
CSEP590 - Model Checking and Software Verification 
Summer 2003 
Solution Set 1 
 
1. Translating English into propositional formulas 
 
Solution: 
First, we define the atomic propositions: 
 
 f - “It is below freezing” 
 s - “It is snowing” 
 w - “It is too warm” 
 
Then we have the propositional formulas: 
a)  f  ∧ s 
b)  f ∧ ¬s 
c)  s ∨ f 
d)  (f ∨ s) ∧ (f → ¬s) 
e)  ¬s ↔ (f ∨ w) 
 
 
2. Proving functional completeness 
 
Solution: 
a)  We must show that propositional formulas involving logical connectives ∨, →, and ↔ 
are logically equivalent to propositional formulas involving only ¬ and ∧.  To this end, 
we have the following equivalences, where A and B are arbitrary propositional formulas: 
 
i)   A ∨ B ⇔ (¬A ∧ ¬B)      ~ by DeMorgan’s 
ii)  A → B ⇔ (¬A ∨ B) ⇔ (A ∧ ¬B)    ~ by i) 
iii) A ↔ B ⇔ (¬A ∨ B) ∧ (¬B ∨ A) ⇔ (A ∧ ¬B) ∧ (Β ∧ ¬A) ~ by i) 
 
Thus, by i, ii, iii, and the definition of a propositional formula, we conclude that {¬, ∧} is 
a functionally complete set of logical connectives. 
 
b) To show that {|} is functionally complete, we can show that all propositional formulas 
involving only | are logically equivalent to a propositional formula involving only ¬ and 
∧.  To this end, we have the following equivalences (which can be verified using truth 
tables), where A and B are again arbitrary propositional formulas: 
 
i)   ¬A ⇔ A | A 
ii)  A ∧ B ⇔ ¬ ¬ (A ∧ B) ⇔ (A | B) | (A | B) 
 
Thus, {|} is equivalent to {¬, ∧}, so by part a) and transitivity, we conclude that {|} is 
functionally complete. 



3.  Natural deduction on propositions 
Solution: 
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12     (p ∨ r) → (q ∨ s)     →i 3-11 

p ∨ r   assumption 
 
 
 
 
 
 
 
 
 
 
 
q ∨ s   ∨e 3, 4-6, 7-10   

 r   assumption 
 s   →e 2,7 
 s ∨ q   ∨i 8 
 q ∨ s   commutativity 9 

 p   assumption 
 q   →e 1,4 
 q ∨ s   ∨i 5 

 p → q   premise 
 r → s   premise 

 
4.  Induction 
Solution: 
 
Claim:  ∀: n∈Ζ≥0   H2n ≥ 1 + n/2 
 
Proof: 
 

∀: n∈Ζ≥0, let P(n) represent the statement “H2n ≥ 1 + n/2” 
 
 Base Case: Prove P(0), that is, prove “H20 ≥ 1 + 0/2” 
 
 We see that H20 = H1 = 1  ~ by definition 
 We also see that 1 + 0/2 = 1 
 Thus, we have H20 = H1 ≥ 1 = 1 + 0/2 
 Therefore P(0) is true. 
 
 Now let k∈Ζ≥0 
 Induction Hypothesis: Assume P(k) is true, that is, assume “H2k ≥ 1 + k/2” 
 



 Induction Step: Prove that P(k+1) must also be true, that is,  
  prove “H2k+1 ≥ 1 + (k+1)/2” 

  
 By definition, we have 

   H2k+1 = 1 + 1/2 + 1/3 + … + 1/2k + 1/(2k + 1) + … + 1/(2k+1) 
and 
   H2k = 1 + 1/2 + 1/3 + … + 1/2k 

 
Thus H2k+1 = H2k + 1/(2k + 1) + … + 1/(2k+1) 
 
But clearly 1/(2k + r) ≤ 1/(2k + 2k) = 1/(2k+1)  for  1 ≤ r ≤ 2k 
So 1/(2k + 1) + … + 1/(2k+1) ≤ 2k * 1/(2k + 2k) = 1/2, 
 
and H2k ≥ 1 + k/2 by hypothesis, so we have: 
H2k+1 = H2k + 1/(2k + 1) + … + 1/(2k+1) ≤ 1 + k/2 + 1/2 
        ≤ 1 + (k+1)/2 
 
Thus if P(k) is true, then P(k+1) must also be true. 
 
Induction Conclusion: 
∀: n∈Ζ≥0  P(n) holds, that is, ∀: n∈Ζ≥0 “H2n ≥ 1 + n/2” is true. 

 
 
5. k-SAT to 3-SAT reduction, and 2-SAT algorithm 
a) k-SAT to 3-SAT reduction 
Solution: 
To show that k-SAT is reducible to 3-SAT, we must give a polynomial time (“polytime”) 
algorithm for translating an instance of k-SAT into an instance of 3-SAT (a “reduction 
function”), and argue that this algorithm is correct. 
 
Define the reduction function: 
The main idea of the reduction function is that given a CNF clause with k ≠ 3 literals, we 
can break down (or build up) the clause into 3-literal clauses by adding literals that 
contain new variables.  The literals are added in such a way so that each literal can satisfy 
at most one clause.  Specifically, our reduction function proceeds in three cases as 
follows: 
 
Case 1:  A clause with one literal (k = 1):  x1 
Then we add new variables y1 and y2 to create 4 new clauses: 

 
x1 ∨ y1 ∨ y2,       x1 ∨ ¬y1 ∨ y2,       x1 ∨ y1 ∨ ¬y2,       x1 ∨ ¬y1 ∨ ¬y2 

 
Case 2:  A clause with two literals (k = 2): x1 ∨ x2 
Then we add new variable y1 to create 2 new clauses: 
 

x1 ∨ x2 ∨ y1,       x1 ∨ x2 ∨ ¬y1 



 
Case 3:  A clause with k > 3 literals: x1 ∨ x2 ∨ x3 ∨ … ∨ xk 
Then we recursively split the clause, adding new variables yi as follows: 
 

x1 ∨ x2 ∨ x3 ∨ … ∨ xk-2 ∨ y1,      xk-1 ∨ xk ∨ ¬y1 
x1 ∨ x2 ∨ x3 ∨ … ∨ xk-3 ∨ y2,       ¬y2 ∨ xk-2 ∨ y1,       xk-1 ∨ xk ∨ ¬y1 

x1 ∨ x2 ∨ x3 ∨ … ∨ xk-4 ∨ y3,       ¬y3 ∨ xk-3 ∨ y2,       ¬y2 ∨ xk-2 ∨ y1,       xk-1 ∨ xk ∨ ¬y1 
… 

x1 ∨ x2 ∨ yk-3,    …   ¬y3 ∨ xk-3 ∨ y2,       ¬y2 ∨ xk-2 ∨ y1,       xk-1 ∨ xk ∨ ¬y1 

 
 
Argue that the reduction function is polytime: 
Now, for a single clause C, we can see that cases 1 and 2 can be done in constant time, 
whereas case 3 takes only linear time in k, the number of literals in C.  Thus, if our CNF 
formula contains m clauses, and s is the size (in literals) of the largest clause, this 
reduction function will run in time O(sm), so the reduction function is polytime. 
 
 
Argue that the reduction function is correct: 
Call our reduction function F, and our input formula φ, then we must show:  

φ is satisfiable  ⇔  F(φ) is satisfiable 
 

First, assume φ is satisfiable.  Then since our reduction function adds new variable(s) at 
each step in such a way that at most one of the newly formed clauses can be satisfied by 
the literals containing the new variable(s), we know that there exists a truth assignment τ 

that satisfies F(φ) (in fact, τ is a simple extension of the truth assignment that satisfies φ).   
Thus,  φ is satisfiable  ⇒  F(φ) is satisfiable. 
 
Now assume that F(φ) is satisfiable.  Then there exists a truth assignment τ that satisfies 
every clause in F(φ).  Thus, for a given clause C in φ, the corresponding set of clauses in 
F(φ) are all satisfiable.  But since the latter set of clauses were constructed so that the 
added literals containing a given variable satisfy at most one clause, we can see that there 
must be at least one literal from the original clause in φ that is satisfied, and hence the 
original clause must also be satisfiable. 
Thus,  F(φ) is satisfiable  ⇒  φ is satisfiable. 
 
Therefore  φ is satisfiable  ⇔  F(φ) is satisfiable, and our reduction function is correct. 
 
 
b) Efficient algorithm for 2-SAT 
Solution: 
There are many ways to determine if a 2-CNF formula is satisfiable in polytime.  One 
popular way is to construct and process a directed graph representing the formula as 
follows:   
 



- Convert each 2-CNF clause into an implication  
- For this, we can use the equivalence (a ∨ b) ⇔ (¬a → b) ⇔ (¬b → a) 
- Now, form one vertex for each literal (e.g. one for a, one for ¬a, …) 
- The arcs of the graph are given by the two implications equivalent to each clause 
 
This construction clearly takes linear time in the number of clauses. 
 
Now, we search the graph for contradictions, that is, we perform a polytime DFS from 
each vertex-literal, searching for the negation of that literal.  If we can reach some 
literal’s negation from the literal itself, then we have a contradiction, and the 2-SAT 
formula is unsatisfiable.  Otherwise, the formula is satisfiable. 


