

A bit more on certificates
x. 509 is not the only certificate standard - see also X9.55, X9.57, X9.59, Xcetera, Xcetera, Xcetera.

- Several "web of trust" designs exist particular, see SPKI/SDSI.


## Multi-Party Protocols

Thusfar, the protocols we've explored have dealt primary with two-party scenarios.

Many scenarios concern fair agreement nd computation with more players.


## Secret Sharing

ome simple cases: "AND"

Thave a secret value $z$ that I would like to share Whth Alice and Bob such that both Alice and Bob can together determine the secret at any time, but such that neither has any information individually.
but any one alone has no information whatsoever about the data.

February 19, $2002 \quad$| Practical Aspects of Modern |
| :---: |
| Cryptography |

## Secret Sharing - AND

$\mathrm{et} z \in \mathrm{Z}_{n}=\{0,1, \ldots, \mathrm{~m}-1\}$ be a secret value to be shared with Alice and Bob.
Randomly and uniformly select values $x$ and $y$ - from $\mathrm{Z}_{m}$ subject to the constraint that

$$
(x+y) \bmod m=z .
$$

## Secret Sharing - AND

his trick easily generalizes to more than two shareholders.

A secret $S$ can be written as

$$
\mathrm{S}=\left(s_{1}+s_{2}+\ldots+s_{n}\right) \bmod m
$$

for any randomly chosen integer values
$, s_{2}, \ldots, s_{n}$ in the range $0 \leq s_{i}<m$.
Practical Aspects of Mod
Cryptography


## Secret Sharing - OR

The secret value is $z$.


Practical Aspects of Modern
Cryptography
February 19, 2002

## Secret Sharing - OR

this case also generalizes easily to more than two shareholders.

## Secret Sharing

More complex access structures ...

A want to share secret value $z$ amongst Alice, Bob, - and Carol such that any two of the three can reconstruct $z$.

$$
S=(\mathrm{A} \wedge \mathrm{~B}) \vee(\mathrm{A} \wedge \mathrm{C}) \vee(\mathrm{B} \wedge \mathrm{C})
$$

Practical Aspects of Modern
Cryptoramhy

## Threshold Schemes

want to distribute a secret datum amongst $n$ trustees such that

* any $k$ of the $n$ trustees can uniquely determine the secret datum,
- but any set of fewer than $k$ trustees has o information whatsoever about the cret datum.
February 19, 2002 $\quad \begin{gathered}\text { Practical Aspects of Modern } \\ \text { Cryptography }\end{gathered}$



## Shamir's Threshold Scheme

Any $k$ points in a field uniquely determine a polynomial of degree at most $k-1$.

This not only works of the reals, rationals, and other infinite fields, but also over the finite field $\mathrm{Z}_{p}=\{0,1, \ldots, p-1\}$ where $p$ is a prime.

February 19, 2002 $\quad \begin{gathered}\text { Practical Aspects of Moderi } \\ \text { Cryptography }\end{gathered}$

## Shamir's Threshold Scheme

To distribute a secret value $s \in \mathrm{Z}_{p}$ amongst a set of $n$ Trustees $\left\{\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{n}\right\}$ such that any $k$ can determine the secret

- pick random coefficients $a_{1}, a_{2}, \ldots, a_{k-1} \in \mathrm{Z}_{p}$
- let $\mathrm{P}(x)=a_{k-1} x^{k-1}+\ldots+a_{2} x^{2}+a_{1} x+s$
- give $\mathrm{P}(i)$ to trustee $\mathrm{T}_{i}$.

The secret value is $s=\mathrm{P}(0)$.

## Shamir's Threshold Scheme

The threshold 2 case:
Example: Range $=Z_{11}=\{0,1, \ldots, 10\}$, Secret
$=9$


## Shamir's Threshold Scheme

The threshold 2 case:
Example: Range $=\mathrm{Z}_{11}=\{0,1, \ldots, 10\}$


## Shamir's Threshold Scheme

 wo methods are commonly used to interpolate a polynomial given a set of points.- Lagrange interpolation
- Solving a system of linear equations


## Lagrange Interpolation

For each point $(i, \mathrm{P}(i))$, construct a polynomial $\mathrm{P}_{i}$ with the correct value at $i$ and a value of zero at the other given points.

$$
\begin{aligned}
& \mathrm{P}_{i}(x)=\mathrm{P}(i) \times \prod_{(j \neq i)}(x-j) \div \prod_{(j \neq i)}(i-j) \\
& (x)=\sum_{i} \mathrm{P}_{i}(x) \\
& \begin{array}{c}
\text { Frobraary } 19,2002 \\
\begin{array}{c}
\text { Pracicial AspectI of Modern } \\
\text { Cypocraphy }
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

## Solving a Linear System

Regard the polynomial coefficents as unknowns.
Plug in each known point to get a linear equation in terms of the unknown coefficients.

- Once there are as many equations as aknowns, use linear algebra to solve e system of equations



## Verifiable Secret Sharing

ecret sharing is very useful when the dealer" of a secret is honest, but what bad things can happen if the dealer is potentially dishonest?

Can measures be taken to eliminate or itigate the damages?

## Homomorphic Encryption

 ecall that with RSA, there is a multiplicative homomorphism.$$
\mathrm{E}(x) \mathrm{E}(y) \cong \mathrm{E}(x y)
$$

Can we find an encryption function with an additive homomorphism?

Practical Aspects of Modern

## An Additive Homomorphism

Can we find an encryption function for which the sum (or product) of two encrypted messages is the (an) encryption of the sum of the two original messages?

$$
\mathrm{E}(x) \circ \mathrm{E}(y) \cong \mathrm{E}(x+y)
$$

ecall the one-way function given by

$$
g^{x+y} \bmod m=\mathrm{f}(x+y) \bmod m .
$$

## An Additive Homomorphism

$$
\mathrm{f}(x)=g^{x} \bmod m .
$$

For this function,

$$
\mathrm{f}(x) \mathrm{f}(y) \bmod m=g^{x} g^{y} \bmod m=
$$

February 19, 2002 $\quad \begin{gathered}\text { Practical Aspects of Modern } \\ \text { Cryptography }\end{gathered}$

## Verifiable Secret Sharing

Select a polynomial with secret $a_{0}$ as

$$
\mathrm{P}(x)=a_{k-1} x^{k-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

Commit to the coefficients by publishing $g^{a_{0}}, g^{a_{1}}, g^{a_{2}}, \ldots, g^{a_{k-1}}$.
Compute a commitment to $\mathrm{P}(i)$ from public values as

$$
g^{\mathrm{P}(i)}=g^{a_{0} i^{i}} g^{a_{1} i^{I}} g^{a_{2} i^{2}} \ldots g^{a_{k-1} i^{k-l}}
$$



## Secret Sharing Homomorphisms

of these secret sharing methods have an additional useful feature:

If two secrets are separately shared amongst the same set of people in the same way, then the sum of the dividual shares constitute shares of e sum of the secrets.

## Secret Sharing Homomorphisms

## OR

ret: $a$ - Shares: $a, a, \ldots, a$
Secret: $b$ - Shares: $b, b, \ldots, b$

Secret sum: $a+b$
Share sums: $a+b, a+b, \ldots, a+b$

## Secret Sharing Homomorphisms

## THRESHOLD

Secret: $\mathrm{P}_{1}(0)$ - Shares: $\mathrm{P}_{1}(1), \mathrm{P}_{1}(2), \ldots, \mathrm{P}_{1}(n)$
Sectet: $\mathrm{P}_{2}(0)-$ Shares: $\mathrm{P}_{2}(1), \mathrm{P}_{2}(2), \ldots, \mathrm{P}_{2}(n)$

Secret sum: $P_{1}(0)+P_{2}(0)$
Share sums: $P_{1}(1)+P_{2}(1), P_{1}(2)+P_{2}(2), \ldots$,
$(n)+\mathrm{P}_{2}(n)$


| Verifiable Secret-Ballot Elections |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} =\int_{\text {A }}^{\text {B }} \\ \text { C } \end{gathered}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \\ & \mathrm{v}_{\mathrm{B}} \\ & \mathrm{v}_{\mathrm{C}} \end{aligned}$ | $\begin{aligned} & \hline \mathrm{S}_{\mathrm{Al}} \\ & \mathrm{~S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{Cl}} \end{aligned}$ | $\begin{aligned} & \mathrm{S}_{\mathrm{A} 2} \\ & \mathrm{~S}_{\mathrm{B} 2} \\ & \mathrm{~S}_{\mathrm{C} 2} \end{aligned}$ | $\begin{aligned} & \mathrm{S}_{\mathrm{A} 3} \\ & \mathrm{~S}_{\mathrm{B} 3} \\ & \mathrm{~S}_{\mathrm{C}} \end{aligned}$ |
|  | $\mathrm{T}=\Sigma \mathrm{V}_{\mathrm{i}}$ | $\overline{\mathrm{T}_{1}}=\Sigma \mathrm{S}_{\mathrm{i} 1}$ | $\mathrm{T}_{2}=\Sigma \mathrm{S}_{\mathrm{i} 2}$ | $\mathrm{T}_{3}=\Sigma \mathrm{S}_{\text {i }}$ |



## rifiable Secret-Ballot Elections

The shares of the votes can each be lencrypted with an additively homomorphic encryption function.

|  | able S <br> Vote | ecret-B <br> Official 1 | llot Elec Official 2 | ctions Official 3 |
| :---: | :---: | :---: | :---: | :---: |
| $\underbrace{E}_{C}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \\ & \mathrm{~V}_{\mathrm{B}} \\ & \mathrm{~V}_{\mathrm{C}} \end{aligned}$ | $\begin{aligned} & \hline \mathrm{S}_{\mathrm{A} 1} \\ & \mathrm{~S}_{\mathrm{B} 1} \\ & \mathrm{~S}_{\mathrm{C} 1} \end{aligned}$ | $\begin{aligned} & \hline \mathrm{S}_{\mathrm{A} 2} \\ & \mathrm{~S}_{\mathrm{B} 2} \\ & \mathrm{~S}_{\mathrm{C} 2} \end{aligned}$ | $\begin{aligned} & \mathrm{S}_{\mathrm{A} 3} \\ & \mathrm{~S}_{\mathrm{B} 3} \\ & \mathrm{~S}_{\mathrm{C} 3} \end{aligned}$ |
|  |  |  |  | $\mathrm{T}_{3}=\mathrm{SS}_{\text {i3 }}$ |


|  | ble S <br> Vote | ecret-Ba <br> Official 1 | allot Elec Official 2 | ctions <br> Official 3 |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{A}} \\ & \mathrm{~V}_{\mathrm{B}} \\ & \mathrm{v}_{\mathrm{C}} \end{aligned}$ | $\begin{aligned} & \hline \mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{Al}^{\prime}}\right. \\ & \mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{B} 1}\right) \\ & \mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{Cl}}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{A} 2}\right) \\ & \mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{B} 2}\right) \\ & \mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{C} 2}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{A} 3}\right) \\ & \mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{B} 3}\right) \\ & \mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{C} 3}\right) \end{aligned}$ |
| Total | $\mathrm{T}=\Sigma \mathrm{V}_{\mathrm{i}}$ | $\mathrm{T}_{1}=\Sigma \mathrm{S}_{\mathrm{il}}$ | $\mathrm{T}_{2}=\Sigma \mathrm{S}_{\text {i2 }}$ | $\mathrm{T}_{3}=\Sigma \mathrm{S}_{\mathrm{i} 3}$ |


| Verifiable Secret-Ballot Elections |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Voter | Vote | Official 1 | Official 2 | Official 3 |
|  | $\begin{aligned} & \mathrm{V}_{\mathrm{A}} \\ & \mathrm{~V}_{\mathrm{B}} \\ & \mathrm{~V}_{\mathrm{C}} \end{aligned}$ | $\begin{aligned} & \mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{Al}}\right) \\ & \mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{B1}}\right) \\ & \mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{C} 1}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{A} 2}\right) \\ & \mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{B} 2}\right) \\ & \mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{C} 2}\right) \end{aligned}$ | $\begin{aligned} & \mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{A} 3}\right) \\ & \mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{B} 3}\right) \\ & \mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{C} 3}\right) \end{aligned}$ |
| Total <br> Fob | $\mathrm{T}=\Sigma \mathrm{V}_{\mathrm{i}}$ | $\mathrm{T}_{1}=\Sigma \mathrm{S}_{\mathrm{i} 1}$ <br> Practical As | $\mathrm{T}_{2}=\Sigma \mathrm{S}_{\mathrm{i} 2}$ | $\mathrm{T}_{3}=\Sigma \mathrm{S}_{\mathrm{i} 3}$ |



| Verifiable Secret-Ballot Elections |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Voter | Vote | Official 1 | Official 2 | Official 3 |
| A | $\mathrm{V}_{\text {A }}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\text {Al }}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{A}_{2}}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{AB}}\right)$ |
| B | $\mathrm{V}_{\text {B }}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{BI}}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{B} 2}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{33}\right)$ |
| C | $\mathrm{V}_{\mathrm{C}}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{Cl} 1}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{C} 2}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{C} 3}\right)$ |
|  |  | $\Pi \mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{il}}\right)$ | $\Pi \mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{i} 2}\right)$ | $\Pi \mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{i} 3}\right)$ |
| Total | $\mathrm{T}=\Sigma \mathrm{V}_{\mathrm{i}}$ | $\mathrm{T}_{1}=\Sigma \mathrm{S}_{\text {i1 }}$ | $\mathrm{T}_{2}=\Sigma \mathrm{S}_{\text {i2 }}$ | $\mathrm{T}_{3}=\Sigma \mathrm{S}_{\mathrm{i} 3}$ |
|  |  |  |  |  |


| Verifiable Secret-Ballot Elections |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| \|Voter | Vote | Official 1 | Official 2 | Official 3 |
|  | $\mathrm{V}_{\text {A }}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\text {A1 }}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{A}_{2}}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\text {A3 }}\right)$ |
| B | $\mathrm{V}_{\text {B }}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{BI}}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{B} 2}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{B} 3}\right)$ |
| C | $\mathrm{V}_{\mathrm{C}}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{Cl}}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{C} 2}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{C} 3}\right)$ |
|  |  | $\Pi \mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{i} 1}\right)$ | $П \mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{i} 2}\right)$ | $\Pi E_{3}\left(S_{i 3}\right)$ |
|  |  | $\mathrm{E}_{1}\left(\Sigma S_{i 1}\right)$ | $\mathrm{E}_{2}\left(\Sigma \mathrm{~S}_{\mathrm{i}}\right)$ | $\mathrm{E}_{3}\left(\Sigma \mathrm{SS}_{i 3}\right)$ |
| Total | $\mathrm{T}=\Sigma \mathrm{V}_{\mathrm{i}}$ | $\mathrm{T}_{1}=\Sigma \mathrm{S}_{\text {i }}$ | $\mathrm{T}_{2}=\Sigma \mathrm{S}_{\mathrm{i} 2}$ | $\mathrm{T}_{3}=\Sigma \mathrm{S}_{\text {i3 }}$ |
|  |  |  |  |  |


| Verifiable Secret-Ballot Elections <br> Decrypt the products to determine the - column sums. |
| :---: |
|  |


|  | ble S Vote | ecret-Ba | Official 2 | ctions Official 3 |
| :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{V}_{\text {A }}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\text {A1 }}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{A}_{2}}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{A}^{3}}\right)$ |
|  | $\mathrm{V}_{\text {B }}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{Bl}}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{B} 2}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{B} 3}\right)$ |
|  | $\mathrm{V}_{\mathrm{C}}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{C} 1}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{C} 2}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{C} 3}\right)$ |
|  |  | ПE $\mathrm{E}_{( }\left(\mathrm{S}_{\mathrm{i}}\right)$ | ПE $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{i} 2}\right)$ | ПE $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{i}}\right)$ |
|  |  | $\mathrm{E}_{1}\left(\Sigma \mathrm{SS}_{\mathrm{il}}\right)$ | $\mathrm{E}_{2}\left(\mathrm{LS}_{\mathrm{i} 2}\right)$ | $\mathrm{E}_{3}\left(\mathrm{ES}_{13}\right)$ |
| Total | $\mathrm{T}=\Sigma \mathrm{V}_{\mathrm{i}}$ | $\mathrm{T}_{1}=\Sigma \mathrm{S}_{\mathrm{il}}$ | $\mathrm{T}_{2}=\Sigma \mathrm{S}_{\mathrm{i} 2}$ | $\mathrm{T}_{3}=\Sigma \mathrm{S}_{\mathrm{i} 3}$ |
| Practical Aspects of ModernCryptography |  |  |  |  |


| Verifiable Secret-Ballot Elections |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Voter | Vote | Official 1 | Official 2 | Official 3 |
| A | $\mathrm{V}_{\text {A }}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\text {A1 }}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{A}_{2}}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{A}^{3}}\right)$ |
| B | $\mathrm{V}_{\text {B }}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{BI} 1}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{B} 2}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{B} 3}\right)$ |
| C | $\mathrm{V}_{\mathrm{C}}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{C} 1}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{C} 2}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{C} 3}\right)$ |
|  |  | $\Pi \mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{il}}\right)$ | ПE $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{i}}\right)$ | $\Pi E_{3}\left(S_{i 3}\right)$ |
|  |  | $\mathrm{E}_{1}\left(\Sigma \mathrm{~S}_{\mathrm{i}} \mathrm{I}^{\prime}\right)$ | $\mathrm{E}_{2}\left(\mathrm{ES}_{i 2}\right)$ | $\mathrm{E}_{3}\left(\mathrm{ES}_{13}\right)$ |
| tal | $\mathrm{T}=\Sigma \mathrm{V}_{\mathrm{i}}$ | $\mathrm{T}_{1}=\Sigma \mathrm{S}_{\mathrm{il}}$ | $\mathrm{T}_{2}=\Sigma \mathrm{S}_{\mathrm{i} 2}$ | $\mathrm{T}_{3}=\Sigma \mathrm{S}_{\mathrm{i} 3}$ |



| Verifiable Secret-Ballot Elections |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Voter | Vote | Official 1 | Official 2 | Official 3 |
| A | $\mathrm{V}_{\text {A }}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\text {A1 }}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{A}_{2}}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{A}^{3}}\right)$ |
| B | $\mathrm{V}_{\text {B }}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{B} 1}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{B}_{2}}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{B} 3}\right)$ |
| C | $\mathrm{V}_{\mathrm{C}}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{Cl}}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{C}_{2}}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{C} 3}\right)$ |
|  |  | $\Pi_{E_{1}}\left(S_{i 1}\right)$ | $\Pi \mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{i} 2}\right)$ | $\Pi E_{3}\left(S_{i 3}\right)$ |
|  |  | $\mathrm{E}_{1}\left(\underline{\text { S }} \mathrm{il}_{\text {il }}\right)$ | $\mathrm{E}_{2}\left(\mathrm{SS}_{\mathrm{i} 2}\right)$ | $\mathrm{E}_{3}\left(\Sigma \mathrm{SS}_{13}\right)$ |
| Total | $\mathrm{T}=\Sigma \mathrm{V}_{\mathrm{i}}$ | $\mathrm{T}_{1}=\Sigma \mathrm{S}_{\mathrm{il}}$ | $\mathrm{T}_{2}=\Sigma \mathrm{S}_{\text {i } 2}$ | $\mathrm{T}_{3}=\Sigma \mathrm{S}_{\mathrm{i} 3}$ |
|  |  |  |  |  |




| Verifiable Secret-Ballot Elections |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Voter | Vote | Official 1 | Official 2 | Official 3 |
|  | $\mathrm{V}_{\text {A }}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\text {Al }}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{A}_{2}}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{A} 3}\right)$ |
|  | $\mathrm{V}_{\text {B }}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{BI} 1}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{B} 2}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{B} 3}\right)$ |
|  | $\mathrm{V}_{\mathrm{C}}$ | $\mathrm{E}_{1}\left(\mathrm{~S}_{\mathrm{Cl}}\right)$ | $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{C} 2}\right)$ | $\mathrm{E}_{3}\left(\mathrm{~S}_{\mathrm{C} 3}\right)$ |
|  |  | ПE $\mathrm{E}_{1}\left(\mathrm{~S}_{\text {it }}\right)$ | П $\mathrm{E}_{2}\left(\mathrm{~S}_{\mathrm{i} 2}\right)$ | $\Pi E_{3}\left(S_{i 3}\right)$ |
|  |  | $\mathrm{E}_{1}\left(\Sigma \mathrm{~S}_{\mathrm{il}}\right)$ | $\mathrm{E}_{2}\left(\mathrm{ES}_{\mathrm{i}}\right)$ | $\mathrm{E}_{3}\left(\mathrm{LS}_{13}\right)$ |
| Total | $\mathrm{T}=\Sigma \mathrm{V}_{\mathrm{i}}$ | $\mathrm{T}_{1}=\Sigma \mathrm{S}_{\mathrm{il}}$ | $\mathrm{T}_{2}=\Sigma \mathrm{S}_{\mathrm{i} 2}$ | $\mathrm{T}_{3}=\Sigma \mathrm{S}_{\mathrm{i} 3}$ |
|  |  |  |  |  |

## Interactive Proofs

- There are non-traditional methods of convincing others that something is true without writing down a proof.
- These methods can be used to convince others of the veracity of partial information about a secret.



## Interactive Proofs

We engage in a dialogue at the conclusion of which you are convinced that my claim is true.

Proving Something is a Square
Suppose I want to convince you that Y is a square modulo N .
[There exists an $X$ such that $Y=X^{2} \bmod N$.]




## Proving Knowledge

Suppose that we share a public key consisting of a modulus N and an encryption exponent E and that I want to convince you that I have the corresponding decryption exponent D.

How can I do this?


## Proving Knowledge

- I can give you my private key D.
- You can encrypt something for me and I decrypt it for you.
- You can encrypt something for me and I can engage in an interactive proof with you to show that I can decrypt it.

February 19, 2002 $\quad \begin{gathered}\text { Practical Aspects of Modern } \\ \text { Cryplography }\end{gathered}$



- Anything in NP can be proven with a zero-knowledge interactive proof.
Anything in PSPACE can be proven ith an interactive proof.


## Facts About Interactive Proofs

## Facts about Interactive Proofs

It is frequently possible to simulate the interaction by substituting a oneway function for the challenges of a verifier.


|  | An Non-Interactive ZK Proof |
| :---: | :---: |
|  | Y |
| $\mathrm{Y}_{1}$ | $\begin{array}{lllllllllll}Y_{2} & Y_{3} & Y_{4} & Y_{5} & \cdots \cdots \cdots \cdots & Y_{100}\end{array}$ |
| 0 |  |
|  | where the bit string is computed as $x x x=\operatorname{SHA}-1\left(\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{100}\right)$ |
|  |  |




Elliptic Curve Cryptosystems
An elliptic curve

$$
y^{2}=x^{3}+A x+B
$$

Elliptic Curves
$y^{2}=x^{3}+A x+B$
Elliptic Curves
$y=x^{3}+A x+B$



Elliptic Curves
$y^{2}=x^{3}+A x+B$


Elliptic Curves
$y^{2}=x^{3}+A x+B$


Elliptic Curves $y^{2}=x^{3}+A x+B$


Elliptic Curves


## Elliptic Curves



$$
y^{2}=x^{3}+A x+B
$$


ptic Curves Intersecting Lines

Non-vertical Lines

$$
\begin{aligned}
& y^{2}=x^{3}+A x+B \\
& y=a x+b
\end{aligned}
$$

$(a x+b)^{2}=x^{3}+A x+B$
$x^{3}+A^{\prime} x^{2}+B^{\prime} x+C^{\prime}=0$
iptic Curves Intersecting Lines

$$
x^{3}+A^{\prime} x^{2}+B^{\prime} x+C^{\prime}=0
$$


iptic Curves Intersecting Lines

Non-vertical Lines

- 1 intersection point
(typical case)
- 2 intersection points (tangent case)
- 3 intersection points (typical case)

[^0]

Elliptic Groups



## Elliptic Groups

- Add an "artificial" point I to handle the vertical line case.
- This point I also serves as the group identity value.

Elliptic Groups


## Elliptic Groups

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \times\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)
$$

$\mathrm{x}_{3}=\left(\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\right)^{2}-\mathrm{x}_{1}-\mathrm{x}_{2}$ $\mathrm{y}_{3}=-\mathrm{y}_{1}+\left(\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\right)\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right)$ when $\mathrm{x}_{1} \neq \mathrm{x}_{2}$

## Elliptic Groups

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \times\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)
$$

$$
\text { when } x_{1}=x_{2} \text { but } y_{1} \neq y_{2} \text { or } y_{1}=y_{2}=0
$$

$\mathrm{x}_{3}=\left(\left(3 \mathrm{x}_{1}^{2}+\mathrm{A}\right) /\left(2 \mathrm{y}_{1}\right)\right)^{2}-2 \mathrm{x}_{1}$
$y_{3}=-y_{1}+\left(\left(3 x_{1}^{2}+A\right) /\left(2 y_{1}\right)\right)\left(x_{1}-x_{3}\right)$
when $x_{1}=x_{2}$ and $y_{1}=y_{2} \neq 0$

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \times\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\mathrm{I}
$$

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \times \mathrm{I}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{I} \times\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)
$$

$$
\mathrm{I} \times \mathrm{I}=\mathrm{I}
$$

## Elliptic Groups

The Fundamental Equation

## $\mathrm{Z}=\mathrm{Y}^{\mathrm{X}} \bmod \mathrm{N}$

The Fundamental Equation

## $\mathrm{Z}=\mathrm{Y}^{\mathrm{X}}$ in $\mathrm{E}_{\mathrm{p}}(\mathrm{A}, \mathrm{B})$



The Fundamental Equation

## $\mathrm{Z}=\mathrm{Y}^{\mathrm{X}}$ in $\mathrm{E}_{\mathrm{p}}(\mathrm{A}, \mathrm{B})$

When Y is unknown, it can be efficiently computed by "sophisticated" means.


## Diffie-Hellman Key Exchange



## Why use Elliptic Curves?

- The best currently known algorithm for EC discrete logarithms would take about as long to find a 160-bit EC discrete log as the best currently known algorithm for integer discrete logarithms would take to find a 1024-bit discrete log.
- 160-bit EC algorithms are somewhat faster and use shorter keys than 1024-bit "traditional" algorithms.

|  | Why not use Elliptic Curves? |
| :--- | :--- |
|  | than integer discrete logarithms. |
|  | Results have shown that a fundamental break in <br>  <br>  <br>  <br>  <br>  <br>  <br> integer discrete logs would also yield a <br> the reverse may not be true. |
|  | Basic EC operations are more cumbersome than <br> integer operations, so EC is only faster if the keys <br> are $m u c h$ smaller. |
| February 19,2002 |  |


[^0]:    - Hiptic Curves Intersecting Lines

    Vertical Lines

    $$
    \begin{aligned}
    & y^{2}=x^{3}+A x+B \\
    & x=c
    \end{aligned}
    $$

    $$
    y^{2}=c^{3}+A c+B
    $$

    $$
    \mathrm{y}^{2}=\mathrm{C}
    $$

