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An Attack in 2014: A Walk Through 
 
The date is October 23, 2014. Rep. Sandra Hill is running for U.S. Senate.  The race is 

tight and could turn on the tiniest misstep.  Rep. Hill has a secret:  She has been 

diagnosed with the early signs of Alzheimer’s disease the past summer.  Based on her 

doctor’s diagnosis of slow progression that can be treated with experimental drugs, Rep. 

Hill has decided to stay in the race.  

Joe Cracker has an agenda: he does not want Rep. Hill elected to the Senate.  He is 

strongly opposed to most issues Rep. Hill has promoted, especially increased control over 

rogue elements on the internet.  Joe Cracker knows a little about software security and 

vulnerabilities, and has had plenty of time on his hands.  Months earlier Joe had decided 

to find embarrassing information about Rep. Hill and publicize it in order to derail her 

campaign.  

The previous week, on a visit to his doctor, Joe pocketed a small computer memory 

device that someone had left on the counter.  Joe did not expect it to be of much use other 

than as more portable memory, but upon examining it at home he soon realized that it 

contained access code to the Central Medical Record Service (CMERECS).  CMERECS 

was created 8 years earlier to allow authorized individuals access to the records of any 

patient under their care.  Joe knew that although his doctor’s office used the latest and 

greatest patient management application, the application vendor had not updated the 

encryption mechanism for nearly 10 years.  The encryption algorithm was still on the list 

of approved algorithms for storing CMERECS access codes, but Joe knew it could be 
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cracked. Joe set his two brand new high end computers to work cracking the encryption 

by doing nothing cleverer than just attempting every possible combination.  Four days 

later Joe had the access codes.  These access codes allowed him to connect to CMERECS 

and request the medical records for anyone in the nation with the requests appearing to 

have originated from his doctor’s office.  Under normal conditions the patient’s approval 

would be required before the records could be released to a doctor, but the system had a 

loophole:  For emergency services no approval was required.  Joe requested the records 

for Rep. Hill using this emergency request procedure.  

With the medical records in hand, Joe embarks on a plan he spent the last several months 

preparing; he will distribute Rep. Hill’s medical records using a worm that attacks cell 

phones.  Joe has a built a network of vulnerable cell phones with the help of a 

“surreptitious worm”1 that spreads slowly from cell phone to cell phone by keeping a low 

profile and piggy backing on the phone users regular phone usage.  Thanks to this 

behavior, the worm has thus far been able to avoid discovery, but that will change once 

Joe triggers it into high gear.  

This initial worm, which Joe named PrepBoy, takes advantage of an unpublicized 

vulnerability in the operating system used in several data capable cell phones.  As the 

worm spreads it sends a message to other cell phones indicating an update for the cell 

phone is available.  Included in this message is a malformed value for the expected size 

of the update.  This malformed value causes the cell phone software to attempt to contact 

a backup site listed in the original message.  Joe included an address to an anonymous 

website on which he had previously placed his payload (a copy of PrepBoy).  When the 
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cell phone downloads PrepBoy, assuming it is the official update, the second 

vulnerability, a buffer overflow, is encountered and allows PrepBoy to take over the cell 

phone.  Once on the phone, PrepBoy attempts to spread itself by sending a copy of the 

update message to other cell phone numbers that it has gathered from the cell phone’s 

address book or numbers within the same telephone exchange.  In order to avoid 

detection it only sends a few of these messages at a time, and only when the cell phone is 

connected to the data network as part of the user’s regular activities.  

With this network in place, Joe sends a message exposing Rep. Hill’s Alzheimer’s 

diagnosis, with a copy of the medical records, to the set of infected cell phones to which 

he initially sent PrepBoy.  Upon receiving this message, PrepBoy notices a key word and 

kicks into high gear.  It begins to blast the received message to all the other cell phones it 

has infected which in turn forward it to all the phones they have infected.  This blast 

quickly grows into a tidal wave reaching all infected cell phones within minutes.  The 

message also triggers another change in PrepBoy:  PrepBoy starts to forward the message 

not only to other cell phones, but to any email address it finds on the cell phone.  

Within a couple hours, not only the most vulnerable cell phones in the state, but also 

within the whole country have received the message.  There is public outcry not only 

about the massive traffic generated by the worm, but also about Rep. Hill’s decision to 

run for office even after she was diagnosed with Alzheimer’s.  With less than a week left 

before the elections, Rep. Hill’s support drops dramatically and her opponent wins by a 

landslide.  Joe’s plan has succeeded; he has effectively ended Rep. Hill’s career.  
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Introduction 

The ease of exploits like this one will encourage more and more Joes to test the ability of 

software makers to provide secure software in the coming decade.  Policy-makers must 

understand the limitations in our ability to make secure software and what we can do to 

change this situation.  

In this paper, we explain to policy-makers what forces could be brought into play to 

improve computer security.  We begin by evaluating the problems we're facing when it 

comes to computer security: we look at past, present and future threats.  From there we 

offer the policy-maker a range of possible solutions for improving security, from 

technical, to policy to economic so the policy-maker is well-briefed in the various ways 

security can be improved.  Our first solution is a technical one: we survey promising 

areas of research in designing secure systems and assess costs and benefits of these 

approaches.  We then consider a policy solution, namely whether software engineering 

should be licensed as civil engineering is licensed.  From there we look at liability: can 

you hold software vendors liable for their products?  Finally, we conclude with a look at 

how we can design an independent lab to certify software.  This lab would be useful 

because if the consumer could understand security via common, easily-understood ratings 

of how secure the software they buy is, this would encourage consumer demand for 

security.  In concluding, we offer thoughts on how policy-makers might direct their 

dollars and law-making ability toward improving software security. 
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1 Stuart Staniford, Vern Paxson, and Nicholas Weaver. "How to Own the Internet in Your 

Spare Time." Proceedings of the 2002 USENIX Security Symposium, San 
Francisco, CA, August 2002. 
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Software Vulnerabilities 
Santeri Voutilainen 
 
 
 
Theft, bombings, power outages, sweet talkers, worms, and bugs – these are just a few of 

threats faced by computer systems.  Although computer systems are vulnerable to 

traditional physical and social engineering attacks, the vulnerabilities most closely 

associated with computer systems are software defects.  The potential damage from 

software defects is arguably the greatest, especially when software in integrated and 

interconnected.  Many of these defects are benign, but some can expose the system or 

data stored in the system to the ill will of malicious parties.  There is no lack of software 

vulnerabilities as can be confirmed with a quick glance at any of the software security 

websites.  The state of software vulnerabilities is such that there have been calls for 

action among the computer science community to devise new methods for preventing 

attacks.  One such call is from Professor Jeannette Wing, Computer Science Department 

Head at Carnegie Mellon University.  In “Beyond the Horizon: A Call to Arms” she calls 

for the computer science community to look beyond the current flaws and examine flaws 

of the future while acknowledging that today’s attacks and flaws are likely to remain1.  

Before examining processes and incentives to improve software quality, it is useful to 

examine the current attack vectors and speculate about future ones.  We’ll discuss the 

past and future evolution of software defects, and also examine how integration and 

interconnectedness can increase the damage caused by attacks, including transferring 

them from one medium to another. 
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Software Coding Vulnerabilities 
 
It is commonly accepted that all software has defects, or ‘bugs’ as they are known within 

the software development community.  Although many defects can be considered benign 

or irritating – a spellchecker failing to identify a misspelled word or suggesting an 

inappropriate word as the correct spelling – and do not cause damage to the user’s work 

or system, other defects can have far more severe consequences.  These defects can range 

from minimal loss of the user's work to the clearing of storage devices or, in arguably the 

worst case, enabling attackers to gain complete, uncontrolled access to the system.  Such 

access allows the system to be used for the attacker’s own purposes, such as mounting 

further attacks.  Examples of these most serious defects, which we’ll call exploitable 

defects, are numerous – the Morris Worm which paralyzed the internet in 1988 and the 

Code Red and Sapphire/Slammer worms of 2001 and 2003, respectively.  What types of 

defects cause these most serious vulnerabilities in software and how do they occur? 

Exploitable software defects first became widely known with the Morris worm in 1988, 

but they did not gain much traction until a posting on the BugTraq mailing in 19952 

describing several such defects spurred a wave of reports of similar vulnerabilities.  This 

type of defect is known as a buffer overflow, or stack smashing attack.  In its simplest 

form, the defect is caused by the software’s failure to check the length of the data it 

receives and subsequent blind overwriting of its own control structures with data from the 

user/attacker.  The root cause is that the software engineer trusts users of the software to 

pass only valid input and therefore does not check it for validity – if the engineer has 

designed that the maximum password size is 8 characters, she or he assumes that no one 

will provide a password with 9 characters or more.  As companies and engineers have 



 8

become more aware of these specific defects, more variations on the original defect have 

been shown to be exploitable.  In most cases it had been widely believed that, although 

these variations existed, they could not be exploited for one reason or another.  The 

original defect overwrote data in a software program’s scratch area where it tracks, 

among other things, its next instruction steps.  Overflows in other areas were thought 

harmless, but were eventually shown to be just as exploitable as the original defect3.   

With the last couple years it has been shown that an overflow of even a single character 

can be used maliciously4.  

One of the more recent variations is the integer arithmetic defect.  In these defects an 

attacker is able to cause the software to perform an error in integer arithmetic.  This may 

seem outrageous, as computers are computing machines, and except for faults in 

processors, should not be subject to arithmetic errors.  However, computer systems are 

limited in the range of numbers they can store accurately.  An integer in a computer 

system does not have a range from negative infinity to positive infinity, but rather a 

considerably smaller range that is dependant on the amount of memory used to store the 

value.  For technical reasons, although engineers can choose from different sized 

integers, once a size is chosen it is fixed.  An integer arithmetic defect occurs when the 

result of a calculation does not fit into the fixed size chosen by the engineer.  In this case, 

the value is truncated at the front.  A quick example illustrates this: 

A city requirements form allows two digits for the minimum height of a security fence.  

The height was set to 72 inches in 1999 because no guard dog could jump that high.  In 

2004 a new breed is introduced that can jump 40 inches higher than the previous best 
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jumper.  A clerk is instructed to add 48 inches to the minimum value.  The clerk uses 

long addition and changes the first digit to a 0 and the second to a 2.  When the clerk 

attempts to write a 1 for the third digit he finds there is no room for it and just leaves it 

out, leaving 20 where there should have been 120.  The next day a builder comes to 

check the minimum height for the fence he’s building and reads 20 inches.  Once the 

fence is finished the dogs are placed inside and immediately escape because the fence is 

so low that most dogs can jump over it. 

Until recently it was widely believed that arithmetic errors could not lead to exploits5,6, 

but they have now shown to be exploitable7. 

Although variations of these defects have been widely known about since 1988, and 

definitely 1995, even the earliest variations are still very common in modern software 

system.  A search of the Secunia.com security advisory database lists 22 new buffer 

overflow security advisories for the first 23 days of November 20048.  Some of these 

vulnerabilities are in mature software such as WinAMP9 and Microsoft Internet 

Explorer10.  If mature software products still contain undetected buffer overflows, it is 

unlikely that these defects will disappear anytime soon.  These existing defect types will 

also be joined by new types of defects as attackers look for new ways to attack. 

New defects in the future may be variations or evolutions on current vulnerabilities, as 

the above are variations on the original buffer overflow defect, or they may take 

completely new approaches.  Although the future is impossible to predict, we can make 

educated guesses based on attack vectors that are currently either impractical or still only 

theoretical. 
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An example of a new attack vector is the algorithmic defect.  Algorithmic defects are 

weaknesses in algorithms, which can cause the algorithm to perform incorrectly or, in the 

case of security algorithms, reveal the secrets that the algorithm was intended to protect.  

Although their elusiveness may account for the relatively low numbers of algorithmic 

exploits, algorithmic flaws nevertheless cannot be ignored.  Once found and abused, 

algorithmic defects can cause a great deal of harm, precisely because software engineers 

trust algorithms to operate safely.  Examples of algorithmic flaws are the Needham-

Schroeder authentication protocol and several digital watermarking algorithms.  The 

Needham-Schroeder authentication protocol claimed to allow two parties to reliably 

prove their identities to each other – such as a customer and a bank during phone-

banking.  The bank needs a guarantee that the customer is who he claims to be.  

Similarly, the customer wants a guarantee that the entity with whom he makes a 

transaction is not a fraudster who will turn around and use information given in 

confidence to empty out the customer’s account.  The Needham-Schroeder algorithm 

contained a flaw that escaped detection for 17 years and allowed an intruder to 

impersonate one of the participants in the protocol11.  Such a flaw in widely used 

algorithms would have devastating implications.   

In addition to paying attention to buffer overflow defects and algorithmic defects, 

software engineers will also need to prepare for advances in computing power and even 

power consumption levels in order to fully protect their software from exploits. 

The Data Encryption Standard (DES) was selected as the data encryption standard by the 

United States government in 1976.  Although controversial from the start it was 
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reaffirmed as the standard as late as 199812.  Also in 1998 the Electronic Frontier 

Foundation developed a $250,000 chip that could crack the DES encryption in a little 

over two days13.  This was a brute force attack – try all combinations to a combination 

lock until the lock opens.  As computing power increases over time – Moore’s law states 

that computing power doubles every 18 months – brute force attacks become more viable 

attack vectors especially on older, weaker standards such as the DES and software 

systems using these standards will be vulnerable to eavesdropping by attackers on 

communications or data that should be secure. 

An attack vector currently at the theoretical stage is Differential Power Analysis (DPA).  

DPA can break encryption keys by monitoring the power usage of a processor as it 

encrypts or decrypts a message14.  Although currently DPA is mostly at a theoretical 

level, it is possible that it will become feasible in the future.  Even though it is possible to 

defend against DPA using mechanical/electronic measures, it is also possible to defend 

against using software measures that mask the actual power consumption levels.  Failure 

to protect a software system against DPA, especially in secure systems, should be 

considered a failure similar to any other software defect that can lead to an exploit. 

From buffer overflows to DPA, software defects are of limited use on isolated systems as 

the effects of an attack are generally limited to that individual machine.  Similarly, the 

effort required to mount an attack on isolated machines is far greater than the benefit to 

an attacker, except perhaps in cases of espionage.  Just as integration and 

interconnectedness increases the value of computing systems, they also allow attacks on a 

larger scale and at more tempting targets.   
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Integration and Interconnectedness Vulnerabilities 
 
Common wisdom says that only a fully isolated system can be truly secure15.  With 

integration and interconnectedness, systems become harder to secure.  Previously benign 

failures can, at worst, become life threatening when integrated in an application that has 

control of physical or physiological events.  Software systems are presently already 

integrated in many devices; digital video recorders, car environmental systems, heart 

pacers, cell phones, medical equipment and military system all have software 

components and many are connected to other systems.  In many cases these software 

systems are not based on specialized products, but on off-the-self software such as 

versions of Microsoft Windows or Linux.  Systems are also more interconnected; cell 

phones can connect to data networks, more government and commercial systems are 

linked to the internet, and even cash machines can be reached from the internet.  This 

integration and interconnectedness will increase in the future as much of the value 

realized from computer systems comes from this very integration and interconnectedness.  

This integration and interconnectedness exposes these systems to more attacks by making 

the systems more accessible and provide more tempting targets. 

Integration of software systems into other products has already shown to be problematic 

and even life threatening.  The Thai Finance Minister nearly baked in his bulletproof car 

because the car’s environmental control software failed and he could not open the doors 

or windows.  This case also shows how a previously benign failure can be life threatening 

in an integrated system.  The software in the car was based on software also used in 

Personal Digital Assistants (PDAs).  Had the failure occurred in a PDA, the user could 

have easily restarted the PDA and lost, at most, the work that had not been saved.  In an 
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integrated system, such as the car’s environmental control system, a fault that in a PDA is 

an annoyance can become critical.  The requirements of the software have dramatically 

changed based on the usage change. 

Other examples of integration and interconnectedness abound.  Software malfunctions 

partially contributed to the East Coast power outage of August 14, 2003 where alarm 

software was disabled by erroneous input16.   In January of 2002, the Bellevue, WA 911 

response center was rendered unavailable due to the outbreak of the Slammer/Sapphire 

internet worm17.  The same worm disabled many Bank of America ATMs which were 

interconnected in a manner that allowed an internet based worm to disrupt the 

functioning of the ATMs18.  The phone system is no longer connected just to the 

traditional phone network but also to data networks.  Cell phones are becoming data 

devices and Voice-Over-Internet-Protocol (VOIP) based phone systems are starting to 

compete with traditional land-line phone systems.  The phone traffic in these systems 

travels over the internet until converted to a phone line within the customer’s location, 

exposing the VoIP phone system to the spectrum of internet based attack methods, and 

reducing the cost of attacking a phone system.  

What does the future of integration and interconnectedness look like?  Integration will 

continue with software systems becoming smaller and located in an ever increasing 

number of appliances.  Cable TV boxes are now starting to have more extensive 

capabilities, such as integrated network connections and built-in web browsers.  Medical 

professional can already observe and diagnose patients as well as assist and guide 

medical procedures remotely using video conferencing systems19.  Future systems may 
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allow for procedures to be performed remotely – doctors already benefit from local 

“remote” procedure when operating with the help of miniature cameras and tools inserted 

through small incisions.  The risks of a vulnerability in these telesurgery systesm are life 

threatening.  Could a script kiddie in the future cause the death of patient by sending 

malicious instructions to the operating system?  RFID technology will ease inventory 

tasks but will also open to the door for remote snooping.  It is conceivable that malicious 

RFID tags could exploit vulnerabilities in software such as those discussed in the first 

section.  Refrigerators will have integrated software systems that will allow applications 

such as tracking food usage using afore mentioned RFIDs.  The system could 

automatically place orders as current supplies are exhausted.  If these systems are tied to 

the refrigerator’s temperature controls, could it be possible for someone to cause the food 

in the refrigerator to spoil? 

The integration and interconnectedness of software systems increases the number of 

factors to consider when designing these software systems as the software may operate in 

environments for which it may not have original been designed.  The interconnectedness 

also makes the software systems more tempting targets as they are now reached easier 

with easily available and useable tools and for the limited cost of an internet connection.  

This level of requirements has traditionally been limited to very few systems, such as 

medical devices in a disconnected environment and space flight systems.  With the 

potential exception of space flight systems, even these systems could not be guaranteed to 

work outside of their intended environments.  As off-the-shelf commercial systems enter 

more of these specialized areas, they must be secured against the threats since the 
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progress of integration and interconnectedness can not be stopped without greatly 

reducing the potential benefits from these systems. 

Conclusion 
 
With the status-quo, existing vulnerabilities are likely to continue to exist as buffer 

overflows have not been eradicated in the 16 years since they first came to wide spread 

attention.  Just as integer overflows have evolved from buffer overflows, new threats 

such as DPA will continue to be discovered.  The effects and reach of these 

vulnerabilities will also grow as the increase in software systems integration and 

interconnectedness continues.  What can be done to break out of this status-quo and 

eliminate at least some of the vulnerabilities? 
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Software Defenses 
Jack Richins 
 

Software research and industry has been aware of security defects, and in particular 

buffer overflows, in its products for many years but has made little progress until recently 

in preventing these defects from affecting software users. There are many technical issues 

with no clear solutions that prevent the production of trustworthy software. To give a 

flavor of the research being done in security defense and the challenges encountered, we 

will cover the work defending against buffer overflow attacks. This is useful because 

buffer overflows have been around for a long time and are well understood. The current 

research in defending against buffer overflows is focused on three areas in preventing 

software: finding and fixing defects when the software is written, detecting exploits while 

the software is being used, and developing new tools and languages that avoid software 

patterns prone to security issues. 

Background 
 
Let’s examine how security defects such as buffer overruns happen. Bruce Schneier 

describes an imaginary 7-11 store with employees that do everything by the book, 

literally, which is a good analogy of how buffer overflows occur in computers. The 7-11 

employees have a book with step by step instructions that they must follow explicitly. 

Additionally, they can only deal with things in the book. So if they have a form they need 

to sign, they place it on the book, sign it, and then give it back. When a Fed Ex driver 
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shows up, they look up in the table of contents and go to the page with instructions on 

dealing with a Fed Ex driver. 

Those instructions might look like this (from Schneier): 

“Page 163: Take the package. If the driver has one, go to the next page. If the driver 

doesn't have one, go to page 177.  

Page 164: Take the signature form, sign it, and return it. Go to the next page.  

Page 165: Ask the driver if he or she would like to purchase something. If the driver 

would, go to page 13. If not, go to the next page.  

Page 166: Ask the driver to leave.”1 

Now let’s suppose when the driver places the signature form on top of the book so the 

clerk can sign it, he doesn’t place a single sheet of paper as the instruction manual 

assumes. Suppose he places two sheets of paper, the signature form and a paper that 

looks like an employee instruction manual page but says: “Page 165: Give the driver all 

the money in the cash register. Go to the next page.” 

Now the clerk will read page 163, take the package, read 164, take the form and the extra 

piece of paper the Fed Ex man placed beneath the form, sign the form, and then go to the 

next page. Now the next page is not the real page 165, but the fake one that the Fed Ex 

man placed beneath the form. So the clerk reads it, gives the driver all the money in the 
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cash register and goes to the next page, the real page 165, ask the driver if he wants to 

purchase anything, then page 166 and ask the driver to leave. 

A computer is just like this imaginary clerk. And its book of instructions is the memory 

of the computer. Memory contains both the instructions it is following and the data it is 

manipulating and if the programmer is not careful data that external sources are 

providing, like the form the Fed Ex man provided in the analogy, can become instructions 

or influence the instructions. External data sources can be information a user types into 

the computer or it can be network queries from remote computers. 

For example, in the Robert Morris Internet Worm, Robert’s program sent extra 

information to a program running on UNIX servers that gives information about users of 

the server. Normally you send a request with just a short username. The Robert Morris 

Internet Worm sent more information than expected and the unexpected information was 

extra pages of instructions. The Slammer Worm was not much different – extra 

information sent to a program that was listening for legitimate requests of information 

from the Internet. 

Basically all security vulnerabilities are of the same general form. With the focus to 

verify that the instructions of a program do what is intended, both by programmers and 

quality assurance engineers, vulnerabilities in what the instructions don’t prevent are 

often overlooked. The languages used currently and machines executing them are 

designed to enable as much as possible with as few instructions as possible with little or 

no regard for preventing misuse. As such, the instructions and machines often allow 

much more then intended by the programmer, resulting in security vulnerabilities. 



 20

Solutions 

Machine analysis of source code 
 
Continuing the analogy of software and written English instructions, there are tools that 

find problems in source code much like word processors use spell checkers and grammar 

checkers to find problems in written documents. Some security errors, buffer overflows 

being one example, follow common patterns, kind of like run-on sentences. These 

patterns can be detected by code checker tools, called static analysis or source code 

analysis tools. The names static or source code are used because they analyze the written 

source code in contrast to dynamic analysis tools which analyze code as it is actively 

running on a computer. 

Essentially tools are scanning the written source code for patterns that violate “do not’s” 

that security experts have identified2. Unfortunately, even at their best they have one 

glaring flaw. Returning to the word processing analogy, most word processors can 

identify run-on sentences by recognizing repeated conjunctions between clauses in a 

single sentence but few commercial programs can tell you how to correct your sentence 

while retaining your intended meaning. To validate that software is truly secure, source 

code analyzers should go beyond simple pattern detection and proactively suggest better 

patterns to use or how to correct the vulnerable source code3. 

Even without these improvements, source code analysis tools offer much. It is easy for 

programmers to make these kinds of mistakes, speaking of security errors in general and 

not just buffer overflows, with current development tools. It is possible for trained 

engineers to review others code and attempt to find errors, but such code reviews are 
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laborious, time consuming, and prone to mistakes even by well trained engineers. 

Additionally, engineers sufficiently trained for this are rare and expensive. So these 

source code analysis tools enable a level of review of source code that is currently not 

economically feasible. 

Unfortunately, these programs will find “false positives” - lines of code they think might 

be defects but are not. When the rate of false positives is too high compared actual 

defects found, the engineers lose trust in the systems and may not fix or believe reports of 

other actual errors. Further, it takes them longer to review the output of such systems and 

these systems lose one of their advantages, their speed. 

“False negatives” are also possible; cases where there are real defects, but the tool does 

not recognize the defect. This can happen for multiple reasons. There can be defects that 

are so difficult to detect that attempting to detect them results in too many false positives 

to be useful, so the tool intentionally ignores them. Or there maybe defect patterns that 

attackers discover before security experts do and are able to add to static analysis tools. 

Tevis and Hamilton survey several static analysis tools in “Methods For The Prevention, 

Detection And Removal of Software Security Vulnerabilities”. Their summary of these 

tools is they focus too much on UNIX applications to the exclusion of Windows and 

Macintosh software, still require a significant level of expert knowledge, and only cut 

down about a fraction of the manual code analysis that must be done. However, even 

with these limitations, they do help with code analysis, focus the analyst’s attention on 

more severe problems through prioritization features, and find real bugs in minutes that 
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would have taken longer. However, none of the current checkers detect as many 

problems as manual analysis will uncover.4 

Runtime analysis of code 
 
Runtime or dynamic code analysis takes place while the program is running on the end 

users machine. It has the advantage of seeing real data and knowing exactly what is 

happening on the system. It has the disadvantage of consuming memory and CPU time 

that would normally be used for doing real work. Referring back to our 7-11 example of 

buffer overflows, it would be like having an appendix in the manual of instructions that 

the employee must constantly to refer to before and after certain instruction in the manual 

to help ensure an error has not occurred. 

This has the advantage of more information available about what is actually happening. 

But it has the disadvantage of slowing many operations down. I.e., for every instruction 

in the main section of the employee handbook, there may be an instruction in the 

appendix that needs to be performed to validate things are working properly. 

Despite these performance concerns, some levels of runtime analysis are becoming quite 

common. For example, code “canaries”, named after the canaries used by coal miners to 

detect poisonous gases5, are being inserted automatically by development tools used in 

Linux and Windows application development6. These code canaries are used to detect 

buffer overruns at runtime – special checking code is also created to verify the canaries 

are still in place after certain operations to make sure the buffers have not been overrun. 
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Most runtime detection tools have two shortcomings. First, they require recompilation, 

meaning the source code must be used to regenerate machine code using new tools. 

Second, most tools stop the running program when they detect an error. This is deemed 

most secure because it avoids trying to recover from an attack where you may not be able 

to trust the system. However, this increases the risk of denial of service attacks as all 

buffer overflow attacks and other security vulnerabilities these tools detect can be used as 

a means of stopping the program and preventing legitimate uses of the program.7 

For example, say Microsoft Internet Explorer 2012 has runtime buffer overflow detection 

and a buffer overflow vulnerability in how it processes web pages. A hacker might, 

unbeknownst to Microsoft, alter the MSN home page so it causes a buffer overflow and 

attempts to force Internet Explorer to send all passwords and credit card numbers stored 

on the computer to the hacker. Without the runtime buffer overflow detection, any user 

that directed Internet Explorer to the MSN home page, the default home page for Internet 

Explorer, would be unknowingly sending the hacker their passwords and credit card 

numbers. With the runtime buffer overflow detection, every time they tried to start 

Internet Explorer and it tried to load its home page it would crash. This would prevent 

anyone using Internet Explorer and MSN as their homepage from browsing the internet at 

all. While the runtime detection protects the users passwords and credit card numbers, the 

hacker is still able to prevent these users from using their web browser to surf the 

internet. 

There has been research into making such failures invisible to the user. In other words to 

save enough information that after terminating the program the runtime environment or 
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operating system can restore program so the user does not lose any work. This would be 

done by recording enough of the work the program is doing while it’s running to recover 

should it fail.  

Unfortunately there is a dilemma – if the work is recorded that caused the failure, then 

the failure will happen again when the operating system or runtime environment tries to 

recover. So such a recover mechanism must record as little work as possible to avoid 

recreating the error. These two principles, the principle of recording all work so there is 

no loss of work and the principle of not recording work so you don’t repeat the defect, are 

in direct conflict in all but the simplest types of defects.8 

Research suggests though that runtime environments or operating systems might be able 

handle simple defects, which are estimated to be about 10% of failures. Further, there 

might be ways of providing aids to applications so in cooperation with the runtime 

environment or operating system programs can fail and recover with little work lost. For 

example, referring to our Internet Explorer 2012 scenario, when trying to start the second 

time, Internet Explorer might avoid the MSN home page and inform the user there is a 

problem with loading it rather than crashing repeatedly.9 

Although runtime detection of security defects is not capable of completely protecting a 

system, as computers get faster they are becoming a more reasonable trade off for the 

protection they do provide. Even if they only prevent 10% of the errors at a 5% 

performance penalty, that’s a good tradeoff when you aren’t using that 5% extra 

performance anyways. Particularly as computers are shifting to having multiple 

processors rather than a single fast one, more processor intensive solutions like having 
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two versions of a program run simultaneously and check each other’s results becomes 

more reasonable. 

Other Languages 
 
Since many of these defects being used to compromise systems are specific to languages 

that directly manipulate memory, one suggestion has been to use other languages. One 

step towards this can be seen in Java, C#, and some other .Net languages. These language 

systems manage memory automatically for the programmer and to the degree they 

manage it correctly they are free from defects like buffer overflows. 

However, even these languages have inherent defects. For example, in the .Net 

framework there is a way of specifying code to be executed when something unexpected 

happens. This language feature, if used in correctly, can be used to reroute execution. For 

example, if the code that verifies a password generates an exception while running that it 

did not expect and does not handle, it may continue executing as if the password was 

correct10. 

Tevis and Hamilton propose an even more revolutionary change from imperative 

languages to functional languages. Functional languages are more purely rooted in 

mathematics and as such are easier to mathematically prove correct.11 

Programs written in imperative languages, the most commonly used in commercial 

software, are a series of command statements. When run, imperative programs execute 

these instructions. Programs written in functional languages are composed of definitions 

of functions and are executed by evaluating the function definitions.  
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Historically, functional languages were criticized as being slow, but with faster 

processors that has become less of an issue. There still remains a chicken and egg 

problem. Most imperative languages have several editor programs, debugging programs, 

compilers, and optimizers to choose due to a long history of being used for commercial 

software and therefore having a large market for these tools. Functional languages which 

have a much smaller market, lack such quality and quantity of supporting tools. Of course 

without such supporting tools, it is unlike functional languages will ever be used much 

commercially and develop a market for these supporting tools.  

Further, there is not the industry wide knowledge of functional languages among 

software engineers that exists with imperative languages. Although functional languages 

are frequently taught in college, that’s usually the last a software engineer encounters 

functional programming languages. 

For these reasons, conversion to functional languages would require a massive retraining 

of most software engineers and retooling as most tools used to generate commercial 

software are designed around imperative languages such as C, C++, Java, and C#. This 

would prove very costly in terms of engineers’ time. And though functional languages 

would probably improve many of the ills being experienced with imperative languages, 

they certainly would not be defect free and with extensive use we might discover they 

have their own set of unique defects. 
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Hybrid Approach 
 
There are also some hybrid approaches being explored. One promising example is 

Microsoft’s PREfix code analysis tool. It analyzes the source code like a static analysis 

tool, but then uses this analysis to build a simplified model of how the code will run. 

Then it analyzes this model of runtime behavior to predict defects. Since it is not run at 

runtime it does not impact performance. Further, since it is a simplified model of 

behavior, it can test many different execution options more quickly than trying to test 

every possible ordering of instructions. But to the degree it accurately models the 

program it is as accurate as runtime analysis tools in finding real defects and avoiding 

false positives. It has proven itself sufficiently useful to see wide scale use at Microsoft 

on large bodies of code on a daily basis.12 

Conclusions 
 
A surprising conclusion of the work on PREfix was that how the information was 

presented to the developer was very influential in improving the rate of fixing the defects 

correctly found by PREfix13. As mentioned earlier, one of the defects of many static tools 

was even after find defects, they did not aid the programmer in correctly understanding 

and fixing the defect. Within the context of static analysis tools, this seems the area likely 

to yield the most immediate improvements. 

Runtime detection seems to continually be a trade-off of security for performance. As 

performance increases and security becomes increasingly important, this is likely to 

become a more attractive option. However, a solution to denial of service attacks on 

runtime hardened systems is needed to make these systems truly trustworthy. 
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The idea of spontaneously changing languages used in commercial development seems 

unlikely, but it is possible that as the security benefit of certain language features can be 

proven they will slowly make their way into languages currently in use. So an 

evolutionary path to more secure languages and tools may be possible and should be 

further researched and adoption by industry encouraged. 

At present, it does not appear any area of research promises a magic bullet to our current 

security problems. But they all show promise of shoring up our defenses and making 

progress in securing our systems. It is discouraging that we still have buffer overruns, but 

as pointed our earlier, there are signs of progress. Buffer overruns are being found more 

quickly and fixed. Complete elimination of these types of errors appears unlikely. It is 

more feasible that simultaneous improvements on multiple fronts will improve the overall 

security of software and internet users. 
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Licensing Software Engineers 
John Spaith 
 

An old saying tells us that “It is the poor craftsman who blames his tools.”  There are 

clearly many promising software development languages and tools to aid in writing more 

secure programs. But any technological breakthrough in this area will be for naught if the 

software engineer is incompetent.  Thoughtful Roman engineers, using crude tools and 

processes by modern standards, created structures that have lasted for over two thousand 

years.  Will people two thousand years from now wax poetic about their robust software, 

still in use, created by thoughtful American engineers?  What can the government, 

standards bodies, and industry do to raise engineering practices so that software created 

today is more reliable and more secure today?  One area of particular interest is whether 

software engineers should be licensed, as they are in other fields of engineering. 

Licensing should not be confused with certification.  Licensing has considerably more 

strict requirements.  Certification is “an occupational designation issued by an 

organization that provides confirmation of an individual's qualifications in a specified 

profession or occupational specialty1.”  Software vendors, such as Microsoft and Sun, 

offer certifications for their products.  While certification is voluntary, “Under licensure 

laws, it is illegal for a person to practice a profession without first meeting state 

standards.2”  Licensing is granted by governments, not companies or organizational 

bodies.  Furthermore, licensed engineers in other professions may be legally liable if their 

work causes harm3. 
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Software engineering is a relatively new field and software engineers often must invent 

everything as they go along.  Should governments require licensing for software 

engineers, however, other fields of engineering that already require licensing would 

provide valuable models. 

Engineering Licensing 
 
An engineer outside the software industry – such as a civil engineer - who wishes to 

receive a professional license must undertake a grueling process.  As a prerequisite, he 

must have an engineering degree from a program accredited by EAC/ABET.  When he is 

a senior in college typically, he will take a Fundamentals of Engineering (FE) exam.  

This exam covers basic engineering, science, and mathematics that all engineering 

disciplines must be familiar with.  After at least four years of professional engineering 

practice - typically working under the guidance of a professional engineer (PE) – the 

aspiring engineer may take the Principles and Practice examination.  This test focuses on 

his discipline of engineering in more depth.  It takes three days to complete and is 

comparable in length and breadth to the bar exam that lawyers take.  After the engineer 

successfully passes the test, he is licensed and can now officially be called a professional 

engineer (PE).  After completing the final test, he must take additional courses to stay 

current in his field.  The entire licensing process is managed by state governments, not by 

a company or professional society4. 

The non-licensed engineer may work as an engineer, even if they never seek licensing.  

However, the scope and authority that he has without a license is limited.  Among other 

limitations, the non-licensed engineer cannot be a consultant in private practice, sign off 
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on projects, or act as witnesses in a court of law5.  Being able to sign off on the work of 

other engineers is of particular importance.  The engineer who is not licensed has his 

ability to attain technical leadership drastically reduced6. 

An integral component to the licensing program is training and testing in ethics.  

Engineering a bridge or fire escape is, after all, a matter of life or death.  Yet the PE must 

operate in a market based economy where frequently non-technical managers may want 

to take short-cuts.  The ethical standards bodies of professional engineering societies not 

only provide guidelines for dealing with various moral dilemmas the engineer may face, 

but also have the authority to censure him and even revoke his license should he behave 

unethically7.  Furthermore, a licensed engineer may be held legally liable for faulty work 

done under his direction.  Should the concern for his fellow man not provide the engineer 

sufficient motivation, the risk of being publicly held accountable for his actions may. 

Arguments for Licensing Software Engineers 
 
Software engineering author Steve McConnell begins his book After the Gold Rush with 

the story of a 1937 boiler explosion that killed 300 school children.  After this the state of 

Texas began requiring licensing for engineers.  McConnell ominously points out that this 

boiler is controlled by software today8.  Software is everywhere - embedded in factory 

robots, aiding air traffic controllers, and running stock exchanges being just a few 

examples.  After the Gold Rush was published in 1999, when the greatest threat was 

arguably incompetence on the part of an individual programmer.  The word security does 

not even appear in its index.  The threat that lurks in the form of individuals, criminal 

organizations, and hostile foreign governments that are just a buffer overflow away from 
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wreaking havoc on society is much better understood by the public than just five years 

ago. 

How would licensing software engineers help mitigate security threats?  To understand 

this, it is first necessary to understand what the software engineering licensing would be 

like.  The implementation, as envisioned by McConnell at least, would be similar to 

traditional engineering licensing today.  None of the infrastructure required to support 

these policies is in place at present, however. 

The software engineer would have to graduate from an accredited four year university 

with a specialization in software engineering.  The focus of this program would be 

engineering of software, not the more theoretical aspects of computer science that most 

colleges focus on today9.  In his senior year, the aspiring software engineer would take a 

Fundamentals of Engineering exam.  The engineer would then work for a few years in 

industry before being allowed to take a Principles and Practice examination that was 

specific to software engineering.  The IEEE currently has a software engineering 

certification (not a license) that could serve as a model for this exam10.  After completing 

the Principles and Practice examination, the licensed engineer would take continuing 

learning courses and also be bound by the ethical considerations of his profession11. 

Most software engineers would not be licensed.  McConnell estimates the number to be 

between five to ten percent12.  But these five to ten percent would form the core of 

technical leadership for the profession. 
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The arguments in favor of requiring some engineering of software engineers are 

compelling.  Just as a licensed civil engineer is required (legally and morally) to 

understand all threats to the bridge he signs off on, so a professional software engineer 

would understand all threats to the program running that he writes.  This would most 

certainly entail detailed knowledge of hacker’s methods and processes to protect against 

them.  Just as whether a bridge is safe or not is not left to the whims of an MBA, so to 

could software security be placed into more reliable hands.  Today it is the program 

manager who is more focused on business than technical issues who decides when 

software is “secure enough” to ship.  In the future it could be an engineer focused purely 

on technical issues. 

There have been great strides in software engineering practice in the last thirty years.  

Countless books and papers have been written to advance the state of the art in the fields 

of productivity, reliability, and security.  Yet many best practices are not widely 

disseminated, frequently because engineers do not keep pace with the changes.  The 

situation has been compared to having seventy five percent of modern doctors continue to 

use leeches because they were unaware of penicillin’s existence13.  Part of retaining an 

engineering license entails continuing learning.  Educating an elite corps of software 

engineers with new, safer development models, could help bring the state of the art into 

common practice. 

The software industry often evokes the image of two guys working in a garage, inventing 

“the next big thing”.  Licensing would radically change the field, making it much more 
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rigid and professional.  With the stakes so high and the malicious users so numerous, 

proponents of licensing claim that this change is much needed. 

Arguments against licensing 
 
Software engineers are not in general in favor of being licensed.  Many reasons are given, 

many of which are emotional.  Software engineers typically enjoy the freedom that their 

profession affords them to be creative.  Governments and professional societies forcing 

formal engineering processes on software engineers are seen as ending the “good times.”  

More reactionary arguments against licensing are based on worries of abuse by the 

certification board that could de-certify engineers who did not fit into a certain mold, just 

as the New York law board in the 1960’s decertified lawyers opposed to the Vietnam 

War14. 

None of these emotional arguments should be taken too seriously.  Society frankly does 

not care whether civil engineers are happy being licensed or not, nor should it care about 

the feelings of software engineers.  And the potential for abuse exists in any organization, 

a software licensing foundation being no exception.  If, however, a licensing program is 

ever forced upon software engineers by a government body, these responses must be 

anticipated.  An educational program would be essential. 

There are more reasonable arguments against licensing that should be considered.  Some 

of the best are literally in front of our eyes.  This paper was written with Microsoft Word, 

a technological marvel that is taken for granted.  Though earlier versions of Word were 
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unreliable, thanks to technological progress and market pressure Microsoft has produced 

an extremely reliable program.  Its software has improved without licensed engineers. 

The security of software - and Microsoft products in particular - is another question.  

Still, great progress is being made without government intervention.  With viruses widely 

reported in the media and understood by the public, companies understand that they must 

react to market demands.  Microsoft spent about one hundred million dollars retraining its 

engineers to write more secure code15.  The effort seems to have paid off.  Iain 

Mulholland, manager of Microsoft’s security response center, said that, “There were only 

nine critical or important vulnerabilities in Windows Server 2003 within the first 292 

days of release, compared to 38 vulnerabilities discovered in Windows 2000 in the same 

time period.16” 

As the technology industry rapidly innovates, so do the techniques available to hackers.  

A class of attack that has recently become more widely publicized is the integer overflow 

attack.  Microsoft engineers (all of whom had security training) on the core Windows CE 

Networking team spent two weeks fixing potential integer overflow issues in their code.  

Almost all of this potentially vulnerable code has been shipping for years.  Even had all 

of the engineers been licensed, had the threat of integer overflows been unknown at the 

time of their training then their licensing would have been useless.  Building a bridge, on 

the other hand, is an extremely well understood process that engineers have been doing 

since ancient times. 

The model of the two guys in the garage inventing the “next big thing” may not be 

something we should be too quick to move away from.  Despite the tremendous progress 
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they have made in the last decades, computing is still in its infancy.  Unimaginable 

advances lie in the future, both in theoretical aspects of computer science and in best 

practices of developing software.  Formal bodies such as licensing boards, however well 

intentioned, could slow the pace of innovation if they set the barriers to entering the 

software field too high.  Perhaps the next big thing to come out of a garage will make 

computing infinitely more reliable and secure than it is now, which is ultimately the goal 

that licensing seeks to achieve as well. 

Conclusions on Licensing 
 
The impact that software engineering has on the world is tremendous.  Allowing the field 

to continue as it is – with a haphazard, get to market, two guys in the garage mentality – 

could be courting disaster.  That more professionalism and responsibility is needed at all 

levels of the profession to ensure more secure software is clear.  Whether licensing 

engineers is the best way to do this is not.  Licensing may help the systems of today be 

more secure.  But aren’t market forces already causing this?  And how licensing could be 

applied to a rapidly changing field such as software engineering is far from clear.  The 

metrics to determine when software is reliable or secure are nowhere near as advanced 

when a bridge is secure. 

Perhaps a hybrid approach is best, where mission critical software such as that embedded 

inside boilers should require professional engineering practices and licensed software 

engineers.  Requiring a wider array of software projects to use licensed engineers 

involves a careful consideration between the public’s short-term convenience and safety 

and the long-term good that comes with increased innovation. 
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Liability for Software Defects 
Andrew Pardoe 
 
 
 

Complexity of systems and prevalence of failure  
 
Who is responsible for these software and hardware deficiencies which can lead to 

catastrophic failures and exploits? Why haven't they fixed these bugs? Shouldn't someone 

be held liable for these problems?  

Computers and software are immensely complex engineering feats. Windows Server 

2003 was written by about 5000 developers working on over 50 million lines of code.1 

Intel's "Prescott" microprocessor contains 330 million transistors in an area the size of a 

fingernail.2 As security expert Bruce Schneier points out, complexity is the worst enemy 

of security.3 But consumers want features and features increase complexity. A word-

processing program which doesn't print is still effective as long as you can save your file 

and load it into a printing program. But having the printing functionality in the word-

processing program itself is a useful—but less secure—feature which customers demand. 

Computer programming pioneer Nicklaus Wirth summed it up nicely: “Increasingly, 

people seem to misinterpret complexity as sophistication, which is baffling—the 

incomprehensible should cause suspicion rather than admiration.”  

Computer users have come to expect that computers are naturally prone to failure. We 

have come to accept that a computer is an imperfect tool and will work around any 

problems we encounter. Users will in fact make excuses for bad computer program 

designs rather than blame the programmers and design engineers.4 One reason users 
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infrequently demand perfection is that we often use computers to do things we could 

easily do without computers: the proper functioning of the computer is essentially 

unimportant because we can do what we need to do without the aid of the computer or we 

know of some “workaround” to force the machine to give us the desired results despite 

what it “thinks” is correct. Other users are willing to forgive imperfect designs and 

implementations to get their hands on new tools and functionalities.  

What happens when we rely on computers to do more important tasks? A software error 

in General Electric's XA/21 system contributed to the extensive and immediate spread of 

the 14 Aug. 2003 blackout which affected much of the northeastern American continent.5 

When a software error (or hardware error) affects so many people should someone be 

held liable?  

Example: a consumer-grade software tool  
 
At first blush it seems obvious that an individual or corporation which produces faulty 

software should be held liable for the errors. We have product liability laws and computer 

systems—hardware and software—are just another product. In fact the IRS ruled in 1985 

that authors of tax software may be liable for advice given to taxpayers.6 Now that the 

industry has matured, however, the IRS no longer addresses the issue of liability for 

software errors in tax preparation software and in fact allows a few math errors to exist. 

The IRS's current guidelines for e-File providers specify that the software used to file tax 

returns must pass a test which verifies, in part, that “returns have few validation or math 

errors.”7 One popular consumer-grade tax software package, TaxCut 2003, includes a 

standard license exempting the publisher from any liability and makes clear that using the 
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software does not make Block (the publisher of TaxCut 2003) the consumer's tax 

preparer.8 This kind of license is ubiquitous in consumer software freeing the publisher of 

software from any legal liability.  

This kind of end-user license may not be enforceable due to an implied warranty of 

merchantability.9 Despite the IRS's requirement of “few math errors” one would expect 

that tax-preparation software would do math correctly. Yet there is very little case law 

explicitly addressing the liability of software vendors. Because of this legal ambiguity 

large software vendors are advocating the adoption of a modification to the Uniform 

Commercial Code Article 2B called the Uniform Computer Information Transactions Act 

(UTICA). UTICA, if adopted by the individual states, would free software vendors from 

the responsibility to guarantee that their software works.10 This law is, understandably, 

popular with software vendors and equally unpopular with consumer advocacy groups. 

Liability for negligence  
 
How do we determine who should be liable for software errors? In the case of United 

States vs. Carroll Towing Co. Judge Learned Hand stated a formula to test a company's 

duty to see that their product does not cause harm. This formula was a function of three 

variables: P, the probability of failure, L, the gravity of resulting injury given a failure, 

and B, the burden of adequate precautions. If B is smaller than the product of P and L (B 

< PL) then the corporation should be found to be negligent.11 

What is the probability of failure? Few programmers would claim to have written a 

program which is free of bugs. One of these bold few was Dr. Donald Knuth author of 
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(amongst other things) the TeX typesetting software. Dr. Knuth said in the preface to his 

book TeX: The Program that he “believe[s] that the final bug in TeX was discovered and 

removed on November 27, 1985.” And yet bugs were still being uncovered--though very 

infrequently--ten years later.12 TeX is a relatively small program. At over 50 million lines 

of code (for Microsoft Windows) or 330 million transistors (for an Intel microprocessor) 

existing computer software and hardware is clearly too complex to be completely tested.  

The more interesting question is the probability of a failure which causes harm. This 

approaches Judge Hand's second question: what is the gravity of resulting injury given a 

failure? While a physical product is normally intended for one single purpose software is 

often used for purposes which the original vendor never imagined possible. For example, 

Lotus 1-2-3 spreadsheet software is used for nuclear reactor core simulation and the 

design of a lunar base.13 

It is impossible to completely test any reasonably complex software program and even 

more impossible to test it in usage situations for which the software was not originally 

designed. The manufacturer of wrench would not be held liable for an injury stemming 

from the use of that wrench as a hammer or screwdriver. If a program appears to work for 

a given purpose, why should one not use it for that purpose? Should the vendor have 

tested it in that scenario which may not have even existed when the program was written?  

Another problem is that computer systems force us to devine the purpose of interfaces 

constantly. For example, when one uses the “trash bin” on a MacIntosh computer the 

obvious metaphor is that this virtual piece of paper is going into the virtual trash bin. But 

is it also obvious that the virtual trash bin needs to be emptied by the user? Or should the 
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user be able to assume that the computer will take care of it for her? If a user puts a 

sensitive document into the trash bin where it is discovered by another user who should 

be responsible for any malicious usage of the document? People who don't fully 

understand tools still need to use the tools but present a security risk to themselves and 

others. Testing can't cover all ranges of user expertise.  

Likewise it's difficult to ascribe liability to a software vendor when software experiences 

such dynamic application during—and after—its intended lifetime. Think of the Y2K 

“crisis” which resulted from the fact that software vendors had used two digits to 

represent a four-digit year. While we look back and say it was stupid to write a program 

in 1975 that wouldn't be able to handle the year 2000 we can easily imagine that the 

software developers of 1975 never thought their programs would still be in use in 25 

years.  

Burden of software testing  
 
What is the burden of adequate precaution as it applies to testing computer software and 

hardware? Bruce Schneier comments that “on the one hand, it's impossible to test 

security. On the other hand, it's essential to test security.”14 It’s impossible to demonstrate 

that a system has no security faults. One can prove that there are faults by demonstrating 

the fault. One can hypothesize the likely existence of a fault by examining the system 

code. But proving that a system is absolutely secure is like proving the null hypothesis: 

you can't prove the nonexistence of something you can't find.  
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Testing clearly adds more cost to the development cycle in terms of total time spent 

working on a product. Provably thorough testing would add an infinite amount of work to 

the development cycle. Is the incentive to produce software high enough to include the 

cost of adequate testing?  

Consider on one side of the spectrum the open-source free software project. What would 

be the consequences if the developers of “Open Tax Solver” (an actual open-source tax 

software project) were held liable for program errors in the same way that a professional 

tax advisor is liable for incorrect advice?  

Software developers generally create software because they have identified a problem 

they want to solve. As Eric Raymond wrote, “Every good work of software starts by 

scratching a developer's personal itch.”15 The programmer had a problem to solve and 

wrote a program to solve the problem. Having already done the work and not having 

intended to profit from the work the programmer releases the code for other people to 

use.16 Because the developer has minimal incentive to release software for other people to 

use the warranty expressed by most open-source licenses can be reduced to “if it breaks, 

you get to keep both pieces.” 

For “Open Tax Solver”, then, we can assume that the burden of adequate precaution is 

unreasonably high for the software developers. No one is paying for the software, thus, 

no one should hold the developers responsible for faults in the software. In another way 

of thinking, “you get what you pay for.” On the other hand, the correct monetary 

difference between free software and for-profit software is unknowable. Given that the 

marginal cost of software is zero, however, at what price point can we say that a 



 45

commercial developer should be liable for defects in the software? If Microsoft charges 

$300 for Windows can we say that the difference between the cost of Windows and 

Linux is adequate to demand adequate security testing? What portion of the $300 

purchase price represents testing for the security bug which affects you?  

Incentives for quality assurance testing  
 
The purpose of holding manufacturers liable for negligence is to provide an incentive for 

manufacturers to produce products of sufficient quality to not pose an unreasonable threat 

to the users of those products. But product liability generally applies to manufacturing 

defects as opposed to design defects. Software flaws almost never result from 

manufacturing defects (as a manufacturing defect—such as an error in the CD replication 

process—is more likely to make a program not function at all than to function 

incorrectly.) Hardware manufacturing defect, such as bad memory or a defective 

connection, generally produce unpredictable errors. The design process cannot account 

for all possible errors. Quality assurance testing cannot trace all possible execution routes 

through a software program with all possible inputs. And the designer of a hardware or 

software product often cannot predict all of the execution environments in which the 

product will be used. Interactions between software programs or hardware components 

often reveal bugs that weren't revealed in the normal course of testing.  

Companies and individuals have a dual incentive in producing quality software. The first 

incentive is to produce the software, the second to produce a quality product. There is a 

balance between features and bugs which exists from the very beginning of the 

development cycle. Fixing every bug—or deciding exactly what represents a bug—would 
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prevent most products from ever shipping. Consumers pick a products based upon a 

balance between features and usability. The markets do a good job of sorting out which 

products are of sufficient quality to be usable. When there is a threat of lost sales due to 

security problems companies will respond or go out of business. When consumers 

demand it “security” has become a feature instead of just an added expense.  

Future scenarios  
 
The future holds even more uncertainty regarding product liability for computerized 

products if for no other reason than our increasing reliance on computers in everyday life. 

Some producers of computerized technologies are being exempted from defect liability: 

the SAFETY Act of 2002 (Support Antiterrorism by Fostering Effective Technologies) 

provides liability protection for sellers of “Qualified Anti-Terrorism Technologies.”17 

Some producers, however, are being informed of their liabilities up front: the U.S. Food 

and Drug Administration has published guidelines for computerized systems used in 

clinical trials18 and informed manufacturers of medical devices that they are liable for 

embedded computer errors in medical devices with regards to the Year 2000 problem.19  

The decision to exempt Qualified Anti-Terrorism Technologies from liability should lead 

to an atmosphere where innovation is unfettered. And the liability ascribed to medical 

devices will protect patients from harm. But terrorism technologies could injure people 

and medical devices could certainly use innovative solutions. What’s the right balance of 

liability and incentive to innovate? 

The prevalence of embedded computer systems causes even more problems for the field 

of liability for computer flaws and security exploitations. Previously manufacturers 
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would use custom-designed hardware and software systems to control consumer products 

ranging from blenders to automobiles. Now it is often cheaper to use a general-purpose 

microprocessor and an off-the-shelf operating system such as Embedded Linux or 

Windows CE to control the consumer product. Who is liable when a flaw or security 

exploit compromises these products? The flaw in General Electric's XA/21 system which 

contributed to the northeast blackout is a known problem in the Linux kernel.20 The 

SAFETY act protects sellers of qualified anti-terrorism technologies and the FDA regards 

a medical device as a single unit regardless of the origin of embedded hardware or 

software. In these cases the makers of the final product, be it an anti-terrorism technology 

or a medical device, are held liable (or not liable) for the final product.  
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A Lab to Certify Software 
Caroline Benner 
 

Software companies do not make secure software because consumers do not demand it. 

This shibboleth of the IT industry is beginning to be challenged. It is dawning on 

consumers that security matters as computers at work and home are sickened with 

viruses, as the press gives more play to cybersecurity stories, and as software companies 

work to market security to consumers. Now, consumers are beginning to want to translate 

their developing, yet vague, understanding that security is important into actionable steps, 

such as buying more secure software products. This, in turn, will encourage companies to 

produce more secure software. Unfortunately, consumers have no good way to tell how 

secure software products are.  

Security is an intangible beast. When a consumer goes to buy a new release of Office, he 

can see that the software now offers him a handy little paper clip to guide him through 

that letter he is writing. He understands that Microsoft has made tangible changes, 

perhaps worth paying for, or perhaps not, to the software. Security does not lend itself to 

such neat packaging: Microsoft can say it puts more resources into security, but should 

the consumer trust this means the software is more secure? How does the security of 

Microsoft's products compare to that of other companies?  

To help the consumer answer these questions, one idea that has been floated is to create 

an independent lab to test and rate software on security. A rating system would allow 

consumers to vote with their dollars for more secure software. It could also pave the way 
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to assigning legal liability to companies for software defects. The point of rating software 

would be to tip a software company’s cost-benefit analysis in favor of providing security, 

be that via the threat of liability—increasing the cost the company incurs for selling 

insecure software—or via increased consumer demand for secure software—increasing 

the benefit the company receives for making their products secure.  

A certifying lab seems to be an ingenious solution. The consumers who buy the software 

and the lawyers who would assign liability do not know what secure software looks like 

so they will trust the software security experts running the lab to tell them.  The trouble 

is, those software security experts do not know what security looks like either.  

Why is software security so hard?  
 
Quite simply, software security experts do not know whether a piece of software is secure 

because it is generally impossible to ascertain whether a piece of software has a given 

property for all but the most simple classes of properties. Security, needless to say, is not 

one of those simple properties. Why is this true? Consider first what security 

vulnerabilities are. Security vulnerabilities are typically errors—bugs—made by the 

designers or implementers of a piece of software. These bugs, many of them very minor 

mistakes, live in a huge sea of code, millions of lines long for much commercial software, 

that is set up in untold numbers of different environments, with different configurations, 

different inputs and different interactions with other software. This creates an exponential 

explosion in the number of things we’re asking the software to be able to do without 

making a mistake.  
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So where do bugs come from? Bugs are either features that the software’s designers 

planned for the software but that did not make it into the final product, or undesired 

features that the designers did not ask for, but that became part of the final product 

anyway. It’s very easy for a programmer to introduce the latter type of error, which is 

where most security vulnerabilities sneak in. Perhaps Roger the developer writes perfect 

code—an impossibility in and of itself since humans make mistakes. Now Joe next door 

writes another piece of code that uses Roger’s code in a way Roger did not expect and 

this can introduce bugs. Or Roger’s code, which was written on Roger’s computer with 

its unique configurations works fine on Roger’s computer but not fine on Joe’s next door.  

If you can’t avoid making errors, can you catch them? The best we can do is test the 

software, and testing will never catch all errors since you need to test for an unlimited 

number of possible things the software might do. If you want to keep your cat fenced up 

in your backyard, you have to anticipate all possible ways the wily cat might escape. You 

can climb on the roof and guess whether the cat would be willing to jump off it over the 

fence. You can crouch down and guess whether a cat can slink under the fence. And still, 

the cat will probably escape via the route you overlooked. It is very hard to prove that 

something is not going to happen, that the cat cannot possibly escape the yard, that a 

piece of software has no vulnerabilities.  

Two other problems make building secure software difficult and unique from other 

complicated engineering tasks, such as building a bridge. First, there is often little 

correlation between the magnitude of error in the software and the problems that the error 

will cause. If you forget to drill in a bolt when building a bridge, the bridge is not likely 
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to collapse. However, if you forget to type a line of code, or even a character, you may 

well compromise the integrity of the entire program.  

The second problem is that software is constantly being probed for vulnerabilities by 

attackers because spectacular attacks can be carried out while incurring little cost; they 

require minimal skill and effort, and the risk of detection is quite slim. A bridge’s 

vulnerabilities are not easy to exploit—it would be a hassle to try to blow up a bridge—

and so the payoff for trying is not worth it to most.  

Trying to measure security  
 
Software’s complexity makes it difficult not only to avoid making mistakes but also to 

devise foolproof ways to detect these mistakes: to measure how many of them, and how 

consequential, they are. However, computer scientists have devised a few methods for 

taking educated guesses at how secure a piece of software is.  

Evaluating security can be attempted by looking at the design of the software and the 

implementation of that design. Experts can study the plan, or specification, for the 

software, to see if security features, such as encryption and access control, have been 

included in the software. They can also look at the software’s threat model, its evaluation 

of what threats the software might face and how it will handle those threats.  

On the implementation side, the experts could evaluate how closely the software matches 

its specification, which is a very difficult thing to do well. They can also look at the 

process by which the software developers created the software. Many computer scientists 

believe that the more closely a software development process mirrors the formal step-by-
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step exactitude of a civil engineering process, the more secure the code should be. So the 

experts can evaluate if the development team documented its source code so others can 

understand what the code does. They can see if a developer’s code has been reviewed by 

the developer’s peers. They can evaluate if the software has been developed according to 

a reasonable schedule and not rushed to market. They can look at how well the software 

was tested. The hope, then, is if the developers take measures like these, the code is likely 

to have fewer mistakes and thus will be more secure.  

The experts might also test the software themselves. They might run programs to check 

the source code for types of vulnerabilities that we know occur frequently, such as buffer 

overflows. Or they might employ human testers to probe the code for vulnerabilities. 

Finally, the experts could follow the software after it has been shipped, tracking how 

often patches to fix vulnerabilities are released, how severe a problem the patch fixes and 

how long it takes the company to release patches from when the vulnerability was found.  

Creating a certifying lab: Requirements  
 
For a lab to inspire confidence in its ratings, the lab must meet several requirements.  

1. Reasonable tests for measuring security 
 
The first requirement for an independent lab would be to decide on which of the above 

methods it would choose to evaluate security. The lab’s method must produce a result 

that enough people believe has merit. Some security experts argue that the methods we 

currently use to evaluate software aren’t good enough yet and so there are no reasonable 
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tests for measuring security.1 Talk of a lab, they say, is premature: Even if we can find 

some security vulnerabilities—which we can using these methods—there will always be 

another flaw that is overlooked. Therefore, any attempt to certify a piece of software as 

“secure” is essentially meaningless since such certification can’t guarantee with any 

degree of certainty that the software cannot fall victim to devastating attack. Others argue 

that since we know how to find some security vulnerabilities, certifying software based 

on whether or not they have these findable flaws is better than doing nothing.2  

Assuming for the moment that we agree with the computer scientists who believe doing 

something is better than doing nothing, which of these methods should the lab use? 

Ideally, if the only consideration were to do the best job possible in estimating whether 

the software is secure, the lab would look at all of them. But in the real world, the lab will 

face constraints such as the time and money it takes to evaluate the software, and access 

to proprietary information such as source code and development processes.  

Our current best attempt to certify software security works by employing experts to look 

at documentation about the software to evaluate the design and implementation of the 

software. This process places special emphasis on looking at security features such as 

encryption, access control and authentication. Software companies submit their products 

to labs which use this scheme, called the Common Criteria, to evaluate their software. A 

good analogy for how this works is to consider a house with a door and a lock. The 

                                                 
1 For example, Eugene Spafford, Professor of Computer Science, Purdue University; 

Jeannette Wing, Chair, Department of Computer Science, Carnegie Mellon 
University.  

2 Maccherone, Larry, Manager of Software Assurance Initiatives, Cylab, Carnegie 
Mellon University,  Interview, November 11, 2004 
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Common Criteria try to examine how good that lock is: Is it the right lock? Is it installed 

properly? Critics of the Common Criteria say a major shortcoming of this method for 

evaluating software is that it relies too much on the documentation of the design and 

implementation and essentially ignores the source code itself which can be full of 

vulnerabilities. Figuring out if the lock on your door is a good one is hardly useful if the 

bad guys are poking holes through the walls of your house, which is what flawed code 

lets you do. Another problem with the Common Criteria is that it also looks at the 

software in a very limited environment—it evaluated Windows for use in a computer 

with no network connections and no remote media3—too limited to be meaningful in any 

general sense.  

Another approach to devising methods to measure software security is under 

development at the Cylab at Carnegie Mellon University in partnership with leading IT 

companies. The Cylab is working on a plan to plug holes in the walls of the house by 

running automated checking tools—programs that run against a piece of software’s 

source code much like spell-checkers—to catch three common security vulnerabilities, 

including buffer overflows. According to Larry Maccherone, Manager of Software 

Assurance Initiatives of Cylab, 85 percent of the vulnerabilities cataloged in the CERT 

database, a database run by CMU’s Software Engineering Institute which is one of the 

more comprehensive collections of known security vulnerabilities, are of the kind that the 

Cylab’s tools will test for. The flaw with this method for evaluating software is that it is 

only looking at a part of the problem: In this case, we are ignoring the locks on the doors.  

                                                 
3 Spafford, Interview, December 2, 2004 
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2. A meaningful rating system 
 
Once the lab decides on which methods it will use to evaluate the software’s security, it 

needs to devise a way to convey information about its findings to consumers. Rating the 

software is obvious solution. 

Any rating system for the software must say how secure the lab thinks the software might 

be, but at the same time, not give users a false sense of security, so to speak. The lab 

should make clear that the ratings are simply an attempt to measure security and can 

never guarantee the software is secure.  

In addition, the descriptors the ratings system uses to describe how secure a piece of 

software is must make sense to the average consumer, and to those assigning liability, 

and at the same time map to metrics intelligible to computer scientists. A simple solution 

is to pass or fail the software, as Maccherone proposes. However, translating what 

passing means and offering the appropriate caveats as described above, is no mean feat. 

For the average user you might try to explain that that the tools the Cylab would use to 

scan the source code are intended to find vulnerabilities that make up 85 percent of the 

vulnerabilities present in the CERT database, and that different pieces of software 

contained certain numbers of these vulnerabilities. However, as McGraw points out, the 

average user, much like Gary Larson’s cartoon dogs, would hear “Blah blah blah CERT 

database.” Confused, the user might then ask: “Does this mean my computer is going to 

turn into a spam-sending zombie or not?” This is a perfectly fair, and unanswerable, 

question. Spafford adds that it would be difficult to present meaningful information even 

to sophisticated users like system administrators.  
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Hal Varian, Professor of Economics at Berkeley, suggests ratings might go beyond a 

general pass/fail system and note the software is “certified for home use” or “certified for 

business use.” This scheme too would confront the same problem: What does it mean for 

a piece of software to be certified for home or business use and how do you convey that 

meaning to consumers? Maccherone worries that it would be difficult to differentiate 

between certification for different types of use at the code level.  

The Common Criteria, the primary certification system in use today, makes no attempt to 

make its ratings meaningful to the average consumer: The ratings are largely intended for 

use by government agencies. Vendors who want to sell to certain parts of the U.S. 

government must ensure their products are certified by the Common Criteria. Companies 

do tout their Common Criteria certification in marketing literature, but this likely means 

nothing to most consumers.  

3. Educated consumers 
 
Consumers then, would need to know about and value the ratings. Press attention, the 

endorsement of the ratings by leading industry figures and computer scientists, and more 

consumer education on why security is important would help here.  

4. Critical mass of participating companies  
 
A critical mass of companies would need to participate in the certification process for it 

to be useful. There are various ways to convince companies to participate. Industry 

leaders might take the initiative and participate in creating and deploying the ratings for 

the benefit of the industry as a whole, like the leading IT companies partnered in the 
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Cylab would do. According to Maccherone, industry giants like Microsoft have every 

interest in promoting industry-wide security evaluations. Big vendors want to see the 

security problem solved, and they would like to be involved in helping develop standards 

for measuring security rather than have security standards handed to them. 

Alternatively, government policy might mandate that certain government agencies only 

use software that has been certified, which is how the Common Criteria certifying 

process works.  

5. Costs in Time and Money  
 
It must not be prohibitively expensive to submit your software for review so the smaller 

players in the industry can afford to be included. This is a major complaint about the 

Common Criteria labs: It’s too expensive, which bars all but the biggest companies from 

having their software evaluated.  

As new releases in software come with some regularity, the review process must take 

place quickly enough for the software to have time on the market before its next version 

comes out. Critics fault the Common Criteria for being too slow as well.  

The Cylab, because it relies on automated tools, might well delivered speedier and 

cheaper results than a process like the Common Criteria which depends on human 

experts. Then again, a major problem with automated tools is that each of their finds 

needs to be evaluated by a human since the number of false positives they uncover is 

huge. Spafford noted that in one test he performed, the tools uncovered hundreds of false 

positives in ten thousand lines of code. Windows is 60 million lines of code long. How 
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much would handling these false positives increase the costs in time and money for the 

lab?  

6. Accountability and independence  
 
Finally, the lab must be accountable and independent. It needs to be held responsible for 

its scoring process, and it must be able to evaluate software without regard for whose 

software it is evaluating and who is funding the evaluation. Jonathon Shapiro, Professor 

of Computer Science at Johns Hopkins University, points out that the Common Criteria 

labs are not as independent and accountable as they could be: He says that companies are 

playing the labs off each other for favorable treatment. While the Cylab’s reliance on 

tools might increase its ability to be independent—tools give impartial results—again, 

humans need to be involved to evaluate the tools’ findings. Processes with human 

intervention must be structured so they maintain independence and accountability.  

Is a lab worth doing now?  
 
So would it be more useful to have a lab that can test for some flaws than it would be to 

do nothing? Would widely publicizing the Common Criteria ratings—assuming they are 

meaningful, which many experts doubt—or hyping the Cylab’s certification when it goes 

live to consumers inspire companies to make certifiable software? It seems it would, at 

least as long as consumers perceived their computers to be “safer” than they were before 

buying certified software. However, if consumers began to feel their computer was no 

more secure for having bought certified software, the certification system would quickly 

fall apart. (How consumers might perceive this to be true is another question entirely—

most consumers probably believe their computers are pretty secure right now anyway.) It 
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is for this reason that we may just have one shot at making a workable lab. Perhaps then,  

we should wait until we can be reasonably confident that certification means a piece of 

software is really more secure than its uncertified rival.  

Rather than encouraging the creation of a lab now, policy-making power then is probably 

best spent on funding security research so we can come up with metrics that would be 

meaningful enough for a lab to use. Spafford points out that research into security 

metrics, as well as into security more broadly, is woefully under-funded. He believes we 

need to educate those who hold the purse strings that security is about more than anti-

virus software and patches. Security also about thinking of ways to make the software 

you are about to build secure, not just trying to clean up after faulty software. Funding for 

research into better tools, new languages, and new architectures is probably the best 

contribution policy-makers can make toward improving software security.  
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Conclusion 
 
The ultimate solution to making software more secure is not solely a technical one: new 

technologies, such as tools, and more skilled engineers are important, but insufficient by 

themselves. Even with great brain-power and expense focused on security, software is 

unlikely to be completely defect free. Other solutions, be they legal, economic or policy, 

are needed to push organizations and society toward devoting more resources to 

improving the security of our networked systems as a whole.  

Policy-makers can use their law-making power and their power over purse-strings to 

encourage organizations to devote more resources to improving software security. They 

can threaten software vendors with a stick by enacting software vendor liability laws, but 

adding risk to the development of a cutting-edge technology can stifle innovation. They 

can encourage the market to push vendors toward making more secure software by, say, 

having the government refuse to purchase any software that has not been certified by an 

independent lab. Or they might extend carrots to help organizations improve the 

technology and technical skills behind their software: grants to universities for research 

into better tools and languages, or to start software engineering programs. Until 

consumers and producers deem security to be a feature, however, it will be no more than 

an extra expense in the development cycle.  

There is no one easy answer to software security. Our paper has described several 

possible approaches for improving it and each has problems. Software is inherently error 

prone and costly to secure. Vendor liability might stifle innovation. Licensing too. And 
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since we do not currently have the ability to create an independent lab that gave can 

meaningful ratings, it might be best not to try. We hope after reading this paper that 

policy-makers are now a bit better equipped to avoid poor decisions on this issue.  

 


