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Encrypted Key Exchange
♦ We know how Alice and Bob can communicate

securely if they share a strong (128-bit) private
key or if one has a public key known to the
other.

♦ Suppose that Alice and Bob share only a short
(potentially searchable) password.

♦ Rather than using just this weak password,
Alice and Bob can use this weak password to
bootstrap a strong key.
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Encrypted Key Exchange
Alice and Bob share weak password P.

Let C be a symmetric cipher agreed upon by Alice
and Bob.

♦ Alice begins by generating a public/private key
pair (E,D).

♦ Alice sends Bob CP(E).

♦ Bob generates a random symmetric key K and
sends Alice CP(E(K)).
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Encrypted Key Exchange
Alice and Bob can then demonstrate to each other

their knowledge of K as an authentication step.

♦ Alice generates a random nonce A and sends
CK(A) to Bob.

♦ Bob generates a random nonce B and sends
CK(A,B) to Alice.

♦ Alice sends CK(B) to Bob.
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The Digital Signature Algorithm

In 1991, the National Institute of
Standards and Technology published a
Digital Signature Standard that was
intended as an option free of
intellectual property constraints.
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The Digital Signature Algorithm
DSA uses the following parameters

♦ Prime p – anywhere from 512 to 1024 bits

♦ Prime q – 160 bits such that q divides p-1

♦ Integer h in the range 1 < h < p-1

♦ Integer g = h(p-1)/q mod p

♦ Secret integer x in the range 1 < x < q

♦ Integer y = gx mod p
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The Digital Signature Algorithm
To sign a 160-bit message M,

♦ Generate a random integer k with 0 < k < q,

♦ Compute r = (gk mod p) mod q,

♦ Compute s = ((M+xr)/k) mod q.

The pair (r,s) is the signature on M.

February 26, 2002
Practical Aspects of Modern

Cryptography 9

The Digital Signature Algorithm
A signature (r,s) on M is verified as follows:

♦ Compute w = 1/s mod q,

♦ Compute a = wM mod q,

♦ Compute b = wr mod q,

♦ Compute v = (gayb mod p) mod q.

Accept the signature only if v = r.
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Elliptic Curve Cryptosystems

An elliptic curve

y2 = x3 + Ax + B
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Elliptic Curves

y2 = x3 + Ax + B

February 26, 2002
Practical Aspects of Modern

Cryptography 12

Elliptic Curves

y = x3 + Ax + B
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Elliptic Curves

y = x3 + Ax + B

x

y
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Elliptic Curves
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Elliptic Curves
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Elliptic Curves
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Elliptic Curves
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Elliptic Curves
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Elliptic Curves
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Elliptic Curves
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Elliptic Curves

y2 = x3 + Ax + B
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Elliptic Curves Intersecting Lines

y2 = x3 + Ax + B

x

y

y = ax + b
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Non-vertical Lines

y2 = x3 + Ax + B

y = ax + b

(ax + b)2 = x3 + Ax + B

x3 + A′x2 + B′x + C′ = 0

Elliptic Curves Intersecting Lines
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x3 + A′x2 + B′x + C′ = 0

x

y

Elliptic Curves Intersecting Lines
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Non-vertical Lines

♦ 1 intersection point (typical case)

♦ 2 intersection points (tangent case)

♦ 3 intersection points (typical case)

Elliptic Curves Intersecting Lines
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Vertical Lines

y2 = x3 + Ax + B

x = c

y2 = c3 + Ac + B

y2 = C

Elliptic Curves Intersecting Lines
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Vertical Lines

♦ 0 intersection point (typical case)

♦ 1 intersection points (tangent case)

♦ 2 intersection points (typical case)

Elliptic Curves Intersecting Lines
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Elliptic Groups

y2 = x3 + Ax + B

x

y

y = ax + b
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Elliptic Groups

y2 = x3 + Ax + B
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Elliptic Groups
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Elliptic Groups

y2 = x3 + Ax + B

x

y

x = c
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Elliptic Groups

♦ Add an “artificial” point I to handle the
vertical line case.

♦ This point I also serves as the group identity
value.
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Elliptic Groups

y2 = x3 + Ax + B

x

y

x = c
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Elliptic Groups

(x1,y1) × (x2,y2) = (x3,y3)

x3 = ((y2-y1)/(x2-x1))2 - x1 - x2

y3 = -y1 + ((y2-y1)/(x2-x1)) (x1 - x3)

when x1 ≠ x2
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Elliptic Groups

(x1,y1) × (x2,y2) = (x3,y3)

x3 = ((3x1
2+A)/(2y1))2 - 2x1

y3 = -y1 + ((3x1
2+A)/(2y1)) (x1 - x3)

when x1 = x2 and y1 = y2 ≠ 0
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Elliptic Groups

(x1,y1) × (x2,y2) = I
when x1= x2 but y1≠ y2 or y1= y2= 0

(x1,y1) × I = (x1,y1) = I × (x1,y1)

I × I = I
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The Fundamental Equation

Z=YX mod N
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The Fundamental Equation

Z=YX in Ep(A,B)
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The Fundamental Equation

Z=YX in Ep(A,B)
When Z is unknown, it can be efficiently

computed by repeated squaring.
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The Fundamental Equation

Z=YX in Ep(A,B)
When X is unknown, this version of the

discrete logarithm is believed to be
quite hard to solve.
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The Fundamental Equation

Z=YX in Ep(A,B)
When Y is unknown, it can be efficiently

computed by “sophisticated” means.
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Diffie-Hellman Key Exchange
Alice

♦Randomly select
a large integer a
and send A
= Ya mod N.

♦Compute the key
K = Ba mod N.

Bob

♦Randomly select
a large integer b
and send B
= Yb mod N.

♦Compute the key
K = Ab mod N.

Ba = Yba = Yab = Ab
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Diffie-Hellman Key Exchange
Alice

♦Randomly select
a large integer a
and send A
= Ya in Ep.

♦Compute the key
K = Ba in Ep.

Bob

♦Randomly select
a large integer b
and send B
= Yb in Ep.

♦Compute the key
K = Ab in Ep.

Ba = Yba = Yab = Ab
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DSA on Elliptic Curves

♦ Almost identical to DSA over the integers.

♦ Replace operations mod p and q with operations
in Ep and Eq.
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Why use Elliptic Curves?

♦ The best currently known algorithm for EC
discrete logarithms would take about as long to
find a 160-bit EC discrete log as the best currently
known algorithm for integer discrete logarithms
would take to find a 1024-bit discrete log.

♦ 160-bit EC algorithms are somewhat faster and
use shorter keys than 1024-bit “traditional”
algorithms.
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Why not use Elliptic Curves?

♦ EC discrete logarithms have been studied far less
than integer discrete logarithms.

♦ Results have shown that a fundamental break in
integer discrete logs would also yield a
fundamental break in EC discrete logs, although
the reverse may not be true.

♦ Basic EC operations are more cumbersome than
integer operations, so EC is only faster if the keys
are much smaller.
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Finding Primes

Euclid’s proof of the infinity of primes
♦ Suppose that the set of all primes were finite.

♦ Let N be the product of all of the primes.

♦ Consider N+1.

♦ The prime factors of N+1 are not among the
finite set of primes multiplied to form N.

♦ This contradicts the assumption that the set of
all primes is finite.
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The Prime Number Theorem

The number of primes less than N is
approximately N/(ln N).

Thus, approximately 1 out of every n
randomly selected n-bit integers will
be prime.
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Testing Primality

Recall Fermat’s Little Theorem

If p is prime, then a(p-1) mod p = 1 for
all a in the range 0 < a < p.
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The Miller-Rabin Primality Test
To test an integer N for primality, write N-1 as N-

1 = m2k where m is odd.

Repeat several (many) times

♦ Select a random a in 1 < a < N-1

♦ Compute am, a2m, a4m, …, a(N-1)/2 all mod N.

♦ If am = ±1 or if some a2im = -1, then N is
probably prime – continue.

♦ Otherwise, N is composite – stop.
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Sieving for Primes

Pick a random starting point N.

N+11N+10N+9N+8N+7N+6N+5N+4N+3N+2N+1N

Sieving out multiples of 235

Only a few “good” candidate primes will survive.


