

Encrypted Key Exchange

We know how Alice and Bob can communicate securely if they share a strong (128-bit) private key or if one has a public key known to the vother.

- Suppose that Alice and Bob share only a short (potentially searchable) password.
- Rather than using just this weak password, Alice and Bob can use this weak password to otstrap a strong key.

Encrypted Key Exchange

lice and Bob can then demonstrate to each other their knowledge of K as an authentication step.
Alice generates a random nonce A and sends (A) to Bob.

- Bob generates a random nonce B and sends $\mathrm{C}_{\mathrm{K}}(\mathrm{A}, \mathrm{B})$ to Alice.
- Alice sends $\mathrm{C}_{\mathrm{K}}(\mathrm{B})$ to Bob.

The Digital Signature Algorithm

991, the National Institute of Standards and Technology published a Digital Signature Standard that was intended as an option free of intellectual property constraints.

The Digital Signature Algorithm
DSA uses the following parameters
Prime p - anywhere from 512 to 1024 bits
Prime $q-160$ bits such that q divides $p-1$
Integer h in the range $1<h<p-1$

- Integer $g=h^{(p-1) / q} \bmod p$
- Secret integer x in the range $1<x<q$
- Integer $y=g^{x} \bmod p$

The Digital Signature Algorithm

signature (r, s) on M is verified as follows: Compute $w=1 / s \bmod q$,
Compute $a=w \mathrm{M} \bmod q$,

- Compute $b=w r \bmod q$,
- Compute $v=\left(g^{a} y^{b} \bmod p\right) \bmod q$.

Accept the signature only if $v=r$.

Elliptic Curve Cryptosystems

An elliptic curve

$$
y^{2}=x^{3}+A x+B
$$

Elliptic Curves
$y=x^{3}+A x+B$
$\underset{\substack{\text { Practical Aspects of Modern } \\ \text { Cryptography }}}{ }$

Elliptic Curves
$y^{2}=x^{3}+A x+B$

Elliptic Curves

Elliptic Curves Intersecting Lines Non-vertical Lines	
- 1 intersection point	(typical case)
- 2 intersection points	(tangent case)
- 3 intersection points	(typical case)
Paxial	

\(\left\{\begin{array}{l}Elliptic Curves Intersecting Lines

\frac{Vertical Lines}{y^{2}=x^{3}+A x+B}

x=c\end{array}\right\}\)| $\mathrm{y}^{2}=\mathrm{c}^{3}+\mathrm{Ac}+\mathrm{B}$ |
| :--- |
| $\mathrm{y}^{2}=\mathrm{C}$ |

Elliptic Groups

$y^{2}=x^{3}+A x+B$

Elliptic Groups

- Add an "artificial" point I to handle the vertical line case.
- This point I also serves as the group identity value.

Elliptic Groups

$y^{2}=x^{3}+A x+B$

Elliptic Groups

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \times\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)
$$

$\mathrm{x}_{3}=\left(\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\right)^{2}-\mathrm{x}_{1}-\mathrm{x}_{2}$
$y_{3}=-y_{1}+\left(\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)\right)\left(x_{1}-x_{3}\right)$
when $\mathrm{x}_{1} \neq \mathrm{x}_{2}$

Practical Aspects of Modern

Elliptic Groups

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \times\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)
$$

$\mathrm{x}_{3}=\left(\left(3 \mathrm{x}_{1}^{2}+\mathrm{A}\right) /\left(2 \mathrm{y}_{1}\right)\right)^{2}-2 \mathrm{x}_{1}$
$y_{3}=-y_{1}+\left(\left(3 x_{1}^{2}+A\right) /\left(2 y_{1}\right)\right)\left(x_{1}-x_{3}\right)$
when $x_{1}=x_{2}$ and $y_{1}=y_{2} \neq 0$

Elliptic Groups

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \times\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=\mathrm{I}
$$

when $x_{1}=x_{2}$ but $y_{1} \neq y_{2}$ or $y_{1}=y_{2}=0$
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \times \mathrm{I}=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\mathrm{I} \times\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$\mathrm{I} \times \mathrm{I}=\mathrm{I}$

The Fundamental Equation

$\mathrm{Z}=\mathrm{Y}^{\mathrm{X}}$ in $\mathrm{E}_{\mathrm{p}}(\mathrm{A}, \mathrm{B})$

The Fundamental Equation

$\mathrm{Z}=\mathrm{Y}^{\mathrm{X}}$ in $\mathrm{E}_{\mathrm{p}}(\mathrm{A}, \mathrm{B})$

When Z is unknown, it can be efficiently computed by repeated squaring.

The Fundamental Equation

$\mathrm{Z}=\mathrm{Y}^{\mathrm{X}}$ in $\mathrm{E}_{\mathrm{p}}(\mathrm{A}, \mathrm{B})$

When X is unknown, this version of the discrete logarithm is believed to be quite hard to solve.

The Fundamental Equation

$\mathrm{Z}=\mathrm{Y}^{\mathrm{X}}$ in $\mathrm{E}_{\mathrm{p}}(\mathrm{A}, \mathrm{B})$

When Y is unknown, it can be efficiently computed by "sophisticated" means.
\qquad

A and send
Compute the key Compute the key
$\mathrm{K}=\mathrm{A}^{b}$ in E_{p}.

Why use Elliptic Curves?

- The best currently known algorithm for EC discrete logarithms would take about as long to find a 160-bit EC discrete \log as the best currently known algorithm for integer discrete logarithms would take to find a 1024-bit discrete log.
- 160-bit EC algorithms are somewhat faster and use shorter keys than 1024-bit "traditional" algorithms.

Why not use Elliptic Curves?

- EC discrete logarithms have been studied far less than integer discrete logarithms.
- Results have shown that a fundamental break in integer discrete logs would also yield a fundamental break in EC discrete logs, although the reverse may not be true.
- Basic EC operations are more cumbersome than integer operations, so EC is only faster if the keys are much smaller.

Finding Primes

uclid's proof of the infinity of primes uppose that the set of all primes were finite. et N be the product of all of the primes. - Consider N+1.

- The prime factors of $\mathrm{N}+1$ are not among the finite set of primes multiplied to form N .
- This contradicts the assumption that the set of primes is finite.

Pacile A.pects or mod
Cryptography

The Prime Number Theorem

he number of primes less than N is approximately $\mathrm{N} /(\ln \mathrm{N})$.

Thus, approximately 1 out of every n randomly selected n-bit integers will e prime.
Recall Fermat's Little Theorem
If p is prime, then $a^{(p-1)} \bmod p=1$ for
all a in the range $0<a<p$.
Frimality
Fename 26.2002

The Miller-Rabin Primality Test o test an integer N for primality, write $\mathrm{N}-1$ as N $1=m 2^{k}$ where m is odd. GRepeat several (many) times - Select a random a in $1<a<\mathrm{N}-1$ - Compute $a^{m}, a^{2 m}, a^{4 m}, \ldots, a^{(\mathbb{N}-1) / 2}$ all $\bmod \mathrm{N}$. - If $a^{m}= \pm 1$ or if some $a^{2^{i} m}=-1$, then N is probably prime - continue. Otherwise, N is composite - stop.

