0 11 0 1

√(Y2•Y) √(Y100•Y)√(Y3•Y)
√Y1 √Y4√Y3
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An Interactive Proof
In order for me to “fool” you, I would have to

guess your exact challenge sequence.

The probability of my successfully convincing
you that Y is a square when it is not is 2-100.

This interactive proof is said to be “zero-
knowledge” because the challenger received no
information (beyond the proof of the claim) that
it couldn’t compute itself.
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Proving Knowledge

Suppose that we share a public key
consisting of a modulus N and an
encryption exponent E and that I want
to convince you that I have the
corresponding decryption exponent D.

How can I do this?
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Proving Knowledge

♦ I can give you my private key D.

♦ You can encrypt something for me and I
decrypt it for you.

♦ You can encrypt something for me and I
can engage in an interactive proof with you
to show that I can decrypt it.
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A Proof of Knowledge

Y

Y1 Y3Y2 Y4 Y5 Y100
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A Proof of Knowledge

Y

Y1 Y3Y2 Y4 Y5 Y100

0 0 11 10
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A Proof of Knowledge

Y

Y1 Y3Y2 Y4 Y5 Y100

0 0 11 0 1

Y1
D Y4

DY3
D
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A Proof of Knowledge

Y

Y1 Y3Y2 Y4 Y5 Y100

0 0 11 0 1

Y1
D

(Y2•Y) D

Y4
D

(Y100•Y) D(Y5•Y) D

Y3
D
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A Proof of Knowledge

♦By engaging in this proof, the prover
has demonstrated its knowledge of YD

– without revealing this value.

♦If Y is generated by a challenger, this
is compelling evidence that the prover
posseses D.
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Facts About Interactive Proofs

♦Anything in PSPACE can be proven
with an interactive proof.

♦Anything in NP can be proven with a
zero-knowledge interactive proof.
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Facts about Interactive Proofs

♦It is frequently possible to simulate
the interaction by substituting a one-
way function for the challenges of a
verifier.
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An Non-Interactive ZK Proof

Y

Y1 Y3Y2 Y4 Y5 Y100
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An Non-Interactive ZK Proof

Y

Y1 Y3Y2 Y4 Y5 Y100

0 0 11 10

where the bit string is computed as
xxx = SHA-1(Y1, Y2,…, Y100)
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An Non-Interactive ZK Proof

Y

Y1 Y3Y2 Y4 Y5 Y100

0 0 11 0 1

√Y1 √Y4√Y3
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An Non-Interactive ZK Proof

Y

Y1 Y3Y2 Y4 Y5 Y100

0 0 11 0 1

√(Y2•Y) √(Y100•Y)√(Y3•Y)
√Y1 √Y4√Y3
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Elliptic Curve Cryptosystems

An elliptic curve

y2 = x3 + Ax + B
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Elliptic Curves

y2 = x3 + Ax + B
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Elliptic Curves

y = x3 + Ax + B
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Elliptic Curves

y = x3 + Ax + B

x

y
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Elliptic Curves

y2 = x3 + Ax + B

x

y
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Elliptic Curves

y2 = x3 + Ax + B

x

y
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Elliptic Curves

y2 = x3 + Ax + B

x

y
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Elliptic Curves

y2 = x3 + Ax + B

x

y

February 19, 2002
Practical Aspects of Modern

Cryptography 88

Elliptic Curves

y2 = x3 + Ax + B

x

y
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Elliptic Curves

y2 = x3 + Ax + B

x

y
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Elliptic Curves

y2 = x3 + Ax + B

x

y
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Elliptic Curves

y2 = x3 + Ax + B

x

y
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Elliptic Curves Intersecting Lines

y2 = x3 + Ax + B

x

y

y = ax + b
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Non-vertical Lines

y2 = x3 + Ax + B

y = ax + b

(ax + b)2 = x3 + Ax + B

x3 + A′x2 + B′x + C′ = 0

Elliptic Curves Intersecting Lines
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x3 + A′x2 + B′x + C′ = 0

x

y

Elliptic Curves Intersecting Lines
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Non-vertical Lines

♦ 1 intersection point (typical case)

♦ 2 intersection points (tangent case)

♦ 3 intersection points (typical case)

Elliptic Curves Intersecting Lines
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Vertical Lines

y2 = x3 + Ax + B

x = c

y2 = c3 + Ac + B

y2 = C

Elliptic Curves Intersecting Lines
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Vertical Lines

♦ 0 intersection point (typical case)

♦ 1 intersection points (tangent case)

♦ 2 intersection points (typical case)

Elliptic Curves Intersecting Lines
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Elliptic Groups

y2 = x3 + Ax + B

x

y

y = ax + b
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Elliptic Groups

y2 = x3 + Ax + B

x

y

y = ax + b
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Elliptic Groups

y2 = x3 + Ax + B

x

y

y = ax + b
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Elliptic Groups

y2 = x3 + Ax + B

x

y

x = c
February 19, 2002
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Elliptic Groups

♦ Add an “artificial” point I to handle the
vertical line case.

♦ This point I also serves as the group identity
value.
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Elliptic Groups

y2 = x3 + Ax + B

x

y

x = c
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Elliptic Groups

(x1,y1) × (x2,y2) = (x3,y3)

x3 = ((y2-y1)/(x2-x1))2 - x1 - x2

y3 = -y1 + ((y2-y1)/(x2-x1)) (x1 - x3)

when x1 ≠ x2

February 19, 2002
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Elliptic Groups

(x1,y1) × (x2,y2) = (x3,y3)

x3 = ((3x1
2+A)/(2y1))2 - 2x1

y3 = -y1 + ((3x1
2+A)/(2y1)) (x1 - x3)

when x1 = x2 and y1 = y2 ≠ 0
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Elliptic Groups

(x1,y1) × (x2,y2) = I
when x1= x2 but y1≠ y2 or y1= y2= 0

(x1,y1) × I = (x1,y1) = I × (x1,y1)

I × I = I
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Practical Aspects of Modern

Cryptography 107

The Fundamental Equation

Z=YX mod N

February 19, 2002
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The Fundamental Equation

Z=YX in Ep(A,B)
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The Fundamental Equation

Z=YX in Ep(A,B)
When Z is unknown, it can be efficiently

computed by repeated squaring.
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The Fundamental Equation

Z=YX in Ep(A,B)
When X is unknown, this version of the

discrete logarithm is believed to be
quite hard to solve.

February 19, 2002
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The Fundamental Equation

Z=YX in Ep(A,B)
When Y is unknown, it can be efficiently

computed by “sophisticated” means.
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Diffie-Hellman Key Exchange

Alice

♦ Randomly select a
large integer a and
send A = Ya mod N.

♦ Compute the key
K = Ba mod N.

Bob

♦ Randomly select a
large integer b and
send B = Yb mod N.

♦ Compute the key
K = Ab mod N.

Ba = Yba = Yab = Ab
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Diffie-Hellman Key Exchange

Alice

♦ Randomly select a
large integer a and
send A = Ya in Ep.

♦ Compute the key
K = Ba in Ep.

Bob

♦ Randomly select a
large integer b and
send B = Yb in Ep.

♦ Compute the key
K = Ab in Ep.

Ba = Yba = Yab = Ab

February 19, 2002
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Why use Elliptic Curves?

♦ The best currently known algorithm for EC
discrete logarithms would take about as long to
find a 160-bit EC discrete log as the best currently
known algorithm for integer discrete logarithms
would take to find a 1024-bit discrete log.

♦ 160-bit EC algorithms are somewhat faster and
use shorter keys than 1024-bit “traditional”
algorithms.
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Why not use Elliptic Curves?

♦ EC discrete logarithms have been studied far less
than integer discrete logarithms.

♦ Results have shown that a fundamental break in
integer discrete logs would also yield a
fundamental break in EC discrete logs, although
the reverse may not be true.

♦ Basic EC operations are more cumbersome than
integer operations, so EC is only faster if the keys
are much smaller.


